Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
Nucleic Acids Res ; 52(6): 2808-2820, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38426933

RESUMO

Chemical modifications in RNAs play crucial roles in diversifying their structures and regulating numerous biochemical processes. Since the 1990s, several hydrophobic prenyl-modifications have been discovered in various RNAs. Prenyl groups serve as precursors for terpenes and many other biological molecules. The processes of prenylation in different macromolecules have been extensively studied. We introduce here a novel chemical biology toolkit that not only labels i6A, a prenyl-modified RNA residue, by leveraging the unique reactivity of the prenyl group, but also provides a general strategy to incorporate fluorescence functionalities into RNAs for molecular tracking purposes. Our findings revealed that iodine-mediated cyclization reactions of the prenyl group occur rapidly, transforming i6A from a hydrogen-bond acceptor to a donor. Based on this reactivity, we developed an Iodine-Mediated Cyclization and Reverse Transcription (IMCRT) tRNA-seq method, which can profile all nine endogenous tRNAs containing i6A residues in Saccharomyces cerevisiae with single-base resolution. Furthermore, under stress conditions, we observed a decline in i6A levels in budding yeast, accompanied by significant decrease of mutation rate at A37 position. Thus, the IMCRT tRNA-seq method not only permits semi-quantification of i6A levels in tRNAs but also holds potential for transcriptome-wide detection and analysis of various RNA species containing i6A modifications.


Assuntos
Isopenteniladenosina , Processamento Pós-Transcricional do RNA , RNA de Transferência , Iodo , Neopreno , RNA de Transferência/metabolismo , Saccharomyces cerevisiae , Análise de Sequência de RNA
2.
FEBS Open Bio ; 14(5): 843-854, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514913

RESUMO

Glioblastoma (GBM) is a primary tumor in the central nervous system with poor prognosis. It exhibits elevated glucose uptake and lactate production. This metabolic state of aerobic glycolysis is known as the Warburg effect. N6-isopentenyladenosine (iPA), a natural cytokine modified with an isopentenyl moiety derived from the mevalonate pathway, has well-established anti-tumor activity. It inhibits cell proliferation in glioma cells, inducing cell death by apoptosis and/or necroptosis. In the present study, we found that iPA inhibits aerobic glycolysis in unmodified U87MG cells and in the same cell line engineered to over-express wild-type epidermal growth factor receptor (EGFR) or EGFR variant III (vIII), as well as in a primary GBM4 patient-derived cell line. The detection of glycolysis showed that iPA treatment suppressed ATP and lactate production. We also evaluated the response of iPA treatment in normal human astrocyte primary cells, healthy counterpart cells of the brain. Aerobic glycolysis in treated normal human astrocyte cells did not show significant changes compared to GBM cells. To determine the mechanism of iPA action on aerobic glycolysis, we investigated the expression of certain enzymes involved in this metabolic pathway. We observed that iPA reduced the expression of pyruvate kinase M2 (PKM2), which plays a key role in the regulation of aerobic glycolysis, promoting tumor cell proliferation. The reduction of PKM2 expression is a result of the inhibition of the inhibitor of nuclear factor kappa-B kinase subunit, beta/nuclear factor-kappa B pathway upon iPA treatment. In conclusion, these experimental results show that iPA may inhibit aerobic glycolysis of GBM in stabilized cell lines and primary GBM cells by targeting the expression and activity of PKM2.


Assuntos
Glioblastoma , Glicólise , Isopenteniladenosina , Piruvato Quinase , Humanos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glicólise/efeitos dos fármacos , Isopenteniladenosina/farmacologia , Isopenteniladenosina/metabolismo , Piruvato Quinase/efeitos dos fármacos , Piruvato Quinase/metabolismo
3.
Plant Physiol Biochem ; 196: 186-196, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36724703

