Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Can J Physiol Pharmacol ; 101(9): 475-480, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235885

RESUMO

This study aimed to determine the effect of administration of oral vitamins A and E at different doses on plasma and brain concentrations of ivermectin in mice. The study was carried out on 174 Swiss Albino male mice aged 8-10 weeks. After leaving six mice for method validation, the remaining mice were randomly divided into seven groups with equal numbers of animals. Mice received ivermectin (0.2 mg/kg, subcutaneous) alone and in combination with low (vitamin A: 4000 IU/kg; vitamin E: 35 mg/kg) and high (vitamin A: 30 000 IU/kg; vitamin E: 500 mg/kg) oral doses of vitamins A and E. The plasma and brain concentrations of ivermectin were measured using high-performance liquid chromatography-fluorescence detector. We determined that high doses of vitamins A and E and their combinations increased the passing ratio of ivermectin into the brain significantly. The high-dose vitamin E and the combination of high-concentration vitamins E and A significantly increased the plasma concentration of ivermectin (P < 0.05). The high-dose vitamins E and A and their high-dose combination increased the brain concentration of ivermectin by 3, 2, and 2.7 times, respectively. This research is the first in vivo study to determine the interaction between P-gp substrates and vitamins E and A.


Assuntos
Antiparasitários , Encéfalo , Ivermectina , Vitamina A , Vitamina E , Animais , Camundongos , Encéfalo/metabolismo , Ivermectina/sangue , Ivermectina/farmacocinética , Vitamina A/administração & dosagem , Vitamina E/administração & dosagem , Vitaminas , Antiparasitários/sangue , Antiparasitários/farmacocinética
2.
Int J Antimicrob Agents ; 59(2): 106516, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34999239

RESUMO

High concentrations of ivermectin demonstrated antiviral activity against SARS-CoV-2 in vitro. The aim of this study was to assess the safety and efficacy of high-dose ivermectin in reducing viral load in individuals with early SARS-CoV-2 infection. This was a randomised, double-blind, multicentre, phase II, dose-finding, proof-of-concept clinical trial. Participants were adults recently diagnosed with asymptomatic/oligosymptomatic SARS-CoV-2 infection. Exclusion criteria were: pregnant or lactating women; CNS disease; dialysis; severe medical condition with prognosis <6 months; warfarin treatment; and antiviral/chloroquine phosphate/hydroxychloroquine treatment. Participants were assigned (ratio 1:1:1) according to a randomised permuted block procedure to one of the following arms: placebo (arm A); single-dose ivermectin 600 µg/kg plus placebo for 5 days (arm B); and single-dose ivermectin 1200 µg/kg for 5 days (arm C). Primary outcomes were serious adverse drug reactions (SADRs) and change in viral load at Day 7. From 31 July 2020 to 26 May 2021, 32 participants were randomised to arm A, 29 to arm B and 32 to arm C. Recruitment was stopped on 10 June because of a dramatic drop in cases. The safety analysis included 89 participants and the change in viral load was calculated in 87 participants. No SADRs were registered. Mean (S.D.) log10 viral load reduction was 2.9 (1.6) in arm C, 2.5 (2.2) in arm B and 2.0 (2.1) in arm A, with no significant differences (P = 0.099 and 0.122 for C vs. A and B vs. A, respectively). High-dose ivermectin was safe but did not show efficacy to reduce viral load.


Assuntos
Antivirais/farmacocinética , Tratamento Farmacológico da COVID-19 , Ivermectina/farmacocinética , SARS-CoV-2/efeitos dos fármacos , Adulto , Antiparasitários/sangue , Antiparasitários/farmacocinética , Antiparasitários/farmacologia , Antivirais/sangue , Antivirais/farmacologia , COVID-19/sangue , COVID-19/virologia , Método Duplo-Cego , Reposicionamento de Medicamentos , Feminino , Humanos , Ivermectina/sangue , Ivermectina/farmacologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Resultado do Tratamento , Carga Viral/efeitos dos fármacos
3.
Vet Parasitol ; 296: 109511, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34237517

RESUMO

The management of equine strongyles has become problematic over the last decade because of an increased prevalence of drug-resistant isolates worldwide. Therapeutic options are therefore limited, leaving macrocyclic lactones as the most often effective drug class. However, their lipophilic properties result in a long-lasting elimination that could favour drug resistance selection. As a result, ivermectin treatment in lactating mares could promote suboptimal exposure of their foal parasites to ivermectin, thereby selecting for more resistant worms. To test for this putative transfer, we selected two groups of six foal-mare pairs, one group of mares receiving ivermectin and the other being left untreated. We compared faecal egg count trajectories in foals from the two groups and quantified plasma ivermectin concentrations in ivermectin treated mares and their foals during seven days. Our results showed limited but sustained plasmatic exposure of foals associated with non-significant faecal egg count reduction (P = 0.69). This suggests that ivermectin treatment in lactating mares results in suboptimal exposure to the drug in their foal.


