Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
J Agric Food Chem ; 71(34): 12829-12838, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37590035

RESUMO

Deoxynivalenol (DON) is widely present in cereals and processed grains. It can disrupt the blood-testicular barrier (BTB), leading to sterility in males; however, the mechanism is unknown. In this study, 30 Kunming mice and TM4 cells were exposed to 0 or 4.8 mg/kg (28 d) and 0-2.4 µM (24 h) of DON, respectively. Histopathological findings showed that DON increased BTB permeability in mice, leading to tight junction (TJ) structural damage. Immunofluorescence results indicated that DON disrupted the localization of zonula occludens (ZO)-1. The results of protein and mRNA expression showed that the expression of ZO-1, occludin, and claudin-11 was reduced, and that the p38/GSK-3ß/snail and p38/ATF-2/MLCK signaling pathways were activated in mouse testes and TM4 cells. Pretreatment with the p38 inhibitor SB203580 maintained TJ integrity in TM4 cells after exposure to DON. Thus, DON induced BTB dysfunction in mice by disrupting p38 pathway-mediated TJ expression and distribution.


Assuntos
Proteínas de Junções Íntimas , Junções Íntimas , Camundongos , Masculino , Animais , Junções Íntimas/genética , Barreira Hematotesticular , Glicogênio Sintase Quinase 3 beta , Transdução de Sinais , Grão Comestível
2.
Gene ; 877: 147541, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301449

RESUMO

Tight junction proteins (TJs) are important component proteins that maintaining the structure and function of TJs, connecting to each other to form a TJ complex between cells, maintaining the biological homeostasis of the internal environment. In this study, a total of 103 TJ genes were identified in turbot according to our whole-transcriptome database. Transmembrane TJs were divided into seven subfamilies, including claudin (CLDN), occludin (OCLD), tricellulin (MARVELD2), MARVEL domain containing 3 (MARVELD3), junctional adhesion molecules (JAM), immunoglobulin superfamily member 5 (IGSF5/JAM4), blood vessel epicardial substance (BVEs). Moreover, the majority of homologous pairs of TJ genes showed highly conserved alongside length, exon/intron number and motifs. As for phylogenetic analysis for 103 TJ genes, eight of them have undergone a positive selection and JAMB-like has undergone the most neutral evolution. The expression patterns of several TJ genes showed the lowest expression levels in blood, while the highest expression levels were detected in intestine, gill and skin, which all belong to mucosal tissues. Meanwhile, most examined TJ genes showed down-regulated expression patterns during bacterial infection, while several TJ genes exhibited up-regulated expression patterns at a later stage (24 h). At the same time, several potential candidate genes (such as CLDN-15, CLDN-3, CLDN-12, CLDN-5 and OCLD) were significantly down-regulated, which may indicate their important functions that involved in the regulation of bacterial infection. Currently, there is little research on CLDN5 in the intestine, but it is highly expressed in the intestine and has significant changes in intestinal expression after bacterial infection. Thus, we knocked down CLDN5 by the method of lentiviral infection. The result showed CLDN5 was related to cell migration (wound healing) and apoptosis, and the method of dualluciferasereporterassay showed that the functions of CLDN5 could be regulated by miR-24. The study of TJs may lead to a better understanding of the function of TJs in teleost.


Assuntos
Infecções Bacterianas , Linguados , Animais , Junções Íntimas/genética , Junções Íntimas/metabolismo , Regulação da Expressão Gênica , Filogenia , Proteínas de Peixes/metabolismo
3.
Am J Hum Genet ; 110(4): 681-690, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36996813

RESUMO

The blood-brain barrier (BBB) is an essential gatekeeper for the central nervous system and incidence of neurodevelopmental disorders (NDDs) is higher in infants with a history of intracerebral hemorrhage (ICH). We discovered a rare disease trait in thirteen individuals, including four fetuses, from eight unrelated families associated with homozygous loss-of-function variant alleles of ESAM which encodes an endothelial cell adhesion molecule. The c.115del (p.Arg39Glyfs∗33) variant, identified in six individuals from four independent families of Southeastern Anatolia, severely impaired the in vitro tubulogenic process of endothelial colony-forming cells, recapitulating previous evidence in null mice, and caused lack of ESAM expression in the capillary endothelial cells of damaged brain. Affected individuals with bi-allelic ESAM variants showed profound global developmental delay/unspecified intellectual disability, epilepsy, absent or severely delayed speech, varying degrees of spasticity, ventriculomegaly, and ICH/cerebral calcifications, the latter being also observed in the fetuses. Phenotypic traits observed in individuals with bi-allelic ESAM variants overlap very closely with other known conditions characterized by endothelial dysfunction due to mutation of genes encoding tight junction molecules. Our findings emphasize the role of brain endothelial dysfunction in NDDs and contribute to the expansion of an emerging group of diseases that we propose to rename as "tightjunctionopathies."