RESUMO

The non-climacteric octoploid strawberry (Fragaria × ananassa Duchesne ex Rozier) was used as a model to study its regulation during fruit ripening. High performance liquid chromatography electrospray tandem-mass spectrometry (HPLC-ESI-MS/MS) was employed to profile 28 different endogenous phytohormones in strawberry. These include auxins, cytokinins (CKs), abscisic acid (ABA), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonates, and phenolic compounds salicylic acid (SA), benzoic acid (BzA) and phenylacetic acid (PAA) together with their various metabolic forms that have remained largely unexplored thus far. ABA, ACC and CK N6-(Δ2-isopentenyl)adenine (iP) were found to be associated with ripening while ABA catabolites 9-hydroxy-ABA and phaseic acid mimicked the pattern of climacteric decline at the turning phase of strawberry ripening. The content of other CK forms except iP decreased as fruit ripened, as also that of auxins indole-3-acetic acid (IAA) and oxo-IAA, and of jasmonates. Data presented here also suggest that both the transition and progression of strawberry fruit ripening are associated with N6-(Δ2-isopentenyl)adenosine-5'-monophosphate (iPRMP) → N6-(Δ2-isopentenyl)adenosine (iPR) → iP as the preferred CK metabolic pathway. In contrast, the ethylene precursor ACC was present at higher levels, with its abundance increasing from the onset of ripening to the red ripe stage. Further investigation of ripening-specific ACC accumulation revealed the presence of a large ACC synthase (ACS) encoding gene family in octoploid strawberry that was previously unknown. Seventeen ACS genes were found differentially expressed in fruit tissues, while six of them showed induced expression during strawberry fruit ripening. These data suggest a possible role(s) of ACC, ABA, and iP in strawberry fruit ripening. These data add new dimension to the existing knowledge of the interplay of different endogenous phytohormones in octoploid strawberry, paving the way for further investigation of their individual role(s) in fruit ripening.


Assuntos
Fragaria , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Isopenteniladenosina/metabolismo , Frutas/metabolismo , Espectrometria de Massas em Tandem , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
4.
J Am Chem Soc ; 145(9): 5467-5473, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36820840

RESUMO

Hundreds of modified bases have been identified and enzymatically modified to transfer RNAs (tRNAs) to regulate RNA function in various organisms. 2-Methylthio-N6-isopentenyladenosine (ms2i6A), a hypermodified base found at tRNA position 37, exists in both prokaryotes and eukaryotes. ms2i6A is traditionally identified by separating and digesting each tRNA from total RNA using RNA mass spectrometry. A transcriptome-wide and single-base resolution method that enables absolute mapping of ms2i6A along with analysis of its distribution in different RNAs is lacking. Here, through chemoselective methylthio group bioconjugation, we introduce a new approach (redox activated chemical tagging sequencing, ReACT-seq) to detect ms2i6A transcriptome-wide at single-base resolution. Using the chemoselectivity between the methylthio group and oxaziridine group, ms2i6A is bio-orthogonally tagged with an azide group without interference of canonical nucleotides, advancing enrichment of methylthio group modified RNAs prior to sequencing. ReACT-seq was demonstrated on nine known tRNAs and proved to be highly accurate, and the reverse transcription stop (RT-stop) character enables ReACT-seq detection at single-base resolution. In addition, ReACT-seq identified that the modification of ms2i6A is conservative and may not exist in other RNAs.


Assuntos
Isopenteniladenosina , Transcriptoma , Isopenteniladenosina/química , RNA de Transferência/genética , RNA de Transferência/química
5.
Chembiochem ; 24(6): e202300019, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36640047

RESUMO

Post-transcriptional modifications of tRNA nucleotide are important determinants in folding, structure and function. We have successfully identified and characterized a new modified base named 2-methylthio-methylenethio-N6 -(cis-4-hydroxyisopentenyl)adenosine, which is present at position 37 in some tRNAs. We also showed that this new modified adenosine is derived from the known 2-methylthio-methylenethio-N6 -(isopentenyl)adenosine nucleoside by a catalytic cycle of the tRNA-diiron monooxygenase, MiaE, present in Salmonella typhimurium.


Assuntos
Adenosina , Salmonella typhimurium , Salmonella typhimurium/genética , RNA de Transferência/química , Isopenteniladenosina/química , Oxigenases de Função Mista/química
6.
RNA ; 28(7): 1013-1027, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35414588

