Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447055

RESUMO

Isocitrate dehydrogenase is an enzyme converting isocitrate to α-ketoglutarate in the canonical tricarboxylic acid (TCA) cycle. There are three different types of isocitrate dehydrogenase documented in eukaryotes. Our study points out the complex evolutionary history of isocitrate dehydrogenases across kinetoplastids, where the common ancestor of Trypanosomatidae and Bodonidae was equipped with two isoforms of the isocitrate dehydrogenase enzyme: the NADP+-dependent isocitrate dehydrogenase 1 with possibly dual localization in the cytosol and mitochondrion and NADP+-dependent mitochondrial isocitrate dehydrogenase 2. In the extant trypanosomatids, isocitrate dehydrogenase 1 is present only in a few species suggesting that it was lost upon separation of Trypanosoma spp. and replaced by the mainly NADP+-dependent cytosolic isocitrate dehydrogenase 3 of bacterial origin in all the derived lineages. In this study, we experimentally demonstrate that the omnipresent isocitrate dehydrogenase 2 has a dual localization in both mitochondrion and cytosol in at least four species that possess only this isoform. The apparent lack of the NAD+-dependent isocitrate dehydrogenase activity in trypanosomatid mitochondrion provides further support to the existence of the noncanonical TCA cycle across trypanosomatids and the bidirectional activity of isocitrate dehydrogenase 3 when operating with NADP+ cofactor instead of NAD+. This observation can be extended to all 17 species analyzed in this study, except for Leishmania mexicana, which showed only low isocitrate dehydrogenase activity in the cytosol. The variability in isocitrate oxidation capacity among species may reflect the distinct metabolic strategies and needs for reduced cofactors in particular environments.


Assuntos
Isocitrato Desidrogenase , NAD , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , NADP/metabolismo , NAD/metabolismo , Isoformas de Proteínas
2.
Int J Mol Sci ; 24(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37834433

RESUMO

Pseudomonas aeruginosa PAO1, as an experimental model for Gram-negative bacteria, harbors two NADP+-dependent isocitrate dehydrogenases (NADP-IDHs) that were evolved from its ancient counterpart NAD-IDHs. For a better understanding of PaIDH1 and PaIDH2, we cloned the genes, overexpressed them in Escherichia coli and purified them to homogeneity. PaIDH1 displayed higher affinity to NADP+ and isocitrate, with lower Km values when compared to PaIDH2. Moreover, PaIDH1 possessed higher temperature tolerance (50 °C) and wider pH range tolerance (7.2-8.5) and could be phosphorylated. After treatment with the bifunctional PaIDH kinase/phosphatase (PaIDH K/P), PaIDH1 lost 80% of its enzymatic activity in one hour due to the phosphorylation of Ser115. Small-molecule compounds like glyoxylic acid and oxaloacetate can effectively inhibit the activity of PaIDHs. The mutant PaIDH1-D346I347A353K393 exhibited enhanced affinity for NAD+ while it lost activity towards NADP+, and the Km value (7770.67 µM) of the mutant PaIDH2-L589 I600 for NADP+ was higher than that observed for NAD+ (5824.33 µM), indicating a shift in coenzyme specificity from NADP+ to NAD+ for both PaIDHs. The experiments demonstrated that the mutation did not alter the oligomeric state of either protein. This study provides a foundation for the elucidation of the evolution and function of two NADP-IDHs in the pathogenic bacterium P. aeruginosa.


Assuntos
Coenzimas , Pseudomonas aeruginosa , Coenzimas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , NADP/metabolismo , NAD/metabolismo , Sequência de Aminoácidos , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Cinética
3.
Curr Opin Struct Biol ; 82: 102672, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37542909

RESUMO

Eukaryotic NAD-dependent isocitrate dehydrogenases (NAD-IDHs) are mitochondria-localized enzymes which catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate using NAD as a cofactor. In mammals, NAD-IDHs (or IDH3) consist of three types of subunits (α, ß, and γ), and exist as (α2ßγ)2 heterooctamer. Mammalian NAD-IDHs are regulated allosterically and/or competitively by a diversity of metabolites including citrate, ADP, ATP, NADH, and NADPH, which are associated with cellular metabolite flux, energy demands, and redox status. Proper assembly of the component subunits is essential for the catalysis and regulation of the enzymes. Recently, crystal structures of human IDH3 have been solved in apo form and in complex with various ligands, revealing the molecular mechanisms for the assembly, catalysis, and regulation of the enzyme.


Assuntos
Isocitrato Desidrogenase , NAD , Animais , Humanos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , NAD/metabolismo , Isocitratos/metabolismo , Mamíferos/metabolismo , Catálise , Cinética
4.
Artigo em Inglês | MEDLINE | ID: mdl-37018937

RESUMO

Raw materials or bioactive ingredients trigger mechanisms to assimilate nutrients and activate metabolic pathways that promote growth, immune function, or energy storage. Our understanding of these processes at a molecular level remains limited in aquaculture, especially in shrimp. Here, hepatopancreas proteomics and haemolymph metabolomics were used to investigate the post-prandial response of black tiger shrimps (Penaeus monodon) fed a conventional fishmeal diet (FM); a diet supplemented with the microbial biomass Novacq™ (NV); krill meal (KM); or, fasted (FS). Using FM as a control, a 2-fold change in abundance threshold was implemented to determine the significance of proteins and metabolites. NV fed shrimp showed preference for energy derived from carbohydrates indicated by a strong signature of glycoconjugate metabolism and activation of the amino- and nucleotide sugar metabolic pathway. KM activated the glyoxylate and dicarboxylate pathway that denoted shrimp preference for lipidic energy. KM also influenced energy generation by the TCA cycle inferred from higher abundance of the metabolites succinic semialdehyde, citric acid, isocitrate, alpha ketoglutarate and ATP and downregulation of the enzyme isocitrate dehydrogenase that catalyses oxidative decarboxylation of isocitrate. FS shrimp displayed down-regulation of oxidative phosphorylation and resorted to internal lipid reserves for energy homeostasis displaying a strong signature of autophagy. Pyrimidine metabolism was the preferred energy strategy in this group. Our study also provided evidence that during fasting or consumption of specific ingredients, shrimp share common pathways to meet their energy requirements, however, the intensity at which these pathways were impacted was diet dependent.


Assuntos
Penaeidae , Animais , Isocitratos/metabolismo , Hepatopâncreas/metabolismo , Dieta , Metabolismo Energético , Quitina/metabolismo , Glicoconjugados/metabolismo , Autofagia , Imunidade
5.
Biochimie ; 210: 14-21, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36958591

RESUMO

The wood frog, Rana sylvatica, employs freeze tolerance as a winter survival strategy in seasonally cold environments. At subzero temperatures, up to 65-70% of total body water can freeze in extracellular spaces, halting vital functions (breathing, heartbeat) and causing ischemia that, in turn, can have numerous consequences including the generation of damaging reactive oxygen species (ROS). NADPH serves as a key donor of reductive power for most ROS detoxifying enzymes and can be generated by several metabolic pathways. One source of NADPH reducing power is the NADP-dependent isocitrate dehydrogenase (IDH) reaction. The present study evaluated the properties and regulation of IDH from skeletal muscle of R. sylvatica when frogs were exposed to stress conditions: freezing, dehydration or anoxia. Purified IDH exhibited higher affinity for isocitrate under all stress conditions as compared to controls, suggesting that the enzyme is primed to synthesize NADPH relative to the control state. Immunoblotting showed reduced serine and threonine phosphorylation of muscle IDH from frozen frogs and decreased serine phosphorylation on IDH from dehydrated frogs relative to control and anoxic states, demonstrating a reversible phosphorylation regulatory mechanism for IDH activity during freezing stress. Taken together, these results suggest activation and maintenance of IDH activity despite hypometabolic conditions. This initiation in activity of IDH during freezing may play a role in antioxidant defense by contributing to maintenance of the NADPH pool under stress conditions.