Assuntos
Doenças dos Cavalos , Ivermectina , Lactação , Animais , Resistência a Medicamentos , Feminino , Doenças dos Cavalos/tratamento farmacológico , Cavalos/sangue , Ivermectina/sangue , Ivermectina/uso terapêutico , Contagem de Ovos de Parasitas/veterinária
4.
Cochrane Database Syst Rev ; 6: CD013117, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34184757

RESUMO

BACKGROUND: Malaria is transmitted through the bite of Plasmodium-infected adult female Anopheles mosquitoes. Ivermectin, an anti-parasitic drug, acts by killing mosquitoes that are exposed to the drug while feeding on the blood of people (known as blood feeds) who have ingested the drug. This effect on mosquitoes has been demonstrated by individual randomized trials. This effect has generated interest in using ivermectin as a tool for malaria control. OBJECTIVES: To assess the effect of community administration of ivermectin on malaria transmission. SEARCH METHODS: We searched the Cochrane Infectious Diseases Group (CIDG) Specialized Register, CENTRAL, MEDLINE, Embase, LILACS, Science Citation index - expanded, the World Health Organization (WHO) International Clinical Trials Registry Platform, ClinicalTrials.gov, and the National Institutes of Health (NIH) RePORTER database to 14 January 2021. We checked the reference lists of included studies for other potentially relevant studies, and contacted researchers working in the field for unpublished and ongoing trials. SELECTION CRITERIA: We included cluster-randomized controlled trials (cRCTs) that compared ivermectin, as single or multiple doses, with a control treatment or placebo given to populations living in malaria-endemic areas, in the context of mass drug administration. Primary outcomes were prevalence of malaria parasite infection and incidence of clinical malaria in the community. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data on the number of events and the number of participants in each trial arm at the time of assessment. For rate data, we noted the total time at risk in each trial arm. To assess risk of bias, we used Cochrane's RoB 2 tool for cRCTs. We documented the method of data analysis, any adjustments for clustering or other covariates, and recorded the estimate of the intra-cluster correlation (ICC) coefficient. We re-analysed the trial data provided by the trial authors to adjust for cluster effects. We used a Poisson mixed-effect model with small sample size correction, and a cluster-level analysis using the linear weighted model to adequately adjust for clustering.  MAIN RESULTS: We included one cRCT and identified six ongoing trials.  The included cRCT examined the incidence of malaria in eight villages in Burkina Faso, randomized to two arms. Both trial arms received a single dose of ivermectin 150 µg/kg to 200 µg/kg, together with a dose of albendazole. The villages in the intervention arm received an additional five doses of ivermectin, once every three weeks. Children were enrolled into an active cohort, in which they were repeatedly screened for malaria infection.  The primary outcome was the cumulative incidence of uncomplicated malaria in a cohort of children aged five years and younger, over the 18-week study. We judged the study to be at high risk of bias, as the analysis did not account for clustering or correlation between participants in the same village. The study did not demonstrate an effect of Ivermectin on the cumulative incidence of uncomplicated malaria in the cohort of children over the 18-week study (risk ratio 0.86, 95% confidence interval (CI) 0.62 to 1.17; P = 0.2607; very low-certainty evidence). AUTHORS' CONCLUSIONS: We are uncertain whether community administration of ivermectin has an effect on malaria transmission, based on one trial published to date.


Assuntos
Antiparasitários/administração & dosagem , Ivermectina/administração & dosagem , Malária/transmissão , Controle de Mosquitos , Animais , Antiparasitários/efeitos adversos , Antiparasitários/sangue , Viés , Burkina Faso/epidemiologia , Pré-Escolar , Análise de Dados , Humanos , Incidência , Lactente , Ivermectina/efeitos adversos , Ivermectina/sangue , Malária/epidemiologia , Malária/prevenção & controle , Projetos Piloto , Prevalência , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Pharmacol Res Perspect ; 9(1): e00712, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33497030

RESUMO

Mass drug administration of ivermectin has been proposed as a possible malaria elimination tool. Ivermectin exhibits a mosquito-lethal effect well beyond its biological half-life, suggesting the presence of active slowly eliminated metabolites. Human liver microsomes, primary human hepatocytes, and whole blood from healthy volunteers given oral ivermectin were used to identify ivermectin metabolites by ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry. The molecular structures of metabolites were determined by mass spectrometry and verified by nuclear magnetic resonance. Pure cytochrome P450 enzyme isoforms were used to elucidate the metabolic pathways. Thirteen different metabolites (M1-M13) were identified after incubation of ivermectin with human liver microsomes. Three (M1, M3, and M6) were the major metabolites found in microsomes, hepatocytes, and blood from volunteers after oral ivermectin administration. The chemical structure, defined by LC-MS/MS and NMR, indicated that M1 is 3″-O-demethyl ivermectin, M3 is 4-hydroxymethyl ivermectin, and M6 is 3″-O-demethyl, 4-hydroxymethyl ivermectin. Metabolic pathway evaluations with characterized cytochrome P450 enzymes showed that M1, M3, and M6 were produced primarily by CYP3A4, and that M1 was also produced to a small extent by CYP3A5. Demethylated (M1) and hydroxylated (M3) ivermectin were the main human in vivo metabolites. Further studies are needed to characterize the pharmacokinetic properties and mosquito-lethal activity of these metabolites.