Assuntos
Encefalopatias , Moléculas de Adesão Celular , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Alelos , Encefalopatias/genética , Moléculas de Adesão Celular/genética , Células Endoteliais/metabolismo , Hemorragias Intracranianas/genética , Malformações do Sistema Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Junções Íntimas/genética , Humanos
4.
Curr Protein Pept Sci ; 24(3): 203-214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825706

RESUMO

Tight junctions act as a barrier between epithelial cells to limit the transport of the paracellular substance, which is a required function in various tissues to sequestrate diverse microenvironments and maintain a normal physiological state. Tight junctions are complexes that contain various proteins, like transmembrane proteins, scaffolding proteins, signaling proteins, etc. Defects in those tight junction- related proteins can lead to hearing loss in humans which is also recapitulated in many model organisms. The disruption of the barrier between the endolymph and perilymph caused by tight junction abnormalities will affect the microenvironment of hair cells; and this could be the reason for this type of hearing loss. Besides their functions as a typical barrier and channel, tight junctions are also involved in many signaling networks to regulate gene expression, cell proliferation, and differentiation. This review will summarize the structures, localization, and related signaling pathways of hearingrelated tight junction proteins and their potential contributions to the hearing disorder.


Assuntos
Perda Auditiva , Junções Íntimas , Humanos , Junções Íntimas/química , Junções Íntimas/genética , Junções Íntimas/metabolismo , Perda Auditiva/genética , Perda Auditiva/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Células Epiteliais/metabolismo
5.
J Virol ; 97(3): e0188422, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36790206

RESUMO

Porcine epidemic diarrhea (PED) is a highly contagious disease, caused by porcine epidemic diarrhea virus (PEDV), which causes huge economic losses. Tight junction-associated proteins play an important role during virus infection; therefore, maintaining their integrity may be a new strategy for the prevention and treatment of PEDV. Long noncoding RNAs (lncRNAs) participate in numerous cellular functional activities, yet whether and how they regulate the intestinal barrier against viral infection remains to be elucidated. Here, we established a standard system for evaluating intestinal barrier integrity and then determined the differentially expressed lncRNAs between PEDV-infected and healthy piglets by lncRNA-seq. A total of 111 differentially expressed lncRNAs were screened, and lncRNA446 was identified due to significantly higher expression after PEDV infection. Using IPEC-J2 cells and intestinal organoids as in vitro models, we demonstrated that knockdown of lncRNA446 resulted in increased replication of PEDV, with further damage to intestinal permeability and tight junctions. Mechanistically, RNA pulldown and an RNA immunoprecipitation (RIP) assay showed that lncRNA446 directly binds to ALG-2-interacting protein X (Alix), and lncRNA446 inhibits ubiquitinated degradation of Alix mediated by TRIM25. Furthermore, Alix could bind to ZO1 and occludin and restore the expression level of the PEDV M gene and TJ proteins after lncRNA446 knockdown. Additionally, Alix knockdown and overexpression affects PEDV infection in IPEC-J2 cells. Collectively, our findings indicate that lncRNA446, by inhibiting the ubiquitinated degradation of Alix after PEDV infection, is involved in tight junction regulation. This study provides new insights into the mechanisms of intestinal barrier resistance and damage repair triggered by coronavirus. IMPORTANCE Porcine epidemic diarrhea is an acute, highly contagious enteric viral disease severely affecting the pig industry, for which current vaccines are inefficient due to the high variability of PEDV. Because PEDV infection can lead to severe injury of the intestinal epithelial barrier, which is the first line of defense, a better understanding of the related mechanisms may facilitate the development of new strategies for the prevention and treatment of PED. Here, we demonstrate that the lncRNA446 directly binds one core component of the actomyosin-tight junction complex named Alix and inhibits its ubiquitinated degradation. Functionally, the lncRNA446/Alix axis can regulate the integrity of tight junctions and potentially repair intestinal barrier injury after PEDV infection.


Assuntos
Proteínas de Ligação ao Cálcio , Infecções por Coronavirus , RNA Longo não Codificante , Doenças dos Suínos , Junções Íntimas , Animais , Linhagem Celular , Infecções por Coronavirus/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Suínos , Doenças dos Suínos/metabolismo , Junções Íntimas/genética , Técnicas de Silenciamento de Genes , Organoides , Técnicas In Vitro , Proteínas de Ligação ao Cálcio/metabolismo , Ligação Proteica , Proteólise
6.
Dev Biol ; 495: 21-34, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36587799

