Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Genet Dev ; 67: 163-173, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33774266

RESUMO

The nucleus is a highly structured organelle with many chromatin and protein compartments that partition the genome into regulatory domains. One such a compartment within the mammalian nucleus is the microenvironment underlying the nuclear envelope (NE) where intermediate filament proteins, lamins, act as a link between cytoskeletal and inner nuclear membrane (INM) proteins, chromatin binders and modifiers, and heterochromatin. These dynamic interactions regulate many cellular processes and, when they are perturbed, can lead to genome dysregulation and disease.


Assuntos
Cromatina/ultraestrutura , Genoma/genética , Heterocromatina/ultraestrutura , Lâmina Nuclear/ultraestrutura , Animais , Núcleo Celular , Cromatina/genética , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Heterocromatina/genética , Humanos , Laminas/genética , Mitose/genética , Membrana Nuclear/genética , Lâmina Nuclear/genética , Proteínas Nucleares/genética
2.
Acta Neuropathol Commun ; 9(1): 45, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741069

RESUMO

The most common genetic cause of familial and sporadic amyotrophic lateral sclerosis (ALS) is a GGGGCC hexanucleotide repeat expansion (HRE) in the C9orf72 gene. While direct molecular hallmarks of the C9orf72 HRE (repeat RNA foci, dipeptide repeat protein pathology) are well characterized, the mechanisms by which the C9orf72 HRE causes ALS and the related neurodegenerative disease frontotemporal dementia (FTD) remain poorly understood. Recently, alterations to the nuclear pore complex and nucleocytoplasmic transport have been accepted as a prominent pathomechanism underlying C9orf72 ALS/FTD. However, global disruptions to nuclear morphology and the nuclear lamina itself remain controversial. Here, we use a large number of induced pluripotent stem cell derived spinal neurons and postmortem human motor cortex sections to thoroughly examine nuclear morphology and nuclear lamina disruptions with light microscopy. In contrast to previous studies in artificial overexpression model systems, endogenous levels of the C9orf72 HRE do not increase the frequency of nuclear lamina invaginations. In addition, the C9orf72 HRE has no impact on overall nuclear shape and size. Notably, the frequency of nuclear Lamin B1 invaginations increases with cellular aging, independent of the C9orf72 HRE. Together, our data suggest that nuclear morphology is unaltered in C9orf72 ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Demência Frontotemporal/patologia , Lâmina Nuclear/patologia , Lâmina Nuclear/ultraestrutura , Idoso , Esclerose Lateral Amiotrófica/genética , Autopsia , Senescência Celular/fisiologia , Expansão das Repetições de DNA , Feminino , Demência Frontotemporal/genética , Humanos , Lamina Tipo B/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Neurônios/ultraestrutura , Lâmina Nuclear/genética
3.
Mol Brain ; 14(1): 9, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436037

RESUMO

Jacob is a synapto-nuclear messenger protein that couples NMDAR activity to CREB-dependent gene expression. In this study, we investigated the nuclear distribution of Jacob and report a prominent targeting to the nuclear envelope that requires NMDAR activity and nuclear import. Immunogold electron microscopy and proximity ligation assay combined with STED imaging revealed preferential association of Jacob with the inner nuclear membrane where it directly binds to LaminB1, an intermediate filament and core component of the inner nuclear membrane (INM). The association with the INM is transient; it involves a functional nuclear export signal in Jacob and a canonical CRM1-RanGTP-dependent export mechanism that defines the residing time of the protein at the INM. Taken together, the data suggest a stepwise redistribution of Jacob within the nucleus following nuclear import and prior to nuclear export.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Lâmina Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Lamina Tipo B/metabolismo , Modelos Biológicos , Sinais de Exportação Nuclear , Lâmina Nuclear/ultraestrutura , Ligação Proteica , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Nat Commun ; 11(1): 6205, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277502