Assuntos
Antiparasitários/farmacocinética , Ivermectina/farmacocinética , Administração Oral , Antiparasitários/sangue , Antiparasitários/farmacologia , Células Cultivadas , Sistema Enzimático do Citocromo P-450/metabolismo , Desmetilação , Hepatócitos/metabolismo , Humanos , Hidroxilação , Ivermectina/sangue , Ivermectina/farmacologia , Redes e Vias Metabólicas , Microssomos Hepáticos/metabolismo
6.
J Pharm Sci ; 109(12): 3574-3578, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32891630

RESUMO

SARS-CoV-2 utilizes the IMPα/ß1 heterodimer to enter host cell nuclei after gaining cellular access through the ACE2 receptor. Ivermectin has shown antiviral activity by inhibiting the formation of the importin-α (IMPα) and IMPß1 subunits as well as dissociating the IMPα/ß1 heterodimer and has in vitro efficacy against SARS-CoV-2. Plasma and lung ivermectin concentrations vs. time profiles in cattle were used to determine the apparent plasma to lung tissue partition coefficient of ivermectin. This coefficient, together with a simulated geometric mean plasma profile of ivermectin from a published population pharmacokinetic model, was utilized to develop a minimal physiologically-based pharmacokinetic (mPBPK) model. The mPBPK model accurately described the simulated ivermectin plasma concentration profile in humans. The mPBPK model was also used to simulate human lung exposure to ivermectin after 12, 30, and 120 mg oral doses. The simulated ivermectin lung exposures reached a maximum concentration of 772 ng/mL, far less than the estimated 1750 ng/mL IC50 reported for ivermectin against SARS-CoV-2 in vitro. Further studies of ivermectin either reformulated for inhaled delivery or in combination with other antivirals with differing mechanisms of action is needed to assess its therapeutic potential.


Assuntos
Antivirais/farmacocinética , Infecções por Coronavirus/tratamento farmacológico , Ivermectina/farmacocinética , Pulmão/metabolismo , Pneumonia Viral/tratamento farmacológico , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/sangue , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/metabolismo , COVID-19 , Bovinos , Simulação por Computador , Infecções por Coronavirus/metabolismo , Reposicionamento de Medicamentos , Humanos , Ivermectina/administração & dosagem , Ivermectina/sangue , Ivermectina/farmacologia , Modelos Biológicos , Pandemias , Pneumonia Viral/metabolismo , SARS-CoV-2
7.
Exp Parasitol ; 218: 107998, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32941889

RESUMO

The aims of this study were to evaluate the efficacy of two injectable formulations of doramectin (DRM) against Psoroptes ovis in sheep infested under controlled experimental conditions and to characterize the DRM plasma disposition kinetics in the infested animals. To this end, sheep were experimentally infested with a P. ovis strain from a farm with a history of treatment failure, and then treated either with DRM 1% (traditional preparation) on days 0 and 7 or with DRM 3.15% (long-acting formulation) on day 0. The efficacy of each treatment was calculated by counting live mites in skin scrapings. Plasma samples were obtained from each animal and DRM concentrations were measured by HPLC. After the two doses of DRM 1%, the maximum efficacy (98.8%) was reached on day 28, whereas after the single dose of DRM 3.15%, the maximum efficacy (100%) was reached on day 35 and ratified on day 42. The long-acting formulation allowed obtaining higher exposure and more sustained concentrations of DRM than the traditional preparation. Although both DRM formulations studied were effective according to international protocols, they did not reach 100% effectiveness in the time required for approved pharmaceutical products against sheep scab, according to Argentine regulations.


Assuntos
Inseticidas/uso terapêutico , Ivermectina/análogos & derivados , Infestações por Ácaros/veterinária , Psoroptidae/efeitos dos fármacos , Doenças dos Ovinos/tratamento farmacológico , Animais , Disponibilidade Biológica , Feminino , Meia-Vida , Injeções Subcutâneas/veterinária , Inseticidas/administração & dosagem , Inseticidas/sangue , Inseticidas/farmacologia , Ivermectina/administração & dosagem , Ivermectina/sangue , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Masculino , Infestações por Ácaros/tratamento farmacológico , Psoroptidae/crescimento & desenvolvimento , Ovinos , Doenças dos Ovinos/parasitologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-32660993