Assuntos
Isocitrato Desidrogenase , Ranidae , Animais , NADP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Isocitrato Desidrogenase/metabolismo , Congelamento , Isocitratos/metabolismo , Ranidae/metabolismo , Músculo Esquelético/metabolismo , Hipóxia/metabolismo
6.
Biochemistry ; 62(6): 1145-1159, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36854124

RESUMO

Human isocitrate dehydrogenase 1 (IDH1) is a highly conserved metabolic enzyme that catalyzes the interconversion of isocitrate and α-ketoglutarate. Kinetic and structural studies with IDH1 have revealed evidence of striking conformational changes that occur upon binding of its substrates, isocitrate and NADP+, and its catalytic metal cation. Here, we used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to build a comprehensive map of the dynamic conformational changes experienced by IDH1 upon ligand binding. IDH1 proved well-suited for HDX-MS analysis, allowing us to capture profound changes in solvent accessibility at substrate binding sites and at a known regulatory region, as well as at more distant local subdomains that appear to support closure of this protein into its active conformation. HDX-MS analysis suggested that IDH1 is primarily purified with NADP(H) bound in the absence of its metal cation. Subsequent metal cation binding, even in the absence of isocitrate, was critical for driving large conformational changes. WT IDH1 folded into its fully closed conformation only when the full complement of substrates and metal was present. Finally, we show evidence supporting a previously hypothesized partially open conformation that forms prior to the catalytically active state, and we propose this conformation is driven by isocitrate binding in the absence of metal.


Assuntos
Espectrometria de Massa com Troca Hidrogênio-Deutério , Isocitrato Desidrogenase , Humanos , Isocitrato Desidrogenase/química , Deutério , Isocitratos/metabolismo , Medição da Troca de Deutério , NADP/metabolismo , Ligantes
7.
Mol Cell Biochem ; 478(2): 415-426, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35802222

RESUMO

NADP-dependent isocitrate dehydrogenase (NADP-IDH, EC 1.1.1.42) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate with the concomitant production of NADPH. NADPH plays important roles in many biosynthesis pathways, maintenance of proper oxidation-reduction balance, and protection against oxidative damage. This present study investigated the dynamic nature of NADP-IDH during hibernation by purifying it from the skeletal muscle of Richardson's ground squirrel (Urocitellus richardsonii) and analyzing its structural and functional changes in response to hibernation. Kinetic parameters of purified NADP-IDH from euthermic and hibernating ground squirrel skeletal muscle were characterized at 22 °C and 5 °C. Relative to euthermic muscle, -NADP-IDH in hibernating muscle had a higher affinity for its substrate, isocitrate at 22 °C, whereas at 5 °C, there was a significant decrease in isocitrate affinity. Western blot analysis revealed greater serine and threonine phosphorylation in hibernator NADP-IDH as compared to euthermic NADP-IDH. In addition, Bioinformatic analysis predicted the presence of 18 threonine and 21 serine phosphorylation sites on squirrel NADP-IDH. The structural and functional changes in NADP-IDH indicate the ability of the organism to reduce energy consumption during hibernation, while emphasizing increased NADPH production, and thus antioxidant activity, during torpor arousal cycles.


Assuntos
Isocitrato Desidrogenase , Músculo Esquelético , Animais , NADP/metabolismo , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Músculo Esquelético/metabolismo , Sciuridae/metabolismo , Cinética
8.
World J Microbiol Biotechnol ; 38(12): 255, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319705

RESUMO

Phosphate (Pi) is essential for life as it is an integral part of the universal chemical energy adenosine triphosphate (ATP), and macromolecules such as, DNA, RNA proteins and lipids. Despite the core roles and the need of this nutrient in living cells, some bacteria can grow in environments that are poor in Pi. The metabolic mechanisms that enable bacteria to proliferate in a low phosphate environment are not fully understood. In this study, the soil microbe Pseudomonas (P.) fluorescens was cultured in a control and a low Pi (stress) medium in order to delineate how energy homeostasis is maintained. Although there was no significant variation in biomass yield in these cultures, metabolites like isocitrate, oxaloacetate, pyruvate and phosphoenolpyruvate (PEP) were markedly increased in the phosphate-starved condition. Components of the glycolytic, glyoxylate and tricarboxylic acid cycles operated in tandem to generate ATP by substrate level phosphorylation (SLP) as NADH-producing enzymes were impeded. The α-ketoglutarate (KG) produced when glutamine, the sole carbon nutrient was transformed into phosphoenol pyruvate (PEP) and succinyl-CoA (SC), two high energy moieties. The metabolic reprogramming orchestrated by isocitrate lyase (ICL), phosphoenolpyruvate synthase (PEPS), pyruvate phosphate dikinase (PPDK), and succinyl-CoA synthetase fulfilled the ATP budget. Cell free extract experiments confirmed ATP synthesis in the presence of such substrates as PEP, oxaloacetate and isocitrate respectively. Gene expression profiling revealed elevated transcripts associated with numerous enzymes including ICL, PEPS, and succinyl-CoA synthetase (SCS). This microbial adaptation will be critical in promoting biological activity in Pi-poor ecosystems.