RESUMO

N6 -isopentenyladenosine (i6A), a modified adenosine monomer, is known to induce cell death upon its addition to the culture medium. However, the molecular fate of extracellularly added i6A has yet to be identified. Here we show that i6A addition to cell culture medium results in i6A incorporation into cellular RNA in several cell lines, including the 5-fluorouracil (5-FU)-resistant human oral squamous cell carcinoma cell line FR2-SAS and its parental 5-FU-sensitive cell line SAS. i6A was predominantly incorporated into 18S and 28S rRNAs, and i6A incorporation into total RNA was mostly suppressed by treating these cell lines with an RNA polymerase I (Pol I) inhibitor. i6A was incorporated into RNA even upon inactivation of TRIT1, the only cellular i6A-modifying enzyme. These results indicate that upon cellular uptake of i6A, it is anabolized to be used for Pol I transcription. Interestingly, at lower i6A concentrations, the cytotoxic effect of i6A was substantially more pronounced in FR2-SAS cells than in SAS cells. Moreover, in FR2-SAS cells, i6A treatment decreased the rate of cellular protein synthesis and increased intracellular protein aggregation, and these effects were more pronounced than in SAS cells. Our work provides insights into the molecular fate of extracellularly applied i6A in the context of intracellular nucleic acid anabolism and suggests investigation of i6A as a candidate for a chemotherapy agent against 5-FU-resistant cancer cells.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias Bucais , Linhagem Celular Tumoral , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Humanos , Isopenteniladenosina , RNA , RNA Ribossômico/metabolismo
7.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054767

RESUMO

Cyclanilide (CYC), a plant growth regulator, is a potent shoot branching agent in apple. However, its mechanism remains unclear. The current study revealed that CYC treatment resulted in massive reprogramming of the axillary bud transcriptome, implicating several hormones in the response. We observed a marked increase (approximately 2-fold) in the level of zeatin riboside and a significant decrease (approximately 2-fold) in the level of abscisic acid (ABA). Zeatin metabolism gene cytokinin (CTK) oxidase 1 (CKX 1) was down-regulated at 168 h after CYC treatment compared with the control. Weighted gene co-expression network analysis of differentially expressed genes demonstrated the turquoise module clusters exhibited the highest positive correlation with zeatin riboside (r = 0.92) and the highest negative correlation with ABA (r = -0.8). A total of 37 genes were significantly enriched in the plant hormone signal transduction pathway in the turquoise module. Among them, the expressions of CTK receptor genes WOODEN LEG and the CTK type-A response regulators genes ARR3 and ARR9 were up-regulated. ABA signal response genes protein phosphatase 2C genes ABI2 and ABI5 were down-regulated in lateral buds after CYC treatment at 168 h. In addition, exogenous application of 6-benzylaminopurine (6-BA, a synthetic type of CTK) and CYC enhanced the inducing effect of CYC, whereas exogenous application of lovastatin (a synthetic type of inhibitor of CTK biosynthesis) or ABA and CYC weakened the promoting effect of CYC. These results collectively revealed that the stimulation of bud growth by CYC might involve CTK biosynthesis and signalling, including genes CKX1 and ARR3/9, which provided a direction for further study of the branching promoting mechanism of CYC.


Assuntos
Berberina/análogos & derivados , Citocininas/metabolismo , Malus/metabolismo , Transdução de Sinais , Ácido Abscísico/metabolismo , Berberina/metabolismo , Regulação da Expressão Gênica de Plantas , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Malus/genética , Malus/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA-Seq
8.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055162

RESUMO

Adventitious root (AR) formation is a bottleneck for the mass propagation of apple rootstocks, and water stress severely restricts it. Different hormones and sugar signaling pathways in apple clones determine AR formation under water stress, but these are not entirely understood. To identify them, GL-3 stem cuttings were cultured on polyethylene glycol (PEG) treatment. The AR formation was dramatically decreased compared with the PEG-free control (CK) cuttings by increasing the endogenous contents of abscisic acid (ABA), zeatin riboside (ZR), and methyl jasmonate (JA-me) and reducing the indole-3-acetic acid (IAA) and gibberellic acid 3 (GA3) contents. We performed a transcriptomic analysis to identify the responses behind the phenotype. A total of 3204 differentially expressed genes (DEGs) were identified between CK and PEG, with 1702 upregulated and 1502 downregulated genes. Investigation revealed that approximately 312 DEGs were strongly enriched in hormone signaling, sugar metabolism, root development, and cell cycle-related pathways. Thus, they were selected for their possible involvement in adventitious rooting. However, the higher accumulation of ABA, ZR, and JA-me contents and the upregulation of their related genes, as well as the downregulation of sugar metabolism-related genes, lead to the inhibition of ARs. These results indicate that AR formation is a complicated biological process chiefly influenced by multiple hormonal signaling pathways and sugar metabolism. This is the first study to demonstrate how PEG inhibits AR formation in apple plants.