RESUMO

Previously, ivermectin (1 to 10 mg/kg of body weight) was shown to inhibit the liver-stage development of Plasmodium berghei in orally dosed mice. Here, ivermectin showed inhibition of the in vitro development of Plasmodium cynomolgi schizonts (50% inhibitory concentration [IC50], 10.42 µM) and hypnozoites (IC50, 29.24 µM) in primary macaque hepatocytes when administered as a high dose prophylactically but not when administered in radical cure mode. The safety, pharmacokinetics, and efficacy of oral ivermectin (0.3, 0.6, and 1.2 mg/kg) with and without chloroquine (10 mg/kg) administered for 7 consecutive days were evaluated for prophylaxis or radical cure of P. cynomolgi liver stages in rhesus macaques. No inhibition or delay to blood-stage P. cynomolgi parasitemia was observed at any ivermectin dose (0.3, 0.6, and 1.2 mg/kg). Ivermectin (0.6 and 1.2 mg/kg) and chloroquine (10 mg/kg) in combination were well-tolerated with no adverse events and no significant pharmacokinetic drug-drug interactions observed. Repeated daily ivermectin administration for 7 days did not inhibit ivermectin bioavailability. It was recently demonstrated that both ivermectin and chloroquine inhibit replication of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro Further ivermectin and chloroquine trials in humans are warranted to evaluate their role in Plasmodium vivax control and as adjunctive therapies against COVID-19 infections.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Ivermectina/farmacologia , Fígado/efeitos dos fármacos , Malária/tratamento farmacológico , Plasmodium cynomolgi/efeitos dos fármacos , Animais , Antimaláricos/sangue , Antimaláricos/farmacocinética , Disponibilidade Biológica , Cloroquina/sangue , Cloroquina/farmacocinética , Esquema de Medicação , Combinação de Medicamentos , Sinergismo Farmacológico , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/parasitologia , Ivermectina/sangue , Ivermectina/farmacocinética , Fígado/parasitologia , Macaca mulatta , Malária/parasitologia , Masculino , Parasitemia/tratamento farmacológico , Plasmodium cynomolgi/crescimento & desenvolvimento , Plasmodium cynomolgi/patogenicidade , Cultura Primária de Células , Esquizontes/efeitos dos fármacos , Esquizontes/crescimento & desenvolvimento
9.
Clin Pharmacol Ther ; 108(4): 762-765, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32378737

RESUMO

Caly et al.1 reported that ivermectin inhibited severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) in vitro for up to 48 hours using ivermectin at 5 µM. The concentration resulting in 50% inhibition (IC50 ; 2 µM) was > 35× higher than the maximum plasma concentration (Cmax ) after oral administration of the approved dose of ivermectin when given fasted. Simulations were conducted using an available population pharmacokinetic model to predict total (bound and unbound) and unbound plasma concentration-time profiles after a single and repeat fasted administration of the approved dose of ivermectin (200 µg/kg), 60 mg, and 120 mg. Plasma total Cmax was determined and then multiplied by the lung:plasma ratio reported in cattle to predict the lung Cmax after administration of each single dose. Plasma ivermectin concentrations of total (bound and unbound) and unbound concentrations do not reach the IC50 , even for a dose level 10× higher than the approved dose. Even with the high lung:plasma ratio, ivermectin is unlikely to reach the IC50 in the lungs after single oral administration of the approved dose (predicted lung: 0.0873 µM) or at doses 10× higher that the approved dose administered orally (predicted lung: 0.820 µM). In summary, the likelihood of a successful clinical trial using the approved dose of ivermectin is low. Combination therapy should be evaluated in vitro. Repurposing drugs for use in coronavirus disease 2019 (COVID-19) treatment is an ideal strategy but is only feasible when product safety has been established and experiments of repurposed drugs are conducted at clinically relevant concentrations.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Ivermectina/administração & dosagem , Modelos Biológicos , Pneumonia Viral/tratamento farmacológico , Administração Oral , Adulto , Animais , COVID-19 , Bovinos , Infecções por Coronavirus/sangue , Relação Dose-Resposta a Droga , Feminino , Humanos , Ivermectina/sangue , Masculino , Pandemias , Pneumonia Viral/sangue , SARS-CoV-2 , Resultado do Tratamento , Adulto Jovem
10.
J Vet Pharmacol Ther ; 43(5): 477-484, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32270537

RESUMO

Ivermectin (IVM) is one of the most widely used antiparasitic drugs worldwide and has become the drug of choice for anthelmintic and tick treatment in beef cattle production. It is known that pharmacokinetic parameters are fundamental to the rational use of a drug and food safety and these parameters are influenced by different factors. The aim of this study was to evaluate the pharmacokinetic profile of IVM in Bos indicus, Bos taurus, and crossbreed cattle (B. indicus × B. taurus) kept under same field conditions and the possible impacts of sex and IVM formulation (1% and 3.15%). It was observed that IVM concentration was significantly affected by breed. The plasma concentrations of IVM, AUC, Cmax , and t1/2ß were significantly higher in B. indicus compared to B. taurus. Crossbreed animals showed an intermediate profile between European and Indian cattle. No alteration in pharmacokinetics parameters was detected when comparing different gender. Concerning the pharmacokinetic data of IVM formulation, it was verified that Tmax , AUC, and t1/2ß were higher in 3.15% IVM animals than those from 1% IVM formulation. The results clearly indicated that the IVM plasma concentrations in B. indicus were higher than that in B. taurus.