Assuntos
Pseudomonas fluorescens , Pseudomonas fluorescens/metabolismo , Trifosfato de Adenosina/metabolismo , Isocitratos/metabolismo , Fosfatos/metabolismo , Ecossistema , Fosfoenolpiruvato/metabolismo , Homeostase , Ácido Pirúvico/metabolismo , Oxaloacetatos/metabolismo , Ligases/metabolismo
9.
J Biol Chem ; 298(11): 102562, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36198361

RESUMO

Macrophages produce itaconic acid in phagosomes in response to bacterial cell wall component lipopolysaccharide to eliminate invading pathogenic bacteria. Itaconic acid competitively inhibits the first enzyme of the bacterial glyoxylate cycle. To overcome itaconic acid stress, bacteria employ the bacterial LysR-type transcriptional regulator RipR. However, it remains unknown which molecule activates RipR in bacterial pathogenesis. In this study, we determined the crystal structure of the regulatory domain of RipR from the intracellular pathogen Salmonella. The RipR regulatory domain structure exhibited the typical dimeric arrangement with the putative ligand-binding site between the two subdomains. Our isothermal titration calorimetry experiments identified isocitrate as the physiological ligand of RipR, whose intracellular level is increased in response to itaconic acid stress. We further found that 3-phenylpropionic acid significantly decreased the resistance of the bacteria to an itaconic acid challenge. Consistently, the complex structure revealed that the compound is antagonistically bound to the RipR ligand-binding site. This study provides the molecular basis of bacterial survival in itaconic acid stress from our immune systems. Further studies are required to reveal biochemical activity, which would elucidate how Salmonella survives in macrophage phagosomes by defending against itaconic acid inhibition of bacterial metabolism.


Assuntos
Proteínas de Bactérias , Salmonella , Isocitratos/metabolismo , Ligantes , Salmonella/genética , Salmonella/metabolismo , Proteínas de Bactérias/metabolismo
10.
J Biol Chem ; 298(9): 102387, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35985423

RESUMO

Isocitrate dehydrogenase 3 (IDH3) is a key enzyme in the mitochondrial tricarboxylic acid (TCA) cycle, which catalyzes the decarboxylation of isocitrate into α-ketoglutarate and concurrently converts NAD+ into NADH. Dysfunction of IDH3B, the ß subunit of IDH3, has been previously correlated with retinal degeneration and male infertility in humans, but tissue-specific effects of IDH3 dysfunction are unclear. Here, we generated Idh3b-KO mice and found that IDH3B is essential for IDH3 activity in multiple tissues. We determined that loss of Idh3b in mice causes substantial accumulation of isocitrate and its precursors in the TCA cycle, particularly in the testes, whereas the levels of the downstream metabolites remain unchanged or slightly increased. However, the Idh3b-KO mice did not fully recapitulate the defects observed in humans. Global deletion of Idh3b only causes male infertility but not retinal degeneration in mice. Our investigation showed that loss of Idh3b causes an energetic deficit and disrupts the biogenesis of acrosome and flagellum, resulting in spermiogenesis arrestment in sperm cells. Together, we demonstrate that IDH3B controls its substrate levels in the TCA cycle, and it is required for sperm mitochondrial metabolism and spermiogenesis, highlighting the importance of the tissue-specific function of the ubiquitous TCA cycle.


Assuntos
Infertilidade Masculina , Isocitrato Desidrogenase , Degeneração Retiniana , Espermatogênese , Animais , Ciclo do Ácido Cítrico , Humanos , Infertilidade Masculina/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Masculino , Camundongos , NAD/metabolismo , Sêmen/metabolismo
11.
Biochem Biophys Res Commun ; 584: 53-59, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768082