RESUMO

The nuclear lamina-a meshwork of intermediate filaments termed lamins-is primarily responsible for the mechanical stability of the nucleus in multicellular organisms. However, structural-mechanical characterization of lamin filaments assembled in situ remains elusive. Here, we apply an integrative approach combining atomic force microscopy, cryo-electron tomography, network analysis, and molecular dynamics simulations to directly measure the mechanical response of single lamin filaments in three-dimensional meshwork. Endogenous lamin filaments portray non-Hookean behavior - they deform reversibly at a few hundred picoNewtons and stiffen at nanoNewton forces. The filaments are extensible, strong and tough similar to natural silk and superior to the synthetic polymer Kevlar®. Graph theory analysis shows that the lamin meshwork is not a random arrangement of filaments but exhibits small-world properties. Our results suggest that lamin filaments arrange to form an emergent meshwork whose topology dictates the mechanical properties of individual filaments. The quantitative insights imply a role of meshwork topology in laminopathies.


Assuntos
Núcleo Celular/metabolismo , Filamentos Intermediários/metabolismo , Laminas/metabolismo , Lâmina Nuclear/metabolismo , Algoritmos , Animais , Núcleo Celular/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Células HeLa , Humanos , Filamentos Intermediários/ultraestrutura , Laminas/ultraestrutura , Camundongos , Microscopia de Força Atômica/métodos , Simulação de Dinâmica Molecular , Lâmina Nuclear/ultraestrutura , Estresse Mecânico , Xenopus laevis
5.
Nat Commun ; 11(1): 5914, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219233

RESUMO

The nuclear lamina plays an important role in the regulation of chromatin organization and gene positioning in animals. CROWDED NUCLEI (CRWN) is a strong candidate for the plant nuclear lamina protein in Arabidopsis thaliana but its biological function was largely unknown. Here, we show that CRWNs localize at the nuclear lamina and build the meshwork structure. Fluorescence in situ hybridization and RNA-seq analyses revealed that CRWNs regulate chromatin distribution and gene expression. More than 2000 differentially expressed genes were identified in the crwn1crwn4 double mutant. Copper-associated (CA) genes that form a gene cluster on chromosome 5 were among the downregulated genes in the double mutant exhibiting low tolerance to excess copper. Our analyses showed this low tolerance to copper was associated with the suppression of CA gene expression and that CRWN1 interacts with the CA gene locus, enabling the locus to localize at the nuclear lamina under excess copper conditions.


Assuntos
Proteínas de Arabidopsis , Cobre/metabolismo , Lâmina Nuclear , Proteínas Nucleares , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Hibridização in Situ Fluorescente , Mutação/genética , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Lâmina Nuclear/ultraestrutura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA-Seq
7.
J Struct Biol ; 209(1): 107404, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610238

RESUMO

The assembly of intermediate filaments (IFs) including nuclear lamins is driven by specific interactions of the elementary coiled-coil dimers in both lateral and longitudinal direction. The assembly mode A11 is dependent on lateral tetramerization of the second coiled-coil segment (coil1b) in antiparallel fashion. Recent cryo-electron microscopy studies pointed to 3.5 nm lamin filaments built from two antiparallel threads of longitudinally associated dimers but little molecular detail is available to date. Here we present the 2.6 Šresolution X-ray structure of a lamin A fragment including residues 65-222 which reveals the molecular basis of the A11 interaction. The crystal structure also indicates a continuous α-helical structure for the preceding linker L1 region. The middle part of the antiparallel tetramer reveals unique interactions due to the lamin-specific 42-residue insert in coil1b. At the same time, distinct characteristics of this insert provide for the preservation of common structural principles shared with lateral coil1b tetramers of vimentin and keratin K1/K10. In addition, structural analysis suggests that the A11 interaction in lamins is somewhat weaker than in cytoplasmic IFs, despite a 30% longer overlap. Establishing the structural detail of the A11 interaction across IF types is the first step towards a rational understanding of the IF assembly process which is indispensable for establishing the mechanism of disease-related mutations.