Assuntos
Antiparasitários/farmacocinética , Bovinos/genética , Bovinos/fisiologia , Ivermectina/farmacocinética , Animais , Antiparasitários/sangue , Área Sob a Curva , Bovinos/sangue , Bovinos/classificação , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Ivermectina/sangue , Masculino , Fatores Sexuais
11.
Parasitol Int ; 76: 102063, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31978599

RESUMO

Pour-on eprinomectin was recently registered for lactating small ruminants. Given the high prevalence of benzimidazole resistance in gastrointestinal nematodes in dairy goats, many farmers use eprinomectin exclusively to treat their animals. On a French dairy goat farm, a veterinary practitioner noted a poor response to two types of eprinomectin treatment (pour-on application and injectable formulation). Therefore, we evaluated the efficacy of both formulations of eprinomectin, as well as moxidectin and fenbendazole, using the fecal egg count reduction test (FECRT) according to the World Association for the Advancement of Veterinary Parasitology (WAAVP) guidelines. Nematode species were identified at days 0 and post-treatment days 14 after bulk larval cultures, by morphology and real-time PCR. Plasma concentrations of eprinomectin were analyzed by high-performance liquid chromatography (HPLC) at post-treatment days 2 and 5 in the eprinomectin-treated groups. Egg count reductions were poor in animals treated with topical (-16.7%; 95% CI:[-237; 59]) or subcutaneous (21.5%; 95% CI:[-126; 73]) eprinomectin, and with fenbendazole (-5.8%; 95% CI:[-205; 63]). Haemonchus contortus was the main species identified by morphology and by real-time PCR before and after treatment. The plasma concentrations of eprinomectin were determined in all eprinomectin-treated animals and were above 2 ng/ml at post-treatment day 2, indicating that the lack of effect was not due to low exposure of the worms to the drug. Interestingly, moxidectin remained effective in all infected animals. This is the first report of multiple resistance to eprinomectin and benzimidazole in H. contortus on a French dairy goat farm with moxidectin as a relevant alternative.


Assuntos
Anti-Helmínticos/uso terapêutico , Benzimidazóis/uso terapêutico , Resistência a Múltiplos Medicamentos , Cabras/parasitologia , Hemoncose/veterinária , Haemonchus/efeitos dos fármacos , Ivermectina/análogos & derivados , Animais , Anti-Helmínticos/sangue , Benzimidazóis/sangue , Fazendas , Feminino , França , Doenças das Cabras/tratamento farmacológico , Doenças das Cabras/parasitologia , Hemoncose/tratamento farmacológico , Ivermectina/sangue , Ivermectina/uso terapêutico , Contagem de Ovos de Parasitas
12.
J Vet Pharmacol Ther ; 42(5): 497-504, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31183888

RESUMO

The purpose of this study was to determine the pharmacokinetic interaction between ivermectin (0.4 mg/kg) and praziquantel (10 mg/kg) administered either alone or co-administered to dogs after oral treatment. Twelve healthy cross-bred dogs (weighing 18-21 kg, aged 1-3 years) were allocated randomly into two groups of six dogs (four females, two males) each. In first group, the tablet forms of praziquantel and ivermectin were administered using a crossover design with a 15-day washout period, respectively. Second group received tablet form of ivermectin plus praziquantel. The plasma concentrations of ivermectin and praziquantel were determined by high-performance liquid chromatography using a fluorescence and ultraviolet detector, respectively. The pharmacokinetic parameters of ivermectin following oral alone-administration were as follows: elimination half-life (t1/2λz ) 110 ± 11.06 hr, area under the plasma concentration-time curve (AUC0-∞ ) 7,805 ± 1,768 hr. ng/ml, maximum concentration (Cmax ) 137 ± 48.09 ng/ml, and time to reach Cmax (Tmax ) 14.0 ± 4.90 hr. The pharmacokinetic parameters of praziquantel following oral alone-administration were as follows: t1/2λz 7.39 ± 3.86 hr, AUC0-∞ 4,301 ± 1,253 hr. ng/ml, Cmax 897 ± 245 ng/ml, and Tmax 5.33 ± 0.82 hr. The pharmacokinetics of ivermectin and praziquantel were not changed, except Tmax of praziquantel in the combined group. In conclusion, the combined formulation of ivermectin and praziquantel can be preferred in the treatment and prevention of diseases caused by susceptible parasites in dogs because no pharmacokinetic interaction was determined between them.


Assuntos
Antiparasitários/farmacocinética , Cães/sangue , Ivermectina/farmacocinética , Praziquantel/farmacocinética , Administração Oral , Animais , Antiparasitários/administração & dosagem , Área Sob a Curva , Interações Medicamentosas , Feminino , Meia-Vida , Ivermectina/administração & dosagem , Ivermectina/sangue , Masculino , Praziquantel/administração & dosagem , Praziquantel/sangue
13.
J Pharm Biomed Anal ; 172: 18-25, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31015095

RESUMO

Ivermectin is deployed in mass drug administration (MDA) campaigns to control parasitic diseases in the tropics, with billions of treatments having been administered in the last three decades. Simple blood sampling tools, like the dried blood spots (DBS) technique, are needed to monitor treatments in such challenging settings. Thus, we developed a fully automated method for the analysis of ivermectin in DBS microsamples, including a bioanalytical and clinical validation. Automated extraction was carried out using a DBS-MS 500 autosampler which was coupled to a LC-MS/MS system. DBS were extracted with 20 µL solvent and eluted on a C8 analytical column. Analysis was performed by multiple reaction monitoring in the positive mode. Automated DBS extraction resulted in consistent recoveries (62.8 ± 4.3%) and matrix effects (68.0 ± 8.1%) between different donors and concentration levels. Intra- and inter-day accuracy and precision deviations were ≤15%, while samples with hematocrits from 20 to 60% could be quantified reliably. The achieved sensitivity of 1 ng/mL in DBS samples is sufficient to analyze ivermectin at the dose given (single oral administration of 12 mg) over a period of at least 72 h post treatment. Importantly, DBS samples are stable after one-month storage at room temperature (accuracy: 88.8-96.2%), thus samples collected in the field must not be shipped on dry ice. Ivermectin concentrations in venous and capillary blood agreed strongly, with a mean difference of -4.8%. Moreover, the drying process of DBS did not alter the analysis and importantly plasma concentrations can be estimated from DBS data using the hematocrit and red blood cell partitioning as correction factor. Our method enables uncomplicated sample collection and shipment as well as automated analysis of large amounts of samples, which is key to surveying MDA campaigns in remote settings.


Assuntos
Antiparasitários/sangue , Coleta de Amostras Sanguíneas/métodos , Ivermectina/sangue , Antiparasitários/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Teste em Amostras de Sangue Seco/métodos , Estabilidade de Medicamentos , Humanos , Ivermectina/isolamento & purificação , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
14.
Parasit Vectors ; 12(1): 124, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890165

RESUMO

BACKGROUND: Outdoor, early-biting, zoophagic behaviours by Anopheles farauti (s.s.) can compromise the effectiveness of bed nets for malaria control. In the Western Pacific region, pigs and dogs represent significant alternative blood sources for mosquitoes. Treating these animals with endectocides may impact mosquito survival and complement control measures. This hypothesis was explored using membrane feeding assays (MFAs), direct feeds on treated pigs, pharmacokinetic analyses and a transmission model. RESULTS: Ivermectin was 375-fold more mosquitocidal than moxidectin (24 h LC50 = 17.8 ng/ml vs 6.7 µg/ml) in MFAs, and reduced mosquito fecundity by > 50% at ≥ 5 ng/ml. Treatment of pigs with subcutaneous doses of 0.6 mg/kg ivermectin caused 100% mosquito mortality 8 days after administration. Lethal effects persisted for up to 15 days after administration (75% death within 10 days). CONCLUSION: The application of these empirical data to a unique malaria transmission model that used a three-host system (humans, pigs and dogs) predicts that the application of ivermectin will cause a significant reduction in the entomological inoculation rate (EIR = 100 to 0.35). However, this is contingent on local malaria vectors sourcing a significant proportion of their blood meals from pigs. This provides significant insights on the benefits of deploying endectocides alongside long-lasting insecticide-treated nets (LLINs) to address residual malaria transmission.


Assuntos
Anopheles/efeitos dos fármacos , Inseticidas/administração & dosagem , Ivermectina/administração & dosagem , Macrolídeos/administração & dosagem , Malária/prevenção & controle , Administração Cutânea , Animais , Comportamento Alimentar , Feminino , Fertilidade/efeitos dos fármacos , Inseticidas/sangue , Inseticidas/farmacocinética , Inseticidas/farmacologia , Ivermectina/sangue , Ivermectina/farmacocinética , Ivermectina/farmacologia , Macrolídeos/sangue , Macrolídeos/farmacocinética , Macrolídeos/farmacologia , Malária/transmissão , Modelos Biológicos , Controle de Mosquitos/métodos , Papua Nova Guiné , Distribuição Aleatória , Suínos
15.
Drug Res (Stuttg) ; 69(3): 173-180, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30103215

RESUMO

The bioavailability of ivermectin is modulated by lipid-based formulations and membrane efflux transporters such as Breast Cancer Resistance Protein and P-glycoprotein (BCRP and P-gp). We have investigated the effect of oleic acid on the uptake of ivermectin in vitro using Caco-2 cells and in vivo in the intestines of wild-type mice. Complex micelles (M) with oleic acid induced a significant increase (e. g. for M3 was 7-fold, p≤0.001) in the uptake of the drug in a time-dependent manner with no involvement of cholesterol in the mechanism. In vivo results showed a significant increase in the concentration of plasma and intestinal mucosa ivermectin (p≤0.01) in mice receiving oleic acid-based drug formulation. We also examined the expression of the drug efflux transporter, BCRP and P-gp in Caco-2 cells and found a significant decrease (p≤0.001) in their level in the presence of 5 mM oleic acid. Treatment of mice with oleic acid-based formulation showed a significant decrease in the activity of P-gp in the intestinal mucosa (p≤0.01). This study highlighted the effect of oleic acid in decreasing the expression and the activity of P-gp-mediated ivermectin efflux and in limiting the drug absorption by increasing its uptake and bioavailability in Caco-2 cells and intestine, respectively.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Ivermectina/farmacocinética , Ácido Oleico/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Interações Medicamentosas , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Ivermectina/sangue , Camundongos
16.
J Vet Pharmacol Ther ; 42(2): 189-196, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30520071