RESUMO

The tricarboxylic acid (TCA) cycle is one of the most important pathways of energy metabolism, and the profiles of its components are influenced by factors such as diseases and diets. Therefore, the differences in metabolic profile of TCA cycle between healthy and cancer cells have been the focus of studies to understand pathological conditions. In this study, we developed a quantitative method to measure TCA cycle metabolites using LC-MS/MS to obtain useful metabolic profiles for development of diagnostic and therapeutic methods for cancer. We successfully analyzed 11 TCA cycle metabolites by LC MS/MS with high reproducibility by using a PFP column with 0.5% formic acid as a mobile phase. Next, we analyzed the concentration of TCA cycle metabolites in human cell lines (HaCaT: normal skin keratinocytes; A431: skin squamous carcinoma cells; SW480: colorectal cancer cells). We observed reduced concentration of succinate and increased concentration of citrate, 2-hydroxyglutarate, and glutamine in A431 cells as compared with HaCaT cells. On the other hand, decreased concentration of isocitrate, fumarate, and α-ketoglutarate and increased concentration of malate, glutamine, and glutamate in A431 cells were observed in comparison with SW480 cells. These findings suggested the possibility of identifying disease-specific metabolites and/or organ-specific metabolites by using this targeted metabolomic analysis.


Assuntos
Ciclo do Ácido Cítrico , Metabolismo Energético , Metaboloma , Metabolômica/métodos , Neoplasias/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Cromatografia Líquida/métodos , Fumaratos/metabolismo , Humanos , Isocitratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Malatos/metabolismo , Neoplasias/patologia , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
12.
Diabetes ; 70(8): 1717-1728, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34039628

RESUMO

The defining feature of pancreatic islet ß-cell function is the precise coordination of changes in blood glucose levels with insulin secretion to regulate systemic glucose homeostasis. While ATP has long been heralded as a critical metabolic coupling factor to trigger insulin release, glucose-derived metabolites have been suggested to further amplify fuel-stimulated insulin secretion. The mitochondrial export of citrate and isocitrate through the citrate-isocitrate carrier (CIC) has been suggested to initiate a key pathway that amplifies glucose-stimulated insulin secretion, though the physiological significance of ß-cell CIC-to-glucose homeostasis has not been established. Here, we generated constitutive and adult CIC ß-cell knockout (KO) mice and demonstrate that these animals have normal glucose tolerance, similar responses to diet-induced obesity, and identical insulin secretion responses to various fuel secretagogues. Glucose-stimulated NADPH production was impaired in ß-cell CIC KO islets, whereas glutathione reduction was retained. Furthermore, suppression of the downstream enzyme cytosolic isocitrate dehydrogenase (Idh1) inhibited insulin secretion in wild-type islets but failed to impact ß-cell function in ß-cell CIC KO islets. Our data demonstrate that the mitochondrial CIC is not required for glucose-stimulated insulin secretion and that additional complexities exist for the role of Idh1 and NADPH in the regulation of ß-cell function.


Assuntos
Ácido Cítrico/metabolismo , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Isocitratos/metabolismo , Mitocôndrias/metabolismo , Animais , Citosol/metabolismo , Homeostase/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos
13.
Anal Chem ; 93(2): 1009-1015, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33290053

RESUMO

We describe a method for the analysis of organic acids, including those of the tricarboxylic acid cycle (TCA cycle), by mixed-mode reversed-phase chromatography, on a CSH Phenyl-Hexyl column, to accomplish mixed-mode anion-exchange separations, which results in increased retention for acids without the need for ion-pairing reagents or other mobile phase additives. The developed method exhibited good retention time reproducibility for over 650 injections or more than 5 days of continuous operation. Additionally, it showed excellent resolution of the critical pairs, isocitric acid and citric acid as well as malic acid and fumaric acid, among others. The use of hybrid organic-inorganic surface technology incorporated into the hardware of the column not only improved the mass spectral quality and subsequent database match scoring but also increased the recovery of the analytes, showing particular benefit for low concentrations of phosphorylated species. The method was applied to the comparative metabolomic analysis of urine samples from healthy controls and breast cancer positive subjects. Unsupervised PCA analysis showed distinct grouping of samples from healthy and diseased subjects, with excellent reproducibility of respective injection clusters. Finally, abundance plots of selected analytes from the tricarboxylic acid cycle revealed differences between healthy control and disease groups.