RESUMO

Septate junctions (SJs) evolved as cell-cell junctions that regulate the paracellular barrier and integrity of epithelia in invertebrates. Multiple morphological variants of SJs exist specific to different epithelia and/or phyla but the biological significance of varied SJ morphology is unclear because the knowledge of the SJ associated proteins and their functions in non-insect invertebrates remains largely unknown. Here we report cell-specific expression of nine candidate SJ genes in the early life stages of the sea urchin Strongylocentrotus purpuratus. By use of in situ RNA hybridization and single cell RNA-seq we found that the expression of selected genes encoding putatively SJ associated transmembrane and cytoplasmic scaffold molecules was dynamically regulated during epithelial development in the embryos and larvae with different epithelia expressing different cohorts of SJ genes. We focused a functional analysis on SpMesh, a homolog of the Drosophila smooth SJ component Mesh, which was highly enriched in the endodermal epithelium of the mid- and hindgut. Functional perturbation of SpMesh by both CRISPR/Cas9 mutagenesis and vivo morpholino-mediated knockdown shows that loss of SpMesh does not disrupt the formation of the gut epithelium during gastrulation. However, loss of SpMesh resulted in a severely reduced gut-paracellular barrier as quantitated by increased permeability to 3-5 â€‹kDa FITC-dextran. Together, these studies provide a first look at the molecular SJ physiology during the development of a marine organism and suggest a shared role for Mesh-homologous proteins in forming an intestinal barrier in invertebrates. Results have implications for consideration of the traits underlying species-specific sensitivity of marine larvae to climate driven ocean change.


Assuntos
Proteínas de Drosophila , Strongylocentrotus purpuratus , Animais , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/metabolismo , Junções Íntimas/genética , Junções Íntimas/metabolismo , Epitélio/metabolismo , Junções Intercelulares/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Ouriços-do-Mar/genética , Ouriços-do-Mar/metabolismo , Larva/genética , Larva/metabolismo
7.
Mol Biol Rep ; 50(3): 2007-2014, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36536183

RESUMO

BACKGROUND: Celiac disease (CD) is a hereditary immune-mediated disorder, which is along with the enormous production of pro-inflammatory cytokines and the reduced level of tight junction proteins. The aim of this study was to determine the expression of TNF-α, IFN-γ, IL-18, Occludin, miR-122-5p and miR-197-3p genes in duodenal biopsies of treated CD patients in comparison to the controls. METHODS AND RESULTS: Biopsy specimens were taken from the duodenum of 50 treated CD patients (36 (72%) females and 14 (28%) males with mean age of 37.06 ± 7.02 years) and 50 healthy controls (17 (34%) females and 33 (66%) males with mean age of 34.12 ± 4.9). Total RNA was isolated, cDNA was synthesized and mRNA expression of TNF-α, IFN-γ, IL-18, Occludin, miR-122-5p and miR-197-3p were quantified by relative qPCR using B2M and U6 as internal control genes. All data were evaluated using SPSS (V.21) and GraphPad Prism (V.5). Our results showed that there was no significant difference between patients and controls for intestinal mRNA expression of TNF-α, IFN-γ, IL-18, Occludin, and miR-122-5p (p > 0.05) and the expression of miR-197-3p was significantly increased in CD patients relative to control subjects (p = 0.049). CONCLUSION: This study suggests that adherence to GFD may have a positive effect on the tight junction (TJ) permeability and in this process, miR-197-3p plays an important role. Increased expression of miR-197-3p with a final protective effect on Occludin expression can be further studied as a complement therapeutic target for Celiac disease.


Assuntos
Doença Celíaca , MicroRNAs , Adulto , Feminino , Humanos , Masculino , Doença Celíaca/genética , Doença Celíaca/patologia , Dieta Livre de Glúten , Interleucina-18/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ocludina/genética , Permeabilidade , RNA Mensageiro/metabolismo , Junções Íntimas/genética , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Mol Biol Rep ; 49(12): 11881-11890, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36224445

RESUMO

Diabetes patients are at a high risk of developing complications related to angiopathy and disruption of the signal transduction system. The liver is one of the multiple organs damaged during diabetes. Few studies have evaluated the morphological effects of adhesion factors in diabetic liver. The influence of diurnal variation has been observed in the expression and functioning of adhesion molecules to maintain tissue homeostasis associated with nutrient uptake. The present study demonstrated that the rhythm-influenced functioning of tight junction was impaired in the liver of ob/ob mice. The tight junctions of hepatocytes were loosened during the dark period in control mice compared to those in ob/ob mice, where the hepatocyte gaps remained open throughout the day. The time-dependent expression of zonula occludens 1 (ZO1, encoded by Tjp1 gene) in the liver plays a vital role in the functioning of the tight junction. The time-dependent expression of ZO1 was nullified and its expression was attenuated in the liver of ob/ob mice. ZO1 expression was inhibited at the mRNA and protein levels. The expression rhythm of ZO1 was found to be regulated by heat shock factor (HSF)1/2, the expression of which was reduced in the liver of ob/ob mice. The DNA-binding ability of HSF1/2 was decreased in the liver of ob/ob mice compared to that in control mice. These findings suggest the involvement of impaired expression and functioning of adhesion factors in diabetic liver complications.