Assuntos
Citoesqueleto/genética , Filamentos Intermediários/genética , Lâmina Nuclear/ultraestrutura , Conformação Proteica , Sequência de Aminoácidos/genética , Cristalografia por Raios X , Citoesqueleto/química , Humanos , Laminas/química , Laminas/genética , Laminas/ultraestrutura , Lâmina Nuclear/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos/genética , Multimerização Proteica/genética , Vimentina
8.
Protein J ; 38(4): 363-376, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31410705

RESUMO

During my postdoc interview in June of 1998, I asked Günter why he was moving more towards the nucleus in his latest studies. He said, "Well Joe, that's where everything starts." By the end of the interview, I accepted the postdoc. He had a way of making everything sound so cool. Günter's progression was natural, since the endoplasmic reticulum and the nucleus are the only organelles that share the same membrane. The nuclear envelope extends into a double membrane system with nuclear pore complexes embedded in the pore membrane openings. Even while writing this review, I remember Günter stressing; it is the nuclear pore complex. Just saying nuclear pore doesn't encompass the full magnitude of its significance. The nuclear pore complex is one of the largest collection of proteins that fit together for an overall function: transport. This review will cover the Blobel lab contributions in the quest for the blueprint of the nuclear pore complex from isolation of the nuclear envelope and nuclear lamin to the ring structures.


Assuntos
Laminas/química , Glicoproteínas de Membrana/química , Lâmina Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/química , Poro Nuclear/ultraestrutura , Animais , Biografias como Assunto , Citoesqueleto/ultraestrutura , Pessoas Famosas , Humanos , Ratos , Leveduras
9.
Nucleic Acids Res ; 47(15): 7870-7885, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31226208

RESUMO

Long interspersed elements-1 (LINE-1, L1) are retrotransposons that hold the capacity of self-propagation in the genome with potential mutagenic outcomes. How somatic cells restrict L1 activity and how this process becomes dysfunctional during aging and in cancer cells is poorly understood. L1s are enriched at lamin-associated domains, heterochromatic regions of the nuclear periphery. Whether this association is necessary for their repression has been elusive. Here we show that the sirtuin family member SIRT7 participates in the epigenetic transcriptional repression of L1 genome-wide in both mouse and human cells. SIRT7 depletion leads to increased L1 expression and retrotransposition. Mechanistically, we identify a novel interplay between SIRT7 and Lamin A/C in L1 repression. Our results demonstrate that SIRT7-mediated H3K18 deacetylation regulates L1 expression and promotes L1 association with elements of the nuclear lamina. The failure of such activity might contribute to the observed genome instability and compromised viability in SIRT7 knockout mice. Overall, our results reveal a novel function of SIRT7 on chromatin organization by mediating the anchoring of L1 to the nuclear envelope, and a new functional link of the nuclear lamina with transcriptional repression.


Assuntos
Genoma , Lamina Tipo A/genética , Elementos Nucleotídeos Longos e Dispersos , Sirtuínas/genética , Transcrição Gênica , Animais , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Epigênese Genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Heterocromatina/química , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Células K562 , Lamina Tipo A/metabolismo , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miocárdio/citologia , Miocárdio/metabolismo , Lâmina Nuclear/metabolismo , Lâmina Nuclear/ultraestrutura , Sirtuínas/deficiência , Sirtuínas/metabolismo , Testículo/citologia , Testículo/metabolismo
10.
Genome Res ; 29(8): 1235-1249, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31201210