Assuntos
Perfilação da Expressão Gênica/métodos , Malus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Acetatos/metabolismo , Ciclopentanos/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Malus/genética , Malus/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Polietilenoglicóis/farmacologia , Análise de Sequência de RNA
9.
Environ Sci Pollut Res Int ; 29(23): 33909-33919, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35031990

RESUMO

Due to increased industrialization, arsenic (As) in the soil has become a serious issue for wheat production since past few decades. We investigated the role of Azospirillum brasilense and trans-zeatin riboside (tZR) in the mitigation of arsenic toxicity in wheat for 2 years (2018-2019 and 2019-2020) in pot experiments. Wheat plants grown in soil artificially spiked with arsenic (50, 70, and 100 µM) was left alone or amended with A. brasilense, tZR, or their combination as mitigation strategies. A treatment without arsenic or amendments was maintained as control. Arsenic-induced physiological damages were noticed in the wheat plants. Detrimental effects on the plant physiological functions, such as disruption of cell membrane stability, reduced water uptake, and stomatal functions, were noticed with increase in As toxicity. Application of biological amendments reversed the effects of As toxicity by increasing wheat plant growth rate, leaf area, and photosynthesis and also yield. Therefore, application of tZR and wheat seed inoculation with A. brasilense could be a sustainable and environmentally friendly strategy to mitigate arsenic-induced crop physiological damages.


Assuntos
Arsênio , Azospirillum brasilense , Arsênio/metabolismo , Isopenteniladenosina/análogos & derivados , Raízes de Plantas/metabolismo , Solo , Triticum
10.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884882

RESUMO

Cytokinins (CKs) control many plant developmental processes and responses to environmental cues. Although the CK signaling is well understood, we are only beginning to decipher its evolution. Here, we investigated the CK perception apparatus in early-divergent plant species such as bryophyte Physcomitrium patens, lycophyte Selaginella moellendorffii, and gymnosperm Picea abies. Of the eight CHASE-domain containing histidine kinases (CHKs) examined, two CHKs, PpCHK3 and PpCHK4, did not bind CKs. All other CHK receptors showed high-affinity CK binding (KD of nM range), with a strong preference for isopentenyladenine over other CK nucleobases in the moss and for trans-zeatin over cis-zeatin in the gymnosperm. The pH dependences of CK binding for these six CHKs showed a wide range, which may indicate different subcellular localization of these receptors at either the plasma- or endoplasmic reticulum membrane. Thus, the properties of the whole CK perception apparatuses in early-divergent lineages were demonstrated. Data show that during land plant evolution there was a diversification of the ligand specificity of various CHKs, in particular, the rise in preference for trans-zeatin over cis-zeatin, which indicates a steadily increasing specialization of receptors to various CKs. Finally, this distinct preference of individual receptors to different CK versions culminated in vascular plants, especially angiosperms.


Assuntos
Citocininas/metabolismo , Embriófitas/metabolismo , Histidina Quinase/metabolismo , Isopenteniladenosina/metabolismo , Bryopsida/metabolismo , Biologia Computacional , Concentração de Íons de Hidrogênio , Picea/metabolismo , Proteínas de Plantas/metabolismo , Selaginellaceae/metabolismo , Especificidade por Substrato
11.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638872

RESUMO

BACKGROUND: Vasculogenic mimicry (VM) is a functional microcirculation pattern formed by aggressive tumor cells. Thus far, no effective drugs have been developed to target VM. Glioblastoma (GBM) is the most malignant form of brain cancer and is a highly vascularized tumor. Vasculogenic mimicry represents a means whereby GBM can escape anti-angiogenic therapies. METHODS: Here, using an in vitro tube formation assay on Matrigel, we evaluated the ability of N6-isopentenyladenosine (iPA) to interfere with vasculogenic mimicry (VM). RhoA activity was assessed using a pull-down assay, while the modulation of the adherens junctions proteins was analyzed by Western blot analysis. RESULTS: We found that iPA at sublethal doses inhibited the formation of capillary-like structures suppressing cell migration and invasion of U87MG, U343MG, and U251MG cells, of patient-derived human GBM cells and GBM stem cells. iPA reduces the vascular endothelial cadherin (VE-cadherin) expression levels in a dose-dependent manner, impairs the vasculogenic mimicry network by modulation of the Src/p120-catenin pathway and inhibition of RhoA-GTPase activity. CONCLUSIONS: Taken together, our results revealed iPA as a promising novel anti-VM drug in GBM clinical therapeutics.


Assuntos
Cateninas/metabolismo , Glioblastoma/tratamento farmacológico , Isopenteniladenosina/farmacologia , Neovascularização Patológica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Cateninas/genética , Linhagem Celular Tumoral , Glioblastoma/irrigação sanguínea , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Quinases da Família src/genética
12.
Nature ; 597(7877): 566-570, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526715

RESUMO

Numerous post-transcriptional modifications of transfer RNAs have vital roles in translation. The 2-methylthio-N6-isopentenyladenosine (ms2i6A) modification occurs at position 37 (A37) in transfer RNAs that contain adenine in position 36 of the anticodon, and serves to promote efficient A:U codon-anticodon base-pairing and to prevent unintended base pairing by near cognates, thus enhancing translational fidelity1-4. The ms2i6A modification is installed onto isopentenyladenosine (i6A) by MiaB, a radical S-adenosylmethionine (SAM) methylthiotransferase. As a radical SAM protein, MiaB contains one [Fe4S4]RS cluster used in the reductive cleavage of SAM to form a 5'-deoxyadenosyl 5'-radical, which is responsible for removing the C2 hydrogen of the substrate5. MiaB also contains an auxiliary [Fe4S4]aux cluster, which has been implicated6-9 in sulfur transfer to C2 of i6A37. How this transfer takes place is largely unknown. Here we present several structures of MiaB from Bacteroides uniformis. These structures are consistent with a two-step mechanism, in which one molecule of SAM is first used to methylate a bridging µ-sulfido ion of the auxiliary cluster. In the second step, a second SAM molecule is cleaved to a 5'-deoxyadenosyl 5'-radical, which abstracts the C2 hydrogen of the substrate but only after C2 has undergone rehybridization from sp2 to sp3. This work advances our understanding of how enzymes functionalize inert C-H bonds with sulfur.


Assuntos
Bacteroides/enzimologia , Metiltransferases/química , RNA de Transferência/química , RNA de Transferência/metabolismo , S-Adenosilmetionina/metabolismo , Compostos de Sulfidrila/metabolismo , Sulfurtransferases/química , Adenosina/análogos & derivados , Adenosina/metabolismo , Sítios de Ligação , Biocatálise , Isopenteniladenosina/metabolismo , Metiltransferases/metabolismo , Modelos Moleculares , Domínios Proteicos , RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Especificidade por Substrato , Sulfurtransferases/metabolismo
13.
RNA ; 27(2): 202-220, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33214333

RESUMO

Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulations are used to provide molecular-level details for how such modifications impact the structure and function of tRNA. A focus is placed on three hypermodified base families that include the parent i6A, t6A, and yW modifications, as well as derivatives. Our data reveal that the hypermodifications exhibit significant conformational flexibility in tRNA, which can be modulated by additional chemical functionalization. Although the overall structure of the tRNA anticodon stem remains intact regardless of the modification considered, the anticodon loop must rearrange to accommodate the bulky, dynamic hypermodifications, which includes changes in the nucleotide glycosidic and backbone conformations, and enhanced or completely new nucleobase-nucleobase interactions compared to unmodified tRNA or tRNA containing smaller (m1G) modifications at the 37th position. Importantly, the extent of the changes in the anticodon loop is influenced by the addition of small functional groups to parent modifications, implying each substituent can further fine-tune tRNA structure. Although the dominant conformation of the ASL is achieved in different ways for each modification, the molecular features of all modified tRNA drive the ASL domain to adopt the functional open-loop conformation. Importantly, the impact of the hypermodifications is preserved in different sequence contexts. These findings highlight the likely role of regulating mRNA structure and translation.


Assuntos
Adenosina/análogos & derivados , Anticódon/química , Escherichia coli/genética , Processamento Pós-Transcricional do RNA , RNA de Transferência de Lisina/química , RNA de Transferência de Fenilalanina/química , Adenosina/metabolismo , Anticódon/genética , Anticódon/metabolismo , Pareamento de Bases , Sequência de Bases , Escherichia coli/metabolismo , Isopenteniladenosina/química , Isopenteniladenosina/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Nucleosídeos/química , Nucleosídeos/metabolismo , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , RNA de Transferência de Fenilalanina/genética , RNA de Transferência de Fenilalanina/metabolismo
14.
PLoS One ; 15(12): e0241806, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33306692

RESUMO

In this study, we investigated the changes in the distribution and regulation of endogenous hormones in Phyllostachys edulis 'Pachyloen' during bamboo shooting. Enzyme-linked immunosorbent assay was used to measure the mass fractions of indole-3-acetic acid (IAA), gibberellic acid (GA), zeatin riboside (ZR), and abscisic acid (ABA) in rhizomes, shoots, and maternal bamboo organs during shoot sprouting, shoot growth, and new-bamboo formation. Measurements were compared among bamboo parts and developmental periods. The overall mass fractions of IAA and ABA were significantly higher than those of ZR and GA, driven by differences among bamboo parts and developmental periods. The abundance of each endogenous hormone varied among bamboo parts and developmental periods. During bamboo shooting, ABA had the highest mass fraction in all bamboo parts sampled, followed by IAA, GA, and ZR. Among bamboo parts, rhizomes had more IAA, ZR, and GA than the other parts, but significantly less ABA. Winter shoots had higher ZR: IAA and GA: IAA ratios than rhizomes and maternal bamboo organs. During shoot growth, ABA was the most abundant hormone in rhizomes and maternal bamboo organs, followed by IAA, ZR, and GA. In contrast, IAA was the most abundant hormone in spring shoots, followed by ABA, ZR, and GA. Maternal bamboo organs had a significantly higher ZR: GA ratio, and significantly lower IAA: ABA, ZR: ABA, and GA: ABA ratios than rhizomes. Spring shoots had significantly higher IAA: ABA, ZR: ABA, and GA: ABA ratios than rhizomes and maternal bamboo organs; significantly higher ZR mass fractions, and ZR: GA and ZR: IAA ratios and significantly lower ABA mass fractions than rhizomes; and significantly higher GA: IAA ratio than maternal bamboo organs. During new-bamboo formation, ABA was the most abundant hormone in rhizomes, winter shoots, and maternal bamboo organs, followed by IAA, ZR, and GA. Maternal bamboo organs had significantly lower IAA mass fractions and significantly higher ABA mass fractions than rhizomes and new bamboo tissue. IAA and ABA abundances exhibited an inverse relationship in rhizomes and maternal bamboo organs. GA: ABA and GA: IAA ratios decreased gradually and other hormone ratios exhibited parabolic trends over the bamboo-shooting period, with the highest ratios observed in new bamboo tissues. Overall, the coordination or antagonism among endogenous hormones plays a key regulatory role in bamboo shoot growth. The formation of thick walls in P. edulis 'Pachyloen', one of its major traits, may be partially attributed to the relatively high IAA and ZR and low GA mass fractions.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Ácido Abscísico/análise , Ácido Abscísico/metabolismo , Giberelinas/análise , Giberelinas/metabolismo , Ácidos Indolacéticos/análise , Ácidos Indolacéticos/metabolismo , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/análise , Isopenteniladenosina/metabolismo , Reguladores de Crescimento de Plantas/análise , Brotos de Planta/metabolismo , Poaceae/metabolismo , Rizoma/crescimento & desenvolvimento , Rizoma/metabolismo
15.
Angew Chem Int Ed Engl ; 59(42): 18627-18631, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32681686

RESUMO

RNA-cleaving deoxyribozymes can serve as selective sensors and catalysts to examine the modification state of RNA. However, site-specific endonuclease deoxyribozymes that selectively cleave post-transcriptionally modified RNA are extremely rare and their specificity over unmodified RNA is low. We report that the native tRNA modification N6 -isopentenyladenosine (i6 A) strongly enhances the specificity and has the power to reconfigure the active site of an RNA-cleaving deoxyribozyme. Using in vitro selection, we identified a DNA enzyme that cleaves i6 A-modified RNA at least 2500-fold faster than unmodified RNA. Another deoxyribozyme shows unique and unprecedented behaviour by shifting its cleavage site in the presence of the i6 A RNA modification. Together with deoxyribozymes that are strongly inhibited by i6 A, these results highlight that post-transcriptional RNA modifications modulate the catalytic activity of DNA in various intricate ways.


Assuntos
DNA Catalítico/metabolismo , Isopenteniladenosina/química , RNA/metabolismo , Biocatálise , Isopenteniladenosina/metabolismo , RNA/química , Clivagem do RNA , Processamento Pós-Transcricional do RNA , RNA de Transferência/química , RNA de Transferência/metabolismo , Especificidade por Substrato
16.
Angew Chem Int Ed Engl ; 59(26): 10645-10650, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32198805

RESUMO

N6 -isopentenyladenosine (i6 A) is an RNA modification found in cytokinins, which regulate plant growth/differentiation, and a subset of tRNAs, where it improves the efficiency and accuracy of translation. The installation and removal of this modification is mediated by prenyltransferases and cytokinin oxidases, and a chemical approach to selective deprenylation of i6 A has not been developed. We show that a selected group of oxoammonium cations function as artificial deprenylases to promote highly selective deprenylation of i6 A in nucleosides, oligonucleotides, and live cells. Importantly, other epigenetic modifications, amino acid residues, and natural products were not affected. Moreover, a significant phenotype difference in the Arabidopsis thaliana shoot and root development was observed with incubation of the cation. These results establish these small organic molecules as direct chemical regulators/artificial deprenylases of i6 A.


Assuntos
Óxidos N-Cíclicos/farmacologia , Citocininas/metabolismo , Isopenteniladenosina/metabolismo , Piperidinas/farmacologia , Prenilação/efeitos dos fármacos , RNA/metabolismo , Arabidopsis/efeitos dos fármacos , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/toxicidade , Citocininas/química , Epigênese Genética/efeitos dos fármacos , Humanos , Isopenteniladenosina/química , Células MCF-7 , Oligorribonucleotídeos/química , Oligorribonucleotídeos/metabolismo , Piperidinas/química , Piperidinas/toxicidade , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , RNA/química
17.
Int J Mol Sci ; 21(4)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079095

RESUMO

The photoperiod marks a varied set of behaviors in plants, including bulbing. Bulbing is controlled by inner signals, which can be stimulated or subdued by the ecological environment. It had been broadly stated that phytohormones control the plant development, and they are considered to play a significant part in the bulb formation. The past decade has witnessed significant progress in understanding and advancement about the photoperiodic initiation of bulbing in plants. A noticeable query is to what degree the mechanisms discovered in bulb crops are also shared by other species and what other qualities are also dependent on photoperiod. The FLOWERING LOCUS T (FT) protein has a role in flowering; however, the FT genes were afterward reported to play further functions in other biological developments (e.g., bulbing). This is predominantly applicable in photoperiodic regulation, where the FT genes seem to have experienced significant development at the practical level and play a novel part in the switch of bulb formation in Alliums. The neofunctionalization of FT homologs in the photoperiodic environments detects these proteins as a new class of primary signaling mechanisms that control the growth and organogenesis in these agronomic-related species. In the present review, we report the underlying mechanisms regulating the photoperiodic-mediated bulb enlargement in Allium species. Therefore, the present review aims to systematically review the published literature on the bulbing mechanism of Allium crops in response to photoperiod. We also provide evidence showing that the bulbing transitions are controlled by phytohormones signaling and FT-like paralogues that respond to independent environmental cues (photoperiod), and we also show that an autorelay mechanism involving FT modulates the expression of the bulbing-control gene. Although a large number of studies have been conducted, several limitations and research gaps have been identified that need to be addressed in future studies.


Assuntos
Allium/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Ácido Abscísico/metabolismo , Allium/genética , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/genética , Isopenteniladenosina/metabolismo , Fotoperíodo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética
18.
Plant Sci ; 293: 110411, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081260

RESUMO

In Brassica napus, pod number and pod density are critical factors to determine seed yield. Although the pod density is an essential yield trait, the regulation of yield formation in oil crops, as well as the genetic and molecular mechanisms, are poorly understood. In this study, we characterized a rapeseed high-density pod mutant (dpt247) from composite hybridization. To shed some light on the nature of this mutation, it was investigated morphologically, anatomically, physiologically, genetically and transcriptomically. The mutant plant showed noticeable phenotypic differences in comparison with the control plant, including reduced plant height and primary branch length, decreased number of primary branches, significantly increased number of pod on the main inflorescence, and more compact pod distribution. Besides, the mutant had higher levels of indole-3-acetic acid (IAA) and zeatin riboside (ZR) in the shoot apical meristem (SAM). The dense pod trait was controlled by two major recessive genes identified in the segregating genetic populations of GRE501 and dpt247. RNA sequencing indicated genes participated in auxin, cytokinin and WUS/CLV signalling pathway in dpt247 were more active in the mutant. These results provide important information for understanding the regulation of yield formation and high yield breeding in rapeseed.