Assuntos
Moléculas de Adesão Celular , Junções Íntimas , Proteína da Zônula de Oclusão-1 , Animais , Camundongos , Moléculas de Adesão Celular/análise , Hepatócitos/metabolismo , Fígado , Junções Íntimas/química , Junções Íntimas/genética , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/análise , Proteína da Zônula de Oclusão-1/metabolismo
9.
J Biomed Sci ; 29(1): 40, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705979

RESUMO

BACKGROUND: Tight junctions (TJ) are multi-protein complexes that hold epithelial cells together and form structural and functional barriers for maintaining proper biological activities. Dual specificity phosphatase 3 (DUSP3), a suppressor of multiple protein tyrosine (Tyr) kinases, is decreased in lung cancer tissues. Here we demonstrated the role of DUSP3 in regulation of epithelial TJ. METHODS: Barrier functions of TJ were examined in wild-type or DUSP3-deficient lung epithelial cells. Animal and clinical data were analyzed for the association between DUSP3 deficiency and lung cancer progression. Proximity ligation assay, immunoblotting, and phosphatase assay were performed to study the effect of DUSP3 on the TJ protein occludin (OCLN). Mutations of Tyr residues on OCLN showed the role of Tyr phosphorylation in regulating OCLN. RESULTS: Compared to those of the DUSP3-expressing cells, we found the expression and distribution of ZO-1, a TJ-anchoring molecule, were abnormal in DUSP3-deficient cells. OCLN had an increased phosphorylation level in DUSP3-deficient cells. We identified that OCLN is a direct substrate of DUSP3. DUSP3 regulated OCLN ubiquitination and degradation through decreasing OCLN tyrosine phosphorylation directly or through suppressing focal adhesion kinase, the OCLN kinase. CONCLUSION: Our study revealed that DUSP3 is an important TJ regulatory protein and its decrease may be involved in progression of epithelial cancers.


Assuntos
Neoplasias Pulmonares , Junções Íntimas , Animais , Fosfatase 3 de Especificidade Dupla/genética , Fosfatase 3 de Especificidade Dupla/metabolismo , Neoplasias Pulmonares/metabolismo , Ocludina/genética , Ocludina/metabolismo , Ocludina/farmacologia , Fosforilação , Junções Íntimas/genética , Tirosina/metabolismo , Tirosina/farmacologia , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
10.
Cell Mol Life Sci ; 79(2): 114, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103851

RESUMO

Sertoli cells are essential for spermatogenesis in the testicular seminiferous tubules by forming blood-testis barrier (BTB) and creating a unique microenvironment for spermatogenesis. Many lncRNAs have been reported to participate in spermatogenesis. However, the role of long noncoding RNAs (lncRNAs) in Sertoli cells has rarely been examined. Herein, we found that a high-fat diet (HFD) decreased sperm quality, impaired BTB integrity and resulted in accumulation of saturated fatty acids (SFAs), especially palmitic acid (PA), in mouse testes. PA decreased the expression of tight junction (TJ)-related proteins, increased permeability and decreased transepithelial electrical resistance (TER) in primary Sertoli cells and TM4 cells. Moreover, lncRNA Tug1 was found to be involved in PA-induced BTB disruption by RNA-seq. Tug1 depletion distinctly impaired the TJs of Sertoli cells and overexpression of Tug1 alleviated the disruption of BTB integrity induced by PA. Moreover, Ccl2 was found to be a downstream target of Tug1, and decreased TJ-related protein levels and TER and increased FITC-dextran permeability in vitro. Furthermore, the addition of Ccl2 damaged BTB integrity after overexpression of Tug1 in the presence of PA. Mechanistically, we found that Tug1 could directly bind to EZH2 and regulate H3K27me3 occupancy in the Ccl2 promoter region by RNA immunoprecipitation and chromatin immunoprecipitation assays. Our study revealed an important role of Tug1 in the BTB integrity of Sertoli cells and provided a new view of the role of lncRNAs in male infertility.