RESUMO

In interphase eukaryotic cells, almost all heterochromatin is located adjacent to the nucleolus or to the nuclear lamina, thus defining nucleolus-associated domains (NADs) and lamina-associated domains (LADs), respectively. Here, we determined the first genome-scale map of murine NADs in mouse embryonic fibroblasts (MEFs) via deep sequencing of chromatin associated with purified nucleoli. We developed a Bioconductor package called NADfinder and demonstrated that it identifies NADs more accurately than other peak-calling tools, owing to its critical feature of chromosome-level local baseline correction. We detected two distinct classes of NADs. Type I NADs associate frequently with both the nucleolar periphery and the nuclear lamina, and generally display characteristics of constitutive heterochromatin, including late DNA replication, enrichment of H3K9me3, and little gene expression. In contrast, Type II NADs associate with nucleoli but do not overlap with LADs. Type II NADs tend to replicate earlier, display greater gene expression, and are more often enriched in H3K27me3 than Type I NADs. The nucleolar associations of both classes of NADs were confirmed via DNA-FISH, which also detected Type I but not Type II probes enriched at the nuclear lamina. Type II NADs are enriched in distinct gene classes, including factors important for differentiation and development. In keeping with this, we observed that a Type II NAD is developmentally regulated, and present in MEFs but not in undifferentiated embryonic stem (ES) cells.


Assuntos
Nucléolo Celular/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Heterocromatina/classificação , Animais , Nucléolo Celular/ultraestrutura , Células Cultivadas , Mapeamento Cromossômico/métodos , Replicação do DNA , Embrião de Mamíferos , Fibroblastos/ultraestrutura , Heterocromatina/química , Heterocromatina/ultraestrutura , Histonas/genética , Histonas/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Lâmina Nuclear/metabolismo , Lâmina Nuclear/ultraestrutura
11.
Cells ; 8(4)2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003483

RESUMO

The nuclear lamina consists of a dense fibrous meshwork of nuclear lamins, Type V intermediate filaments, and is ~14 nm thick according to recent cryo-electron tomography studies. Recent advances in light microscopy have extended the resolution to a scale allowing for the fine structure of the lamina to be imaged in the context of the whole nucleus. We review quantitative approaches to analyze the imaging data of the nuclear lamina as acquired by structured illumination microscopy (SIM) and single molecule localization microscopy (SMLM), as well as the requisite cell preparation techniques. In particular, we discuss the application of steerable filters and graph-based methods to segment the structure of the four mammalian lamin isoforms (A, C, B1, and B2) and extract quantitative information.


Assuntos
Lâmina Nuclear/química , Lâmina Nuclear/ultraestrutura , Animais , Núcleo Celular/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Humanos , Proteínas de Filamentos Intermediários/análise , Filamentos Intermediários/química , Filamentos Intermediários/fisiologia , Lamina Tipo A/análise , Lamina Tipo B/análise , Laminas/química , Laminas/fisiologia , Lâmina Nuclear/fisiologia , Isoformas de Proteínas/análise
12.
Plant Cell ; 31(5): 1141-1154, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30914470

RESUMO

Spatial organization of chromatin contributes to gene regulation of many cellular processes and includes a connection of chromatin with the nuclear lamina (NL). The NL is a protein mesh that resides underneath the inner nuclear membrane and consists of lamins and lamina-associated proteins. Chromatin regions associated with lamins in animals are characterized mostly by constitutive heterochromatin, but association with facultative heterochromatin mediated by Polycomb-group (PcG) proteins has been reported as well. In contrast with animals, plant NL components are largely not conserved and NL association with chromatin is poorly explored. Here, we present the connection between the lamin-like protein, CROWDED NUCLEI1 (CRWN1), and the chromatin- and PcG-associated component, PROLINE-TRYPTOPHANE-TRYPTOPHANE-PROLINE INTERACTOR OF POLYCOMBS1, in Arabidopsis (Arabidopsis thaliana). We show that PWO1 and CRWN1 proteins associate physically with each other, act in the same pathway to maintain nuclear morphology, and control expression of a similar set of target genes. Moreover, we demonstrate that transiently expressed PWO1 proteins form foci located partially at the subnuclear periphery. Ultimately, as CRWN1 and PWO1 are plant-specific, our results argue that plants might have developed an equivalent, rather than homologous, mechanism of linking chromatin repression and NL.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Transporte/metabolismo , Tamanho do Núcleo Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas Nucleares/metabolismo , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Núcleo Celular/ultraestrutura , Cromatina/genética , Heterocromatina/genética , Laminas/metabolismo , Lâmina Nuclear/ultraestrutura , Proteínas Nucleares/genética , Fenótipo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo
13.
Cell Mol Life Sci ; 76(11): 2199-2216, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30762072