Assuntos
Líquidos Corporais/metabolismo , Ciclo do Ácido Cítrico , Ácido Cítrico/metabolismo , Fumaratos/metabolismo , Isocitratos/metabolismo , Malatos/metabolismo , Líquidos Corporais/química , Cromatografia Líquida de Alta Pressão , Ácido Cítrico/química , Ácido Cítrico/urina , Fumaratos/química , Fumaratos/urina , Humanos , Isocitratos/química , Isocitratos/urina , Malatos/química , Malatos/urina , Espectrometria de Massas , Estrutura Molecular
14.
Sci Rep ; 10(1): 18925, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144641

RESUMO

Pulmonary tuberculosis, caused by Mycobacterium tuberculosis, is one of the most persistent diseases leading to death in humans. As one of the key targets during the latent/dormant stage of M. tuberculosis, isocitrate lyase (ICL) has been a subject of interest for new tuberculosis therapeutics. In this work, the cleavage of the isocitrate by M. tuberculosis ICL was studied using quantum mechanics/molecular mechanics method at M06-2X/6-31+G(d,p): AMBER level of theory. The electronic embedding approach was applied to provide a better depiction of electrostatic interactions between MM and QM regions. Two possible pathways (pathway I that involves Asp108 and pathway II that involves Glu182) that could lead to the metabolism of isocitrate was studied in this study. The results suggested that the core residues involved in isocitrate catalytic cleavage mechanism are Asp108, Cys191 and Arg228. A water molecule bonded to Mg2+ acts as the catalytic base for the deprotonation of isocitrate C(2)-OH group, while Cys191 acts as the catalytic acid. Our observation suggests that the shuttle proton from isocitrate hydroxyl group C(2) atom is favourably transferred to Asp108 instead of Glu182 with a lower activation energy of 6.2 kcal/mol. Natural bond analysis also demonstrated that pathway I involving the transfer of proton to Asp108 has a higher intermolecular interaction and charge transfer that were associated with higher stabilization energy. The QM/MM transition state stepwise catalytic mechanism of ICL agrees with the in vitro enzymatic assay whereby Asp108Ala and Cys191Ser ICL mutants lost their isocitrate cleavage activities.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Isocitrato Liase/química , Isocitrato Liase/metabolismo , Isocitratos/metabolismo , Mycobacterium tuberculosis/enzimologia , Asparagina/química , Domínio Catalítico , Glutamina/química , Isocitratos/química , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Teoria Quântica
15.
Minerva Med ; 111(5): 411-426, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32955829

RESUMO

The isocitrate dehydrogenases enzymes, IDH1 and IDH2, catalyze the conversion of isocitrate to α-ketoglutarate (αKG) in the cell cytoplasm and mitochondria, respectively, and contribute to generating the dihydronicotinamide-adenine dinucleotide phosphate (NADPH) as reductive potential in different cellular processes. Mutations in IDH1 and IDH2 genes are found collectively in about 20-25% of acute myeloid leukemia (AML) patients. Mutant IDH enzymes have neomorphic activity and convert αKG to the oncometabolite R-2-hydroxyglutarate (R-2-HG) which accumulates at high levels in the cell and hampers the function of αKG-dependent enzymes, including epigenetic regulators, thus leading to altered gene expression and block of differentiation and contributing to leukemia development. Inhibition of the neomorphic mutants induces marked decrease in R-2-HG levels and restores myeloid differentiation. Enasidenib and ivosidenib are potent and selective inhibitors of mutant IDH2 and IDH1, respectively, act as differentiating agents and showed clinical activity in relapsed/refractory (R/R) AML harboring the specific mutation. As single agents, both drugs have been approved by the Food and Drug Administration (FDA) for the treatment of R/R AML. The relevance of IDH targeting within either single agent approach or, most importantly, combinatorial treatments in AML will be discussed.


Assuntos
Aminopiridinas/uso terapêutico , Antineoplásicos/uso terapêutico , Glicina/análogos & derivados , Isocitrato Desidrogenase/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Piridinas/uso terapêutico , Triazinas/uso terapêutico , Aminopiridinas/efeitos adversos , Antineoplásicos/efeitos adversos , Diferenciação Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Glutaratos/metabolismo , Glicina/efeitos adversos , Glicina/uso terapêutico , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Estudos Multicêntricos como Assunto , Mutação de Sentido Incorreto , NADP/biossíntese , Piridinas/efeitos adversos , Síndrome , Triazinas/efeitos adversos
16.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824636