Assuntos
Brassica napus/genética , Genes Recessivos/genética , Sementes/genética , Divisão Celular , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Ácidos Indolacéticos/metabolismo , Isopenteniladenosina/análogos & derivados , Fenótipo , Brotos de Planta , Sementes/fisiologia , Análise de Sequência de RNA , Transcriptoma
19.
BMC Plant Biol ; 20(1): 6, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906864

RESUMO

BACKGROUND: Efficient organogenesis induction in eggplant (Solanum melongena L.) is required for multiple in vitro culture applications. In this work, we aimed at developing a universal protocol for efficient in vitro regeneration of eggplant mainly based on the use of zeatin riboside (ZR). We evaluated the effect of seven combinations of ZR with indoleacetic acid (IAA) for organogenic regeneration in five genetically diverse S. melongena and one S. insanum L. accessions using two photoperiod conditions. In addition, the effect of six different concentrations of indolebutyric acid (IBA) in order to promote rooting was assessed to facilitate subsequent acclimatization of plants. The ploidy level of regenerated plants was studied. RESULTS: In a first experiment with accessions MEL1 and MEL3, significant (p < 0.05) differences were observed for the four factors evaluated for organogenesis from cotyledon, hypocotyl and leaf explants, with the best results obtained (9 and 11 shoots for MEL1 and MEL3, respectively) using cotyledon tissue, 16 h light / 8 h dark photoperiod conditions, and medium E6 (2 mg/L of ZR and 0 mg/L of IAA). The best combination of conditions was tested in the other four accessions and confirmed its high regeneration efficiency per explant when using both cotyledon and hypocotyl tissues. The best rooting media was R2 (1 mg/L IBA). The analysis of ploidy level revealed that between 25 and 50% of the regenerated plantlets were tetraploid. CONCLUSIONS: An efficient protocol for organogenesis of both cultivated and wild accessions of eggplant, based on the use of ZR, is proposed. The universal protocol developed may be useful for fostering in vitro culture applications in eggplant requiring regeneration of plants and, in addition, allows developing tetraploid plants without the need of antimitotic chemicals.


Assuntos
Isopenteniladenosina/análogos & derivados , Organogênese Vegetal/fisiologia , Solanum melongena/crescimento & desenvolvimento , Cotilédone/efeitos dos fármacos , Cotilédone/crescimento & desenvolvimento , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Técnicas In Vitro , Ácidos Indolacéticos/farmacologia , Isopenteniladenosina/farmacologia , Organogênese Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Ploidias , Regeneração/efeitos dos fármacos , Solanum melongena/metabolismo
20.
New Phytol ; 225(6): 2423-2438, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31682013

RESUMO

The diversity of cytokinin (CK) metabolites suggests their interconversions are the predominant regulatory mechanism of CK action. Nevertheless, little is known about their directionality and kinetics in planta. CK metabolite levels were measured in 2-wk-old Arabidopsis thaliana plants at several time points up to 100 min following exogenous application of selected CKs. The data were then evaluated qualitatively and by mathematical modeling. Apart from elevated levels of trans-zeatin (tZ) metabolites upon application of N6 -(Δ2 -isopentenyl)adenine (iP), we observed no conversions between the individual CK-types - iP, tZ, dihydrozeatin (DHZ) and cis-zeatin (cZ). In particular, there was no sign of isomerization between tZ and cZ families. Also, no increase of DHZ-type CKs was observed after application of tZ, suggesting low baseline activity of zeatin reductase. Among N-glucosides, those of iP were not converted back to iP while tZ N-glucosides were cleaved to tZ bases, thus affecting the whole metabolic spectrum. We present the first large-scale study of short-term CK metabolism kinetics and show that tZ N7- and N9-glucosides are metabolized in vivo. We thus refute the generally accepted hypothesis that N-glucosylation irreversibly inactivates CKs. The subsequently constructed mathematical model provides estimates of the metabolic conversion rates.


Assuntos
Arabidopsis , Citocininas , Glucosídeos , Isopenteniladenosina , Zeatina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...