RESUMO

The aim of the current study was to evaluate the in vivo pharmacokinetic of ivermectin (IVM) after the administration of a long-acting (LA) formulation to sheep and its impact on potential drug-drug interactions. The work included the evaluation of the comparative plasma profiles of IVM administered at a single therapeutic dose (200 µg/kg) and as LA formulation at 630 µg/kg. Additionally, IVM was measured in different gastrointestinal tissues at 15 days posttreatment with both IVM formulations. The impact of the long-lasting and enhanced IVM exposure on the disposition kinetics of abamectin (ABM) was also assessed. Plasma (IVM and ABM) and gastrointestinal (IVM) concentrations were analyzed by HPLC with fluorescent detection. In plasma, the calculated Cmax and AUC0-t values of the IVM-LA formulation were 1.47- and 3.35-fold higher compared with IVM 1% formulation, respectively. The T1/2ab and Tmax collected after administration of the LA formulation were 2- and 3.5-fold longer than those observed after administration of IVM 1% formulation, respectively. Significantly higher IVM concentrations were measured in the intestine mucosal tissues and luminal contents with the LA formulation, and in the liver, the increase was 7-fold higher than conventional formulation. There was no drug interaction between IVM and ABM after the single administration of ABM at 15 days post-administration of the IVM LA formulation. The characterization of the kinetic behavior of the LA formulation to sheep and its potential influence on drug-drug interactions is a further contribution to the field.


Assuntos
Anti-Helmínticos/farmacocinética , Ivermectina/farmacocinética , Ovinos/metabolismo , Animais , Anti-Helmínticos/análise , Anti-Helmínticos/sangue , Cromatografia Líquida de Alta Pressão/veterinária , Preparações de Ação Retardada , Interações Medicamentosas , Injeções Subcutâneas , Intestinos/química , Ivermectina/administração & dosagem , Ivermectina/análise , Ivermectina/sangue , Fígado/química , Masculino , Ovinos/parasitologia
17.
Am J Trop Med Hyg ; 99(5): 1194-1197, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30226142

RESUMO

Disseminated strongyloidiasis is often fatal, despite treatment with oral albendazole and parenteral ivermectin (IVM). Here, we report elevated plasma IVM and albendazole sulfoxide concentrations in the context of extracorporeal membrane oxygenation and continuous renal replacement therapy in a patient with disseminated strongyloidiasis treated with subcutaneous IVM and nasogastric albenzadole. Despite elevated drug plasma concentrations, live filariform larvae were detected in endotracheal aspirates after 2 weeks of treatment.


Assuntos
Albendazol/sangue , Anti-Helmínticos/sangue , Oxigenação por Membrana Extracorpórea , Ivermectina/sangue , Diálise Renal , Estrongiloidíase/sangue , Estrongiloidíase/tratamento farmacológico , Albendazol/uso terapêutico , Animais , Anti-Helmínticos/uso terapêutico , Humanos , Ivermectina/uso terapêutico , Larva/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Strongyloides stercoralis/efeitos dos fármacos , Strongyloides stercoralis/isolamento & purificação
18.
J Vet Pharmacol Ther ; 41(5): 755-759, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29889311

RESUMO

The comparative pharmacokinetics of ivermectin (IVM), between healthy and in Escherichia coli lipopolysaccharides (LPS) injected sheep, was investigated after an intravenous (IV) administration of a single dose of 0.2 mg/kg. Ten Suffolk Down sheep, 55 ± 3.3 kg, were distributed in two experimental groups: Group 1 (LPS): treated with three doses of 1 µg LPS/kg bw at -24, -16, and -0.75 hr before IVM; group 2 (Control): treated with saline solution (SS). An IV dose of 0.2 mg IVM/kg was administered 45 min after the last injection of LPS or SS. Plasma concentrations of IVM were determined by liquid chromatography. Pharmacokinetic parameters were calculated based on non-compartmental modeling. In healthy sheep, the values of the pharmacokinetic parameters were as follows: elimination half-life (2.85 days), mean residence time (MRT) (2.27 days), area under the plasma concentration curve over time (AUC, 117.4 ng day-1 ml-1 ), volume of distribution (875.6 ml/kg), and clearance (187.1 ml/day). No statistically significant differences were observed when compared with the results obtained from the group of sheep treated with LPS. It is concluded that the acute inflammatory response (AIR) induced by the intravenous administration of E. coli LPS in adult sheep produced no changes in plasma concentrations or in the pharmacokinetic behavior of IVM, when it is administered intravenously at therapeutic doses.


Assuntos
Antiparasitários/farmacocinética , Endotoxinas/farmacologia , Ivermectina/farmacocinética , Animais , Antiparasitários/administração & dosagem , Antiparasitários/sangue , Cromatografia Líquida/veterinária , Feminino , Injeções Intravenosas/veterinária , Ivermectina/administração & dosagem , Ivermectina/sangue , Masculino , Ovinos/metabolismo , Doenças dos Ovinos/metabolismo , Doenças dos Ovinos/microbiologia
19.
PLoS Negl Trop Dis ; 12(2): e0006221, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29444080