RESUMO

The organization of the nuclear periphery is crucial for many nuclear functions. Nuclear lamins form dense network at the nuclear periphery and play a substantial role in chromatin organization, transcription regulation and in organization of nuclear pore complexes (NPCs). Here, we show that TPR, the protein located preferentially within the nuclear baskets of NPCs, associates with lamin B1. The depletion of TPR affects the organization of lamin B1 but not lamin A/C within the nuclear lamina as shown by stimulated emission depletion microscopy. Finally, reduction of TPR affects the distribution of NPCs within the nuclear envelope and the effect can be reversed by simultaneous knock-down of lamin A/C or the overexpression of lamin B1. Our work suggests a novel role for the TPR at the nuclear periphery: the TPR contributes to the organization of the nuclear lamina and in cooperation with lamins guards the interphase assembly of nuclear pore complexes.


Assuntos
Lamina Tipo A/genética , Lamina Tipo B/genética , Membrana Nuclear/metabolismo , Lâmina Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Lamina Tipo A/antagonistas & inibidores , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Imagem Molecular , Membrana Nuclear/ultraestrutura , Lâmina Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/antagonistas & inibidores , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
14.
Methods ; 157: 42-46, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30268406

RESUMO

For decades, components of the mammalian nuclear envelope (NE), such as the nuclear lamina and nuclear pore complexes (NPCs), have been largely resistant to quantitative cell biological analysis using conventional fluorescence microscopy. This is in part due to their sub diffraction limit dimensions. Super-resolution microscopy, a major advancement in cell biology research, has now made possible the acquisition of images in which nuclear lamin networks and single NPCs can be resolved in intact mammalian somatic cells. In particular, single molecule localization microscopy is able to generate data sets that are accurate enough to allow detailed quantitative analysis. Here we describe an algorithm that will identify the centroid of single NPCs and will determine their localization relative to the distribution of lamin protein filaments. Using this algorithm, a percentage of NPCs localized within the nuclear lamin network was accurately calculated, that could be compared between cells expressing different lamin complements. With modifications tweaked according to user specified sample images, this algorithm serves as a semi-automatic and fast computational tool to quantify and compare the localization and distribution of two or more cellular components at the nanometre scale.


Assuntos
Técnicas Citológicas/métodos , Lâmina Nuclear/ultraestrutura , Poro Nuclear/ultraestrutura , Imagem Individual de Molécula/métodos , Algoritmos , Interface Usuário-Computador
15.
Nucleic Acids Res ; 46(12): 6112-6128, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29750270

RESUMO

The replication of the genome is a highly organized process, both spatially and temporally. Although a lot is known on the composition of the basic replication machinery, how its activity is regulated is mostly unknown. Several chromatin properties have been proposed as regulators, but a potential role of the nuclear DNA position remains unclear. We made use of the prominent structure and well-defined heterochromatic landscape of mouse pericentric chromosome domains as a well-studied example of late replicating constitutive heterochromatin. We established a method to manipulate its nuclear position and evaluated the effect on replication timing, DNA compaction and epigenetic composition. Using time-lapse microscopy, we observed that constitutive heterochromatin, known to replicate during late S-phase, was replicated in mid S-phase when repositioned to the nuclear periphery. Out-of-schedule replication resulted in deficient post-replicative maintenance of chromatin modifications, namely silencing marks. We propose that repositioned constitutive heterochromatin was activated in trans according to the domino model of origin firing by nearby (mid S) firing origins. In summary, our data provide, on the one hand, a novel approach to manipulate nuclear DNA position and, on the other hand, establish nuclear DNA position as a novel mechanism regulating DNA replication timing and epigenetic maintenance.


