Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 12(11)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182607

RESUMO

Excessive expression of interleukin (IL)-1ß in the brain causes depression and cognitive dysfunction. Herein, we investigated the effect of Lactobacillus gasseri NK109, which suppressed IL-1ß expression in activated macrophages, on Escherichia coli K1-induced cognitive impairment and depression in mice. Germ-free and specific pathogen-free mice with neuropsychiatric disorders were prepared by oral gavage of K1. NK109 alleviated K1-induced cognition-impaired and depressive behaviors, decreased the expression of IL-1ß and populations of NF-κB+/Iba1+ and IL-1R+ cells, and increased the K1-suppressed population of BDNF+/NeuN+ cells in the hippocampus. However, its effects were partially attenuated by celiac vagotomy. NK109 treatment mitigated K1-induced colitis and gut dysbiosis. Tyndallized NK109, even if lysed, alleviated cognitive impairment and depression. In conclusion, NK109 alleviated neuropsychiatric disorders and colitis by modulating IL-1ß expression, gut microbiota, and vagus nerve-mediated gut-brain signaling.


Assuntos
Colite/terapia , Escherichia coli/fisiologia , Microbioma Gastrointestinal/fisiologia , Interleucina-1beta/metabolismo , Lactobacillus gasseri/fisiologia , Interações Microbianas/fisiologia , Animais , Comportamento Animal , Disfunção Cognitiva , Colite/psicologia , Depressão , Disbiose/psicologia , Disbiose/terapia , Escherichia coli/imunologia , Fezes/microbiologia , Microbioma Gastrointestinal/imunologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Lactobacillus gasseri/imunologia , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Probióticos/administração & dosagem
2.
J Dairy Sci ; 103(9): 7851-7864, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32600763

RESUMO

Lactobacillus gasseri JM1, a novel strain isolated from infant feces, exhibited common probiotic properties such as high acid tolerance, bile salt tolerance, and adhesion to epithelial Caco-2 cells, suggesting its ability to survive in the gastrointestinal tract and confer potential probiotic action on the host. In the current study, we aimed to evaluate the immunomodulatory activity of L. gasseri JM1 and explore the underlying signaling pathways in vitro. The results showed that pretreatment with L. gasseri JM1 alleviated lipopolysaccharide-induced inflammatory response, as evidenced by downregulation of genes encoding proinflammatory cytokines [IL1B, IL6, IL8, and tumor necrosis factor-α (TNFA)] and upregulation of genes encoding anti-inflammatory cytokines [IL4, IL10, transforming growth factor-ß3 (TGFB3), and IFNG]. A high level of gene expression was noted for toll-like receptor 2 and NOD-like receptor 2. Meanwhile, transcriptomic sequencing obtained 84 differentially expressed genes. Kyoto Encyclopedia of Genes and Genomes analysis revealed the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was activated by L. gasseri JM1 in Caco-2 cells. Inhibitor of PI3K/Akt played various roles in the release of cytokines, indicating that the pathway was involved in protecting the host against lipopolysaccharide stress. Moreover, whole-genome sequencing revealed fundamental genetic properties of L. gasseri JM1 and provided clues for probiotic characteristics. In summary, the strain could exert immunomodulatory effects via the toll-like receptor 2 and NOD2-mediated PI3K/Akt signaling pathway and be regarded as a potential probiotic.


Assuntos
Anti-Inflamatórios , Lactobacillus gasseri/imunologia , Fosfatidilinositol 3-Quinase/metabolismo , Probióticos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Anti-Inflamatórios/imunologia , Aderência Bacteriana , Células CACO-2 , Trato Gastrointestinal , Humanos , Lactobacillus gasseri/fisiologia
3.
BMC Microbiol ; 20(1): 217, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32689952

RESUMO

BACKGROUND: Lactobacillus gasseri OLL2809 can highly induce interleukin (IL)-12 production in immune cells. Even though beneficial properties of this strain for both humans and animals have been reported, the mechanism by which the bacteria induces the production of IL-12 in immune cells remains elusive. In this study, we investigated the mechanism of induction of IL-12 using a mouse macrophage cell line J774.1. RESULTS: Inhibition of phagocytosis of L. gasseri OLL2809, and myeloid differentiation factor 88 and Toll-like receptors (TLRs) 7 and 9 signalling attenuated IL-12 production in J774.1 cells. Total RNA and genomic DNA of L. gasseri OLL2809, when transferred to the J774.1 cells, also induced IL-12 production. The difference in the IL-12-inducing activity of Lactobacilli is attributed to the susceptibility to phagocytosis, but not to a difference in the total RNA and genomic DNA of each strain. CONCLUSION: We concluded that total RNA and genomic DNA of phagocytosed L. gasseri OLL2809 induce IL-12 production in J774.1 cell via TLRs 7 and 9, and the high IL-12-inducing activity of L. gasseri OLL2809 is due to its greater susceptibility to phagocytosis.