Assuntos
Barreira Hematotesticular/metabolismo , RNA Longo não Codificante/genética , Túbulos Seminíferos/irrigação sanguínea , Células de Sertoli/metabolismo , Espermatogênese/genética , Junções Íntimas/genética , Animais , Células Cultivadas , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Dieta Hiperlipídica , Impedância Elétrica , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/metabolismo , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Obesidade/patologia , Ácido Palmítico/análise , Análise do Sêmen , Espermatogênese/fisiologia
11.
J Sci Food Agric ; 102(1): 434-444, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34143895

RESUMO

BACKGROUND: The incidence of inflammatory bowel disease (IBD) continues to increase worldwide. Multiple factors, including diet, loss of the intestinal barrier function, and imbalance of the immune system can cause IBD. A balanced diet is important for maintaining a healthy bowel and preventing IBD from occurring. The effects of probiotic Lactobacillus gasseri-fermented Maillard reaction products (MRPs) prepared by reacting whey protein with galactose on anti-inflammation and intestinal homeostasis were investigated in this study, which compared MPRs and probiotics separately. RESULTS: In an animal colitis model induced by 2% dextran sulfate sodium (DSS), FWG administration alleviated colon length loss and maintained intestinal immune system homeostasis as reflected by down-regulated interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α output, and metallopeptidase-9, and epithelial barrier balance as reflected by up-regulated occludin, E-cadherin, and zonula occludens-1 production in the colon. Furthermore, the expression of splenic cytokines such as IL-6, TNF-α, and IL-10 was up-regulated in the FWG-treated mice in a comparable amount to the control group to ensure the balance of immune responses. CONCLUSION: This study showed that the use of FWG protects the intestines from colitis caused by DSS and maintains immune balance. FWG increased antioxidant enzyme activity, increased intestinal permeability, and regulated the balance of pro- and anti-inflammatory cytokines in the intestines and spleen. Continued intake of FWG can alleviate IBD symptoms through the preservation of mucosal immune responses, epithelial junction and homeostasis through the regulated splenic cytokines. © 2021 Society of Chemical Industry.


Assuntos
Colite/tratamento farmacológico , Produtos Finais de Glicação Avançada/administração & dosagem , Lactobacillus gasseri/metabolismo , Probióticos/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Colite/induzido quimicamente , Colite/imunologia , Colite/fisiopatologia , Colo/efeitos dos fármacos , Colo/imunologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Galactose/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Junções Íntimas/genética , Junções Íntimas/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Proteínas do Soro do Leite/metabolismo
12.
Gastroenterology ; 162(3): 844-858, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34822802

RESUMO

BACKGROUND & AIMS: The protozoa Giardia duodenalis is a major cause of gastrointestinal illness worldwide, but underlying pathophysiological mechanisms remain obscure, partly due to the absence of adequate cellular models. We aimed at overcoming these limitations and recapitulating the authentic series of pathogenic events in the primary human duodenal tissue by using the human organoid system. METHODS: We established a compartmentalized cellular transwell system with electrophysiological and barrier properties akin to duodenal mucosa and dissected the events leading to G. duodenalis-induced barrier breakdown by functional analysis of transcriptional, electrophysiological, and tight junction components. RESULTS: Organoid-derived cell layers of different donors showed a time- and parasite load-dependent leak flux indicated by collapse of the epithelial barrier upon G. duodenalis infection. Gene set enrichment analysis suggested major expression changes, including gene sets contributing to ion transport and tight junction structure. Solute carrier family 12 member 2 and cystic fibrosis transmembrane conductance regulator-dependent chloride secretion was reduced early after infection, while changes in the tight junction composition, localization, and structural organization occurred later as revealed by immunofluorescence analysis and freeze fracture electron microscopy. Functionally, barrier loss was linked to the adenosine 3',5'-cyclic monophosphate (cAMP)/protein kinase A-cAMP response element-binding protein signaling pathway. CONCLUSIONS: Data suggest a previously unknown sequence of events culminating in intestinal barrier dysfunction upon G. duodenalis infection during which alterations of cellular ion transport were followed by breakdown of the tight junctional complex and loss of epithelial integrity, events involving a cAMP/protein kinase A-cAMP response element-binding protein mechanism. These findings and the newly established organoid-derived model to study G. duodenalis infection may help to explore new options for intervening with disease and infection, in particular relevant for chronic cases of giardiasis.


Assuntos
Giardíase/fisiopatologia , Mucosa Intestinal/fisiopatologia , Transporte de Íons , Transdução de Sinais , Junções Íntimas/fisiologia , Apoptose , Células CACO-2 , Cloretos/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Duodeno , Impedância Elétrica , Giardia lamblia , Giardíase/genética , Giardíase/imunologia , Humanos , Interleucina-1/genética , Transporte de Íons/genética , NF-kappa B/genética , Organoides , Carga Parasitária , Membro 2 da Família 12 de Carreador de Soluto/genética , Junções Íntimas/genética , Junções Íntimas/patologia , Junções Íntimas/ultraestrutura , Transcriptoma , Fator de Necrose Tumoral alfa/genética
13.
FASEB J ; 36(1): e22061, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861075

RESUMO

Corticosterone, the stress hormone, exacerbates alcohol-associated tissue injury, but the mechanism involved is unknown. We examined the role of the glucocorticoid receptor (GR) in corticosterone-mediated potentiation of alcohol-induced gut barrier dysfunction and systemic response. Hepatocyte-specific GR-deficient (GRΔHC ) and intestinal epithelial-specific GR-deficient (GRΔIEC ) mice were fed ethanol, combined with corticosterone treatment. Intestinal epithelial tight junction integrity, mucosal barrier function, microbiota dysbiosis, endotoxemia, systemic inflammation, liver damage, and neuroinflammation were assessed. Corticosterone potentiated ethanol-induced epithelial tight junction disruption, mucosal permeability, and inflammatory response in GRΔHC mouse colon; these effects of ethanol and corticosterone were absent in GRΔIEC mice. Gut microbiota compositions in ethanol-fed GRΔHC and GRΔIEC mice were similar to each other. However, corticosterone treatment in ethanol-fed mice shifted the microbiota composition to distinctly different directions in GRΔHC and GRΔIEC mice. Ethanol and corticosterone synergistically elevated the abundance of Enterobacteriaceae and Escherichia coli and reduced the abundance of Lactobacillus in GRΔHC mice but not in GRΔIEC mice. In GRΔHC mice, corticosterone potentiated ethanol-induced endotoxemia and systemic inflammation, but these effects were absent in GRΔIEC mice. Interestingly, ethanol-induced liver damage and its potentiation by corticosterone were observed in GRΔHC mice but not in GRΔIEC mice. GRΔIEC mice were also resistant to ethanol- and corticosterone-induced inflammatory response in the hypothalamus. These data indicate that the intestinal epithelial GR plays a central role in alcohol- and corticosterone-induced gut barrier dysfunction, microbiota dysbiosis, endotoxemia, systemic inflammation, liver damage, and neuroinflammation. This study identifies a novel target for potential therapeutic for alcohol-associated tissue injury.


Assuntos
Corticosterona/efeitos adversos , Etanol/efeitos adversos , Mucosa Intestinal/metabolismo , Receptores de Glucocorticoides/metabolismo , Junções Íntimas/metabolismo , Animais , Corticosterona/farmacologia , Escherichia coli/metabolismo , Etanol/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Lactobacillus/metabolismo , Camundongos , Camundongos Transgênicos , Permeabilidade/efeitos dos fármacos , Receptores de Glucocorticoides/genética , Junções Íntimas/genética
14.
Signal Transduct Target Ther ; 6(1): 337, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489403

RESUMO

SARS-CoV-2 has been reported to show a capacity for invading the brains of humans and model animals. However, it remains unclear whether and how SARS-CoV-2 crosses the blood-brain barrier (BBB). Herein, SARS-CoV-2 RNA was occasionally detected in the vascular wall and perivascular space, as well as in brain microvascular endothelial cells (BMECs) in the infected K18-hACE2 transgenic mice. Moreover, the permeability of the infected vessel was increased. Furthermore, disintegrity of BBB was discovered in the infected hamsters by administration of Evans blue. Interestingly, the expression of claudin5, ZO-1, occludin and the ultrastructure of tight junctions (TJs) showed unchanged, whereas, the basement membrane was disrupted in the infected animals. Using an in vitro BBB model that comprises primary BMECs with astrocytes, SARS-CoV-2 was found to infect and cross through the BMECs. Consistent with in vivo experiments, the expression of MMP9 was increased and collagen IV was decreased while the markers for TJs were not altered in the SARS-CoV-2-infected BMECs. Besides, inflammatory responses including vasculitis, glial activation, and upregulated inflammatory factors occurred after SARS-CoV-2 infection. Overall, our results provide evidence supporting that SARS-CoV-2 can cross the BBB in a transcellular pathway accompanied with basement membrane disrupted without obvious alteration of TJs.


Assuntos
Membrana Basal/metabolismo , Barreira Hematoencefálica/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Junções Íntimas/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Membrana Basal/patologia , Membrana Basal/virologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , COVID-19/genética , COVID-19/patologia , Chlorocebus aethiops , Modelos Animais de Doenças , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , Junções Íntimas/genética , Junções Íntimas/patologia , Junções Íntimas/virologia , Células Vero
15.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576058

RESUMO

Sporadic occurrences and outbreaks of hand, foot, and mouth disease (HFMD) caused by Coxsackievirus A2 (CVA2) have frequently reported worldwide recently, which pose a great challenge to public health. Epidemiological studies have suggested that the main cause of death in critical patients is pulmonary edema. However, the pathogenesis of this underlying comorbidity remains unclear. In this study, we utilized the 5-day-old BALB/c mouse model of lethal CVA2 infection to evaluate lung damage. We found that the permeability of lung microvascular was significantly increased after CVA2 infection. We also observed the direct infection and apoptosis of lung endothelial cells as well as the destruction of tight junctions between endothelial cells. CVA2 infection led to the degradation of tight junction proteins (e.g., ZO-1, claudin-5, and occludin). The gene transcription levels of von Willebrand factor (vWF), endothelin (ET), thrombomodulin (THBD), granular membrane protein 140 (GMP140), and intercellular cell adhesion molecule-1 (ICAM-1) related to endothelial dysfunction were all significantly increased. Additionally, CVA2 infection induced the increased expression of inflammatory cytokines (IL-6, IL-1ß, and MCP-1) and the activation of p38 mitogen-activated protein kinase (MAPK). In conclusion, the disruption of the endothelial barrier contributes to acute lung injury induced by CVA2 infection; targeting p38-MAPK signaling may provide a therapeutic approach for pulmonary edema in critical infections of HFMD.


Assuntos
Lesão Pulmonar Aguda/genética , Infecções por Coxsackievirus/genética , Doença de Mão, Pé e Boca/genética , Edema Pulmonar/genética , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/virologia , Animais , Apoptose/genética , Claudina-5/genética , Infecções por Coxsackievirus/complicações , Infecções por Coxsackievirus/patologia , Infecções por Coxsackievirus/virologia , Citocinas/genética , Modelos Animais de Doenças , Células Endoteliais/patologia , Células Endoteliais/virologia , Doença de Mão, Pé e Boca/complicações , Doença de Mão, Pé e Boca/patologia , Doença de Mão, Pé e Boca/virologia , Humanos , Camundongos , Ocludina/genética , Edema Pulmonar/complicações , Edema Pulmonar/patologia , Edema Pulmonar/virologia , Junções Íntimas/genética , Junções Íntimas/patologia , Proteína da Zônula de Oclusão-1/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
16.
Mol Biol Cell ; 32(19): 1824-1837, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34260281

RESUMO

Desmosomes (DSMs), together with adherens junctions (AJs) and tight junctions (TJs), constitute the apical cell junctional complex (AJC). While the importance of the apical and basolateral polarity machinery in the organization of AJs and TJs is well established, how DSMs are positioned within the AJC is not understood. Here we use highly polarized DLD1 cells as a model to address how DSMs integrate into the AJC. We found that knockout (KO) of the desmosomal ARM protein Pkp3, but not other major DSM proteins, uncouples DSMs from the AJC without blocking DSM assembly. DLD1 cells also exhibit a prominent extraDSM pool of Pkp3, concentrated in tricellular (tC) contacts. Probing distinct apicobasal polarity pathways revealed that neither the DSM's association with AJC nor the extraDSM pool of Pkp3 are abolished in cells with defects in Scrib module proteins responsible for basolateral membrane development. However, a loss of the apical polarity protein, Par3, completely eliminates the extraDSM pool of Pkp3 and disrupts AJC localization of desmosomes, dispersing these junctions along the entire length of cell-cell contacts. Our data are consistent with a model whereby Par3 facilitates DSM assembly within the AJC, controlling the availability of an assembly competent pool of Pkp3 stored in tC contacts.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Proteínas de Ciclo Celular/metabolismo , Desmossomos/metabolismo , Placofilinas/metabolismo , Junções Íntimas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Junções Aderentes/genética , Animais , Células CACO-2 , Comunicação Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Polaridade Celular/genética , Células Cultivadas , Desmossomos/genética , Cães , Células Epiteliais/metabolismo , Técnicas de Inativação de Genes , Humanos , Células Madin Darby de Rim Canino , Microscopia de Fluorescência/métodos , Placofilinas/genética , Junções Íntimas/genética
17.
J Cereb Blood Flow Metab ; 41(12): 3171-3186, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34293939

RESUMO

Stroke is among the top ten causes of death in children but has received disproportionally little attention. Cerebral arteriopathies account for up to 80% of childhood arterial ischemic stroke (CAIS) cases and are strongly predictive of CAIS recurrence and poorer outcomes. The underlying mechanisms of sensitization of neurovasculature by viral infection are undefined. In the first age-appropriate model for childhood arteriopathy-by administration of viral mimetic TLR3-agonist Polyinosinic:polycytidylic acid (Poly-IC) in juvenile mice-we identified a key role of the TLR3-neutrophil axis in disrupting the structural-functional integrity of the blood-brain barrier (BBB) and distorting the developing neurovascular architecture and vascular networks. First, using an array of in-vivo/post-vivo vascular imaging, genetic, enzymatic and pharmacological approaches, we report marked Poly-IC-mediated extravascular leakage of albumin (66kDa) and of a small molecule DiI (∼934Da) and disrupted tight junctions. Poly-IC also enhanced the neuroinflammatory milieu, promoted neutrophil recruitment, profoundly upregulated neutrophil elastase (NE), and induced neutrophil extracellular trap formation (NETosis). Finally, we show that functional BBB disturbances, NETosis and neuroinflammation are markedly attenuated by pharmacological inhibition of NE (Sivelestat). Altogether, these data reveal NE/NETosis as a novel therapeutic target for viral-induced cerebral arteriopathies in children.