RESUMO

The marine diatom Phaeodactylum tricornutum originated from a series of secondary symbiotic events and has been used as a model organism for studying diatom biology. A novel type II homodimeric isocitrate dehydrogenase from P. tricornutum (PtIDH1) was expressed, purified, and identified in detail through enzymatic characterization. Kinetic analysis showed that PtIDH1 is NAD+-dependent and has no detectable activity with NADP+. The catalytic efficiency of PtIDH1 for NAD+ is 0.16 µM-1·s-1 and 0.09 µM-1·s-1 in the presence of Mn2+ and Mg2+, respectively. Unlike other bacterial homodimeric NAD-IDHs, PtIDH1 activity was allosterically regulated by the isocitrate. Furthermore, the dimeric structure of PtIDH1 was determined at 2.8 Å resolution, and each subunit was resolved into four domains, similar to the eukaryotic homodimeric NADP-IDH in the type II subfamily. Interestingly, a unique and novel C-terminal EF-hand domain was first defined in PtIDH1. Deletion of this domain disrupted the intact dimeric structure and activity. Mutation of the four Ca2+-binding sites in the EF-hand significantly reduced the calcium tolerance of PtIDH1. Thus, we suggest that the EF-hand domain could be involved in the dimerization and Ca2+-coordination of PtIDH1. The current report, on the first structure of type II eukaryotic NAD-IDH, provides new information for further investigation of the evolution of the IDH family.


Assuntos
Diatomáceas/enzimologia , Isocitrato Desidrogenase/química , Regulação Alostérica , Sítio Alostérico , Cristalografia por Raios X , Motivos EF Hand , Isocitrato Desidrogenase/metabolismo , Isocitratos/química , Isocitratos/metabolismo , NAD/química , NAD/metabolismo
17.
Biochem J ; 477(16): 2999-3018, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32729927

RESUMO

Isocitrate dehydrogenase 1 (IDH1) catalyzes the reversible NADP+-dependent conversion of isocitrate to α-ketoglutarate (αKG) to provide critical cytosolic substrates and drive NADPH-dependent reactions like lipid biosynthesis and glutathione regeneration. In biochemical studies, the forward reaction is studied at neutral pH, while the reverse reaction is typically characterized in more acidic buffers. This led us to question whether IDH1 catalysis is pH-regulated, which would have functional implications under conditions that alter cellular pH, like apoptosis, hypoxia, cancer, and neurodegenerative diseases. Here, we show evidence of catalytic regulation of IDH1 by pH, identifying a trend of increasing kcat values for αKG production upon increasing pH in the buffers we tested. To understand the molecular determinants of IDH1 pH sensitivity, we used the pHinder algorithm to identify buried ionizable residues predicted to have shifted pKa values. Such residues can serve as pH sensors, with changes in protonation states leading to conformational changes that regulate catalysis. We identified an acidic residue buried at the IDH1 dimer interface, D273, with a predicted pKa value upshifted into the physiological range. D273 point mutations had decreased catalytic efficiency and, importantly, loss of pH-regulated catalysis. Based on these findings, we conclude that IDH1 activity is regulated, at least in part, by pH. We show this regulation is mediated by at least one buried acidic residue ∼12 Å from the IDH1 active site. By establishing mechanisms of regulation of this well-conserved enzyme, we highlight catalytic features that may be susceptible to pH changes caused by cell stress and disease.


Assuntos
Glutaratos/metabolismo , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Mutação , Catálise , Domínio Catalítico , Glutaratos/química , Humanos , Concentração de Íons de Hidrogênio , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Isocitratos/química , Cinética , Conformação Proteica , Especificidade por Substrato
18.
Artigo em Inglês | MEDLINE | ID: mdl-32373065