Assuntos
Período de Replicação do DNA , Heterocromatina , Código das Histonas , Animais , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , DNA/análise , Inativação Gênica , Histonas/metabolismo , Metilação , Camundongos , Lâmina Nuclear/ultraestrutura , Poro Nuclear/ultraestrutura , Fase S/genética
16.
Viruses ; 10(1)2018 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-29342872

RESUMO

The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.


Assuntos
Capsídeo/fisiologia , Citomegalovirus/enzimologia , Citomegalovirus/fisiologia , Membrana Nuclear/virologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Quinases/metabolismo , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Citomegalovirus/ultraestrutura , Interações Hospedeiro-Patógeno , Humanos , Imuno-Histoquímica , Microscopia Eletrônica , Membrana Nuclear/ultraestrutura , Lâmina Nuclear/ultraestrutura , Lâmina Nuclear/virologia , Fosforilação , Proteínas Virais/metabolismo , Montagem de Vírus , Liberação de Vírus , Replicação Viral
17.
Trends Cell Biol ; 28(1): 34-45, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28893461

RESUMO

The nuclear lamina is a nuclear peripheral meshwork that is mainly composed of nuclear lamins, although a small fraction of lamins also localizes throughout the nucleoplasm. Lamins are classified as type V intermediate filament (IF) proteins. Mutations in lamin genes cause at least 15 distinct human diseases, collectively termed laminopathies, including muscle, metabolic, and neuronal diseases, and can cause accelerated aging. Most of these mutations are in the LMNA gene encoding A-type lamins. A growing number of nuclear proteins are known to bind lamins and are implicated in both nuclear and cytoskeletal organization, mechanical stability, chromatin organization, signaling, gene regulation, genome stability, and cell differentiation. Recent studies reveal the organization of the lamin filament meshwork in somatic cells where they assemble as tetramers in cross-section of the filaments.


Assuntos
Regulação da Expressão Gênica , Laminas/metabolismo , Lâmina Nuclear/metabolismo , Animais , Cromatina/metabolismo , Microscopia Crioeletrônica , Humanos , Filamentos Intermediários/metabolismo , Laminas/genética , Modelos Moleculares , Mutação , Lâmina Nuclear/genética , Lâmina Nuclear/ultraestrutura , Poro Nuclear/metabolismo
18.
Nature ; 543(7644): 261-264, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28241138

RESUMO

The nuclear lamina is a fundamental constituent of metazoan nuclei. It is composed mainly of lamins, which are intermediate filament proteins that assemble into a filamentous meshwork, bridging the nuclear envelope and chromatin. Besides providing structural stability to the nucleus, the lamina is involved in many nuclear activities, including chromatin organization, transcription and replication. However, the structural organization of the nuclear lamina is poorly understood. Here we use cryo-electron tomography to obtain a detailed view of the organization of the lamin meshwork within the lamina. Data analysis of individual lamin filaments resolves a globular-decorated fibre appearance and shows that A- and B-type lamins assemble into tetrameric filaments of 3.5 nm thickness. Thus, lamins exhibit a structure that is remarkably different from the other canonical cytoskeletal elements. Our findings define the architecture of the nuclear lamin meshworks at molecular resolution, providing insights into their role in scaffolding the nuclear lamina.


Assuntos
Laminas/química , Laminas/ultraestrutura , Lâmina Nuclear/química , Lâmina Nuclear/ultraestrutura , Animais , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Microscopia Crioeletrônica , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Proteínas de Filamentos Intermediários/química , Proteínas de Filamentos Intermediários/metabolismo , Proteínas de Filamentos Intermediários/ultraestrutura , Laminas/metabolismo , Camundongos , Lâmina Nuclear/metabolismo , Tomografia
19.
J Virol ; 90(23): 10738-10751, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27654296