Assuntos
DNA Bacteriano/imunologia , Interleucina-12/metabolismo , Lactobacillus gasseri/genética , Macrófagos/imunologia , Glicoproteínas de Membrana/metabolismo , RNA Bacteriano/imunologia , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Genoma Bacteriano , Lactobacillus gasseri/imunologia , Macrófagos/citologia , Macrófagos/microbiologia , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Fagocitose , Transdução de Sinais , Regulação para Cima
4.
Nutrients ; 12(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532069

RESUMO

Infection caused by the SARS-CoV-2 coronavirus worldwide has led the World Health Organization to declare a COVID-19 pandemic. Because there is no cure or treatment for this virus, it is emergingly urgent to find effective and validated methods to prevent and treat COVID-19 infection. In this context, alternatives related to nutritional therapy might help to control the infection. This narrative review proposes the importance and role of probiotics and diet as adjunct alternatives among the therapies available for the treatment of this new coronavirus. This review discusses the relationship between intestinal purine metabolism and the use of Lactobacillus gasseri and low-purine diets, particularly in individuals with hyperuricemia, as adjuvant nutritional therapies to improve the immune system and weaken viral replication, assisting in the treatment of COVID-19. These might be promising alternatives, in addition to many others that involve adequate intake of vitamins, minerals and bioactive compounds from food.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/terapia , Dieta/métodos , Imunomodulação/fisiologia , Pneumonia Viral/terapia , Probióticos/uso terapêutico , Betacoronavirus/imunologia , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/microbiologia , Humanos , Lactobacillus gasseri/imunologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/microbiologia , Purinas/imunologia , Purinas/metabolismo , SARS-CoV-2 , Replicação Viral/imunologia
5.
Sci Rep ; 9(1): 4812, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886158

RESUMO

Lactobacillus gasseri SBT2055 (LG2055) is a probiotic lactic acid bacterium with multifunctional effects, including the prevention of influenza A virus infection in mice, reduction of adipocyte size in mice, and increased lifespan in C. elegans. We investigated whether LG2055 exhibits antiviral activity against respiratory syncytial virus (RSV), a global pathogen for which a preventive strategy is required. Following oral administration of LG2055 in mice, the RSV titre in the lung was significantly decreased, while body weight was not decreased after virus infection. Additionally, the elevated expression of pro-inflammatory cytokines in the lung upon RSV infection decreased after LG2055 administration. Moreover, interferon and interferon stimulated genes were upregulated by LG2055 treatment. Comparative cellular proteomic analysis revealed that SWI2/SNF2-related CREB-binding protein activator protein (SRCAP) was a candidate for the antiviral activity of LG2055 against RSV. There was a positive correlation between the inhibition of RSV replication and the suppression of SRCAP expression and RSV replication was suppressed by SRCAP silencing. Since SRCAP is a scaffold protein to which viral non-structural proteins bind, the downregulation of SRCAP induced by LG2055 could provide new insights about the inhibition of RSV replication. In summary, our study demonstrated that LG2055 has prophylactic potential against RSV infection.


Assuntos
Lactobacillus gasseri/imunologia , Probióticos/administração & dosagem , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/isolamento & purificação , Replicação Viral/imunologia , Administração Oral , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/imunologia
6.
Gastroenterology ; 154(8): 2178-2193, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29454797