RESUMO

Aim: Isocitrate dehydrogenase 1 (IDH1) is key enzyme involved in cellular metabolism and DNA repair. Mutations in IDH1 occur in up to 25% of cholangiocarcinomas. The present study aimed to explore the features of cellosaurus REB cells with mutant and wide-type IDH1. Methods: To compare the features of IDH1 knockout and mutation in cholangiocarcinoma, we firstly constructed the IDH1 knockout and IDH1 mutation cell lines. We then evaluated the viability of these cell lines using the cell count assay and MTT assay. Next, we determined cell migration and invasion using the Transwell assay. Additionally, to evaluate the effects of IDH1 on cellular metabolism, the levels of α-ketoglutarate (α-KG) and nicotinamide adenine dinucleotide phosphate (NADPH) were determined using enzyme-linked immunosorbent assay. We then applied ChIPbase dataset to explore the genes that were regulated by IDH1. Results: High frequency of mutated IDH1 was observed in the cholangiocarcinoma and IDH1 R132C was presented in more than 80% of mutations. The results showed that IDH1 knockout decreased cell proliferation, migration and invasion, whereas the overexpression of IDH1 in IDH1 knockout cell line recovered its proliferation, migration and invasion capacities. Additionally, IDH1 mutation reduced the levels of NADPH and α-KG. Furthermore, investigation into the underlying mechanisms revealed that IDH1 overexpression induced the expression of aldehyde dehydrogenase 1 thereby promoting cell proliferation, migration and invasion. Conclusion:IDH1 plays an important role in cholangiocarcinoma and its mutation impairs tumor progression in part by inhibition of isocitrate metabolism.


Assuntos
Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/genética , Isocitrato Desidrogenase/genética , Isocitratos/metabolismo , Animais , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Progressão da Doença , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação
19.
Cell Death Dis ; 11(5): 312, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366855

RESUMO

Tempol (4-hydroxy-2,2,6,6-Tetramethylpiperidine-1-oxyl, TPL), a nitroxide compound, inhibits proliferation and increases the vulnerability of cancer cells to apoptosis induced by cytotoxic agents. However, the molecular mechanism of TPL inhibiting cancer cell proliferation has not been fully understood. In this study, we evaluated the metabolic effect of TPL on cancer cells and explored its cancer therapeutic potential. Extracellular flow assays showed that TPL inhibited cellular basal and maximal oxygen consumption rates of mitochondrial. 13C metabolic flux analysis showed that TPL treatment had minimal effect on glycolysis. However, we found that TPL inhibits glutamine metabolism by interfering with the oxidative tricarboxylic acid cycle (TCA) process and reductive glutamine process. We found that the inhibitory effect of TPL on metabolism occurs mainly on the step from citrate to α-ketoglutarate or vice versa. We also found that activity of isocitrate dehydrogenase IDH1 and IDH2, the key enzymes in TCA, were inhibited by TPL treatment. In xenograft mouse model, TPL treatment reduced tumor growth by inhibiting cellular proliferation of xenograft tumors. Thus, we provided a mechanism of TPL inhibiting cancer cell proliferation by interfering with glutamine utilization that is important for survival and proliferation of cancer cells. The study may help the development of a therapeutic strategy of TPL combined with other anticancer medicines.


Assuntos
Óxidos N-Cíclicos/farmacologia , Glutamina/metabolismo , Compostos Heterocíclicos/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Glicólise/efeitos dos fármacos , Humanos , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , NAD/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Ácido Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Marcadores de Spin , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Anal Chem ; 92(13): 9305-9311, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32466643

RESUMO

We demonstrate a method for facile differentiation of acidic, isomeric metabolites by attaching high proton affinity, piperidine-based chemical tags to each carboxylic acid group. These tags attach with high efficiency to the analytes, increase the signal, and result in the formation of multiply-charged cations. We illustrate the present approach with citrate and isocitrate, which are isomeric metabolites each containing three carboxylic acid groups. We observe a 20-fold increase in signal-to-noise for citrate and an 8-fold increase for isocitrate as compared to detection of the untagged analytes in negative mode. Collision-induced dissociation of the triply tagged, triply charged analytes results in distinct tandem mass spectra. The phenylene spacer groups limit proton mobility and enable access to structurally informative C-C bond cleavage reactions. Modeling of the gas-phase structures and dissociation chemistry of these triply charged analyte ions highlights the importance of hydroxyl proton mobilization in this low proton mobility environment. Tandem mass spectrometric analyses of deuterated congeners and MS3 spectra are consistent with the proposed fragment ion structures and mechanisms of formation. Direct evidence that these chemistries are more generally applicable is provided by subsequent analyses of doubly tagged, doubly charged malate ions. Future work will focus on applying these methods to identify new metabolites and development of general rules for structural determination of tagged metabolites with multiple charges.


Assuntos
Ácido Cítrico/química , Isocitratos/química , Piperidinas/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Ácido Cítrico/metabolismo , Deutério/química , Isocitratos/metabolismo , Isomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...