RESUMO

Nuclear egress of herpesviruses is accompanied by changes in the architecture of the nuclear membrane and nuclear lamina that are thought to facilitate capsid access to the inner nuclear membrane (INM) and curvature of patches of the INM around the capsid during budding. Here we report the properties of a point mutant of pUL34 (Q163A) that fails to induce gross changes in nuclear architecture or redistribution of lamin A/C. The UL34(Q163A) mutant shows a roughly 100-fold defect in single-step growth, and it forms small plaques. This mutant has a defect in nuclear egress, and furthermore, it fails to disrupt nuclear shape or cause observable displacement of lamin A/C despite retaining the ability to recruit the pUS3 and PKC protein kinases and to mediate phosphorylation of emerin. Extragenic suppressors of the UL34(Q163A) phenotype were isolated, and all of them carry a single mutation of arginine 229 to leucine in UL31. Surprisingly, although this UL31 mutation largely restores virus replication, it does not correct the lamina disruption defect, suggesting that, in Vero cells, changes in nuclear shape and gross displacements of lamin A/C may facilitate but are unnecessary for nuclear egress. IMPORTANCE: Herpesvirus nuclear egress is an essential and conserved process that requires close association of the viral capsid with the inner nuclear membrane and budding of the capsid into that membrane. Access to the nuclear membrane and tight curvature of that membrane are thought to require disruption of the nuclear lamina that underlies the inner nuclear membrane, and consistent with this idea, herpesvirus infection induces biochemical and architectural changes at the nuclear membrane. The significance of the nuclear membrane architectural changes is poorly characterized. The results presented here address that deficiency in our understanding and show that a combination of mutations in two of the viral nuclear egress factors results in a failure to accomplish at least two components of lamina disruption while still allowing relatively efficient viral replication, suggesting that changes in nuclear shape and displacement of lamins are not necessary for herpes simplex virus 1 (HSV-1) nuclear egress.


Assuntos
Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Mutação Puntual , Proteínas Virais/genética , Proteínas Virais/fisiologia , Liberação de Vírus/genética , Liberação de Vírus/fisiologia , Substituição de Aminoácidos , Animais , Forma do Núcleo Celular , Chlorocebus aethiops , Células HEK293 , Herpesvirus Humano 1/patogenicidade , Humanos , Lamina Tipo A/metabolismo , Modelos Moleculares , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Membrana Nuclear/virologia , Lâmina Nuclear/metabolismo , Lâmina Nuclear/ultraestrutura , Lâmina Nuclear/virologia , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Conformação Proteica , Células Vero , Proteínas Virais/química , Replicação Viral
20.
Nucleic Acids Res ; 44(22): 10554-10570, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27625397

RESUMO

The nuclear lamina is a filamentous structure subtending the nuclear envelope and required for chromatin organization, transcriptional regulation and maintaining nuclear structure. The trypanosomatid coiled-coil NUP-1 protein is a lamina component functionally analogous to lamins, the major lamina proteins of metazoa. There is little evidence for shared ancestry, suggesting the presence of a distinct lamina system in trypanosomes. To find additional trypanosomatid lamina components we identified NUP-1 interacting proteins by affinity capture and mass-spectrometry. Multiple components of the nuclear pore complex (NPC) and a second coiled-coil protein, which we termed NUP-2, were found. NUP-2 has a punctate distribution at the nuclear periphery throughout the cell cycle and is in close proximity to NUP-1, the NPCs and telomeric chromosomal regions. RNAi-mediated silencing of NUP-2 leads to severe proliferation defects, gross alterations to nuclear structure, chromosomal organization and nuclear envelope architecture. Further, transcription is altered at telomere-proximal variant surface glycoprotein (VSG) expression sites (ESs), suggesting a role in controlling ES expression, although NUP-2 silencing does not increase VSG switching. Transcriptome analysis suggests specific alterations to Pol I-dependent transcription. NUP-1 is mislocalized in NUP-2 knockdown cells and vice versa, implying that NUP-1 and NUP-2 form a co-dependent network and identifying NUP-2 as a second trypanosomatid nuclear lamina component.


Assuntos
Lâmina Nuclear/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , Lâmina Nuclear/ultraestrutura , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Transporte Proteico , Proteínas de Protozoários/genética , Transcriptoma , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...