RESUMO

BACKGROUND: The mosquito resistance to the insecticides threatens malaria control efforts, potentially becoming a major public health issue. Alternative methods like ivermectin (IVM) administration to humans has been suggested as a possible vector control to reduce Plasmodium transmission. Anopheles aquasalis and Anopheles darlingi are competent vectors for Plasmodium vivax, and they have been responsible for various malaria outbreaks in the coast of Brazil and the Amazon Region of South America. METHODS: To determine the IVM susceptibility against P. vivax in An. aquasalis and An. darlingi, ivermectin were mixed in P. vivax infected blood: (1) Powdered IVM at four concentrations (0, 5, 10, 20 or 40 ng/mL). (2) Plasma (0 hours, 4 hours, 1 day, 5, 10 and 14 days) was collected from healthy volunteers after to administer a single oral dose of IVM (200 µg/kg) (3) Mosquitoes infected with P. vivax and after 4 days was provided with IVM plasma collected 4 hours post-treatment (4) P. vivax-infected patients were treated with various combinations of IVM, chloroquine, and primaquine and plasma or whole blood was collected at 4 hours. Seven days after the infective blood meal, mosquitoes were dissected to evaluate oocyst presence. Additionally, the ex vivo effects of IVM against asexual blood-stage P. vivax was evaluated. RESULTS: IVM significantly reduced the prevalence of An. aquasalis that developed oocysts in 10 to 40 ng/mL pIVM concentrations and plasma 4 hours, 1 day and 5 days. In An. darlingi to 4 hours and 1 day. The An. aquasalis mortality was expressively increased in pIVM (40ng/mL) and plasma 4 hours, 1, 5 10 and 14 days post-intake drug and in An. darlingi only to 4 hours and 1 day. The double fed meal with mIVM by the mosquitoes has a considerable impact on the proportion of infected mosquitoes for 7 days post-feeding. The oocyst infection prevalence and intensity were notably reduced when mosquitoes ingested blood from P. vivax patients that ingested IVM+CQ, PQ+CQ and IVM+PQ+CQ. P. vivax asexual development was considerably inhibited by mIVM at four-fold dilutions. CONCLUSION: In conclusion, whole blood spiked with IVM reduced the infection rate of P. vivax in An. aquasalis and An. darlingi, and increased the mortality of mosquitoes. Plasma from healthy volunteers after IVM administration affect asexual P. vivax development. These findings support that ivermectin may be used to decrease P. vivax transmission.


Assuntos
Anopheles/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Ivermectina/farmacologia , Malária/transmissão , Plasmodium vivax/efeitos dos fármacos , Animais , Anopheles/parasitologia , Brasil , Cloroquina/farmacologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Feminino , Humanos , Insetos Vetores/parasitologia , Ivermectina/administração & dosagem , Ivermectina/sangue , Ivermectina/metabolismo , Malária/sangue , Oocistos/efeitos dos fármacos , Oocistos/patogenicidade , Primaquina/farmacologia
20.
Folia Med (Plovdiv) ; 60(4): 580-593, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188767

RESUMO

BACKGROUND: The suggested dose of ivermectin is 300 µG/kg/day for onchocerciasis but it has low water solubility and poor oral bioavailability. AIM: To prepare and evaluate a solid lipid-based self-emulsifying drug delivery system of ivermectin. MATERIALS AND METHODS: Based on supersaturated solubility study, oil, surfactant, and co-surfactant were selected. On the basis of ternary phase diagrams and simplex-lattice design, self-emulsifying, drug delivery formulations had been developed and optimized. Ivermectin-excipients compatibility studies were performed using differential scanning calorimetry and Fourier transform infrared spectroscopy. Solid self-emulsifying drug delivery formulation was formulated from the optimized batch by surface assimilation method and filled into hard gelatin capsules. In vitro release rate and in vivo pharmacokinetic parameters of ivermectin from the capsules were determined. Two-tailed paired t-test/Dunnett multiple comparison tests were performed for in vivo pharmacokinetic parameter at 95 % of confidence level. RESULTS: Soybeans oil, tween 80, and span 80 were selected as oil, surfactant, and co-surfactant respectively. The ternary diagrams were shown the maximum area for emulsion in 1:2 surfactant/co-surfactant ratio. The optimized batch had found with 30 mg ivermectin, 6.17 g soybeans oil, 0.30 g tween 80, and 3.50 g span 80. All differential scanning calorimetry and Fourier transform infrared characteristic peaks of the optimized formulation were identical with that of pure ivermectin. The area under the curve of ivermectin from the capsule was about two-fold higher than that of ivermectin suspension. CONCLUSIONS: Solid self-emulsifying drug delivery system was an effective oral solid dosage form to improve the oral bioavailability of ivermectin.


Assuntos
Antiparasitários/administração & dosagem , Sistemas de Liberação de Medicamentos , Ivermectina/administração & dosagem , Administração Oral , Animais , Antiparasitários/sangue , Antiparasitários/farmacocinética , Disponibilidade Biológica , Formas de Dosagem , Composição de Medicamentos , Emulsões , Hexoses , Humanos , Técnicas In Vitro , Ivermectina/sangue , Ivermectina/farmacocinética , Masculino , Oncocercose Ocular/sangue , Oncocercose Ocular/tratamento farmacológico , Polissorbatos , Ratos , Ratos Wistar , Solubilidade , Óleo de Soja , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...