Assuntos
Artérias Cerebrais/metabolismo , Armadilhas Extracelulares/metabolismo , Elastase de Leucócito , Poli I-C/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral , Animais , Barreira Hematoencefálica/metabolismo , Artérias Cerebrais/patologia , Criança , Armadilhas Extracelulares/genética , Humanos , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Transgênicos , Poli I-C/farmacologia , Transdução de Sinais/genética , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Junções Íntimas/genética , Junções Íntimas/metabolismo , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301883

RESUMO

Tuberous sclerosis complex 1 (Tsc1) is a tumor suppressor that functions together with Tsc2 to negatively regulate the mechanistic target of rapamycin complex 1 (mTORC1) activity. Here, we show that Tsc1 has a critical role in the tight junction (TJ) formation of epithelium, independent of its role in Tsc2 and mTORC1 regulation. When an epithelial cell establishes contact with neighboring cells, Tsc1, but not Tsc2, migrates from the cytoplasm to junctional membranes, in which it binds myosin 6 to anchor the perijunctional actin cytoskeleton to ß-catenin and ZO-1. In its absence, perijunctional actin cytoskeleton fails to form. In mice, intestine-specific or inducible, whole-body Tsc1 ablation disrupts adherens junction/TJ structures in intestine or skin epithelia, respectively, causing Crohn's disease-like symptoms in the intestine or psoriasis-like phenotypes on the skin. In patients with Crohn's disease or psoriasis, junctional Tsc1 levels in epithelial tissues are markedly reduced, concomitant with the TJ structure impairment, suggesting that Tsc1 deficiency may underlie TJ-related diseases. These findings establish an essential role of Tsc1 in the formation of cell junctions and underpin its association with TJ-related human diseases.


Assuntos
Citoesqueleto de Actina/metabolismo , Doença de Crohn/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Psoríase/patologia , Junções Íntimas/patologia , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/fisiologia , Citoesqueleto de Actina/genética , Animais , Estudos de Casos e Controles , Doença de Crohn/genética , Doença de Crohn/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Knockout , Psoríase/genética , Psoríase/metabolismo , Transdução de Sinais , Junções Íntimas/genética , Junções Íntimas/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética
19.
Fluids Barriers CNS ; 18(1): 27, 2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147102

RESUMO

The entry of blood-borne molecules into the brain is restricted by the blood-brain barrier (BBB). Various physical, transport and immune properties tightly regulate molecule movement between the blood and the brain to maintain brain homeostasis. A recent study utilizing a pan-endothelial, constitutive Tie2-Cre showed that paracellular passage of blood proteins into the brain is governed by endocytic and cell signaling protein low-density lipoprotein receptor-related protein 1 (LRP1). Taking advantage of conditional Slco1c1-CreERT2 specific to CNS endothelial cells and choroid plexus epithelial cells we now supplement previous results and show that brain endothelial Lrp1 ablation results in protease-mediated tight junction degradation, P-glycoprotein (P-gp) reduction and a loss of BBB integrity.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Permeabilidade Capilar/fisiologia , Células Endoteliais/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Junções Íntimas/metabolismo , Animais , Células Cultivadas , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Junções Íntimas/genética
20.
Technol Cancer Res Treat ; 20: 15330338211027923, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34159861

RESUMO

Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent renal malignant cancer, whose survival rate and quality of life of patients are still not satisfactory. Nevertheless, the TNM staging system currently used in clinical cannot make accurate survival predictions and precise treatment decisions for ccRCC patients. Therefore, there is an urgent need for more reliable biomarkers to identify high-risk subgroups of ccRCC patients to guide timely intervention and treatment. Recently, MiRNAs have been shown to be closely related to the procession of a variety of tumors, and they have high stability in various tissues, which makes them suggested to have the potential as a prognostic biomarker of ccRCC. In this study, by analyzing and processing the miRNAs expression profile of ccRCC patients from the TCGA database, we finally constructed an excellent miRNAs signature and verified it through a variety of methods. In order to build a more accurate and reliable clinical predictive model, we integrated the miRNAs signature with other prognostic-related clinical parameters to construct a nomogram. Functional enrichment analysis showed that miRNAs in the signature may regulate the genes involved in the Hippo signaling pathway, Tight junction, and Wnt signaling pathway to cause different prognoses of ccRCC patients, which may provide a reference for subsequent basic research and targeted therapy. To conclude, our study constructed a useful miRNAs signature, which allows the prognosis stratification for ccRCC patients and thereby guides the timely and effective interventions on high-risk patients. At the same time, this study also found the potential biological pathways involved in the procession of ccRCC.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , MicroRNAs/genética , Modelos Biológicos , Nomogramas , Idoso , Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Feminino , Via de Sinalização Hippo/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Risco Ajustado , Taxa de Sobrevida , Junções Íntimas/genética , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...