RESUMO

BACKGROUND & AIMS: Variants at the ABCB4 or MDR2 locus, which encodes a biliary transport protein, are associated with a spectrum of cholestatic liver diseases. Exacerbation of liver disease has been linked to increased hepatic levels of interleukin (IL) 17, yet the mechanisms of this increase are not understood. We studied mice with disruption of Mdr2 to determine how defects in liver and alteration in the microbiota contribute to production of IL17 by intrahepatic γδ T cells. METHODS: We performed studies with Mdr2-/- and littermate FVB/NJ (control) mice. IL17 was measured in serum samples by an enzyme-linked immunosorbent assay. Mice were injected with neutralizing antibodies against the γδ T-cell receptor (TCR; anti-γδ TCR) or mouse IL17A (anti-IL17A). Livers were collected and bacteria were identified in homogenates by culture procedures; TCRγδ+ cells were isolated by flow cytometry. Fecal samples were collected from mice and analyzed by 16S ribosomal DNA sequencing. Cells were stimulated with antibodies or bacteria, and cytokine production was measured. We obtained tissues from 10 patients undergoing liver transplantation for primary sclerosing cholangitis or chronic hepatitis C virus infection. Tissues were analyzed for cytokine production by γδ TCR+ cells. RESULTS: Mdr2-/- mice had collagen deposition around hepatic bile ducts and periportal-bridging fibrosis with influx of inflammatory cells and increased serum levels of IL17 compared with control mice. Administration of anti-IL17A reduced hepatic fibrosis. Livers from Mdr2-/- mice had increased numbers of IL17A+ γδTCR+ cells-particularly of IL17A+ Vγ6Jγ1 γδ TCR+ cells. Fecal samples from Mdr2-/- mice were enriched in Lactobacillus, and liver tissues were enriched in Lactobacillus gasseri compared with control mice. Mdr2-/- mice also had increased intestinal permeability. The γδ TCR+ cells isolated from Mdr2-/- livers produced IL17 in response to heat-killed L gasseri. Intraperitoneal injection of control mice with L gasseri led to increased serum levels of IL17 and liver infiltration by inflammatory cells; injection of these mice with anti-γδ TCR reduced serum level of IL17. Intravenous injections of Mdr2-/- mice with anti-γδ TCR reduced fibrosis; liver levels of IL17, and inflammatory cells; and serum levels of IL17. γδTCR+ cells isolated from livers of patients with primary sclerosing cholangitis, but not hepatitis C virus infection, produced IL17. CONCLUSIONS: In Mdr2-/- mice, we found development of liver fibrosis and inflammation to require hepatic activation of γδ TCR+ cells and production of IL17 mediated by exposure to L gasseri. This pathway appears to contribute to development of cholestatic liver disease in patients.


Assuntos
Colestase/patologia , Microbioma Gastrointestinal , Interleucina-17/metabolismo , Linfócitos Intraepiteliais/metabolismo , Cirrose Hepática/patologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Animais , Ductos Biliares/citologia , Ductos Biliares/imunologia , Ductos Biliares/microbiologia , Células Cultivadas , Colangite Esclerosante/microbiologia , Colangite Esclerosante/patologia , Colangite Esclerosante/cirurgia , Colestase/imunologia , Colestase/microbiologia , Colestase/cirurgia , Modelos Animais de Doenças , Doença Hepática Terminal/microbiologia , Doença Hepática Terminal/patologia , Doença Hepática Terminal/cirurgia , Feminino , Hepatite C Crônica/patologia , Hepatite C Crônica/cirurgia , Hepatite C Crônica/virologia , Humanos , Interleucina-17/antagonistas & inibidores , Interleucina-17/sangue , Interleucina-17/imunologia , Lactobacillus gasseri/imunologia , Fígado/citologia , Fígado/imunologia , Fígado/microbiologia , Fígado/patologia , Cirrose Hepática/imunologia , Cirrose Hepática/microbiologia , Cirrose Hepática/cirurgia , Transplante de Fígado , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T gama-delta/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Adulto Jovem , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
7.
Microbiol Immunol ; 60(8): 527-32, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27301486

RESUMO

The aim of this in vivo study was to evaluate the effects of a recombinant probiotic strain, Lactobacillus gasseri NM713, which expresses the conserved region of streptococcal M6 protein (CRR6), as an oral vaccine against Streptococcus pyogenes. A dose of 10(9) cells of the recombinant strain in 150 µL PBS buffer was administered orally to a group of mice. One control group received an equivalent dose of Lb. gasseri NM613 (containing the empty plasmid without insert) or and another control group received PBS buffer. Each group contained 30 mice. The immunization protocol was followed on three consecutive days, after which two booster doses were administered at two week intervals. Fecal and serum samples were collected from the mice on Days 18, 32, 46, 58 after the first immunization and Day 0 prior to immunization. Anti-CRR6 IgA and IgG concentrations were measured by ELISA in fecal and sera samples, respectively, to assess immune responses. Vaccination with the recombinant Lb. gasseri NM713 strain induced significant protection after nasal challenge with S. pyogenes, only a small percentage of this group developing streptococcal infection (10%) or dying of it (3.3%) compared with the NM613 and PBS control groups, high percentages of which developed streptococcal infection (43.3% and 46.7%, respectively) and died of it (46.7% and 53%, respectively). These results indicate that recombinant Lb. gasseri NM713 has potential as an oral delivery vaccine against streptococcus group A.


Assuntos
Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Expressão Gênica , Lactobacillus gasseri/genética , Lactobacillus gasseri/imunologia , Probióticos/administração & dosagem , Infecções Estreptocócicas/imunologia , Administração Intranasal , Administração Oral , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Modelos Animais de Doenças , Imunização , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Infecções Estreptocócicas/mortalidade , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/genética , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA