Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Microbiologyopen ; 11(4): e1308, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36031956

RESUMO

Bacteriophages infecting dairy starter bacteria are a leading cause of milk fermentation failure and strategies to reduce the risk of phage infection in dairy settings are demanded. Along with dairy starters, bacteriocin producers (protective cultures) or the direct addition of bacteriocins as biopreservatives may be applied in food to extend shelf-life. In this work, we have studied the progress of infection of Lactococcus cremoris MG1363 by the phage sk1, in the presence of three bacteriocins with different modes of action: nisin, lactococcin A (LcnA), and lactococcin 972 (Lcn972). We aimed to reveal putative bacteriocin-phage interactions (BaPI) that could be detrimental and increase the risk of fermentation failure due to phages. Based on infections in broth and solid media, a synergistic effect was observed with Lcn972. This positive sk1-Lcn972 interaction could be correlated with an increased burst size. sk1-Lcn972 BaPI occurred independently of a functional SOS and cell envelope stress response but was lost in the absence of the major autolysin AcmA. Furthermore, BaPI was not exclusive to the sk1-Lcn972 pairing and could be observed with other phages and lactococcal strains. Therefore, bacteriocins may facilitate phage predation of dairy lactococci and their use should be carefully evaluated.


Assuntos
Bacteriocinas , Bacteriófagos , Lactococcus lactis , Fermentação , Lactococcus lactis/virologia
2.
PeerJ ; 10: e12648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251775

RESUMO

BACKGROUND: Staphylococcus aureus is an opportunistic Gram-positive bacterium that can form biofilm and become resistant to many types of antibiotics. The treatment of multi-drug resistant Staphylococcus aureus (MDRSA) infection is difficult since it possesses multiple antibiotic-resistant mechanisms. Endolysin and virion-associated peptidoglycan hydrolases (VAPGH) enzymes from bacteriophage have been identified as potential alternative antimicrobial agents. This study aimed to assess the ability of Lactococcus lactis NZ9000 secreting endolysin and VAPGH from S. aureus bacteriophage 88 to inhibit the growth of S. aureus PS 88, a MDRSA. METHOD: Endolysin and VAPGH genes were cloned and expressed in L. lactis NZ9000 after fusion with the SPK1 signal peptide for secretion. The recombinant proteins were expressed and purified, then analyzed for antimicrobial activity using plate assay and turbidity reduction assay. In addition, the spent media of the recombinant lactococcal culture was analyzed for its ability to inhibit the growth of the S. aureus PS 88. RESULTS: Extracellular recombinant endolysin (Endo88) and VAPGH (VAH88) was successfully expressed and secreted from L. lactis which was able to inhibit S. aureus PS 88, as shown by halozone formation on plate assays as well as inhibition of growth in the turbidity reduction assay. Moreover, it was observed that the spent media from L. lactis NZ9000 expressing Endo88 and VAH88 reduced the viability of PS 88 by up to 3.5-log reduction with Endo88 being more efficacious than VAH88. In addition, Endo88 was able to lyse all MRSA strains tested and Staphylococcus epidermidis but not the other bacteria while VAH88 could only lyse S. aureus PS 88. CONCLUSION: Recombinant L. lactisNZ9000 expressing phage 88 endolysin may be potentially developed into a new antimicrobial agent for the treatment of MDRSA infection.


Assuntos
Antibacterianos , Bacteriófagos , Lactococcus lactis , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Lactococcus lactis/virologia , Staphylococcus aureus Resistente à Meticilina/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Staphylococcus aureus
3.
Appl Environ Microbiol ; 87(19): e0109221, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34260308

RESUMO

Prophages are widely present in Lactococcus lactis, a lactic acid bacterium (LAB) that plays a key role in dairy fermentations. L. lactis MG1363 is a laboratory strain used worldwide as a model LAB. Initially regarded as plasmid and prophage free, MG1363 carries two complete prophages, TP712 and MG-3. Only TP712 seems to be inducible but unable to lyse the host. Several so-called TP712 lysogens able to lyse upon prophage induction were reported in the past, but the reason for their lytic phenotype remained unknown. In this work, we describe CAP, a new P335 prophage detected in the "lytic TP712 lysogens" which had remained unnoticed. CAP is able to be excised after mitomycin C treatment, along with TP712, and able to infect L. lactis MG1363-like strains but not the lytic TP712 lysogens. Both phages cooperate for efficient host lysis. While the expression in trans of the CAP lytic genes was sufficient to trigger cell lysis, this process was boosted when the resident TP712 prophage was concomitantly induced. Introduction of mutations into the TP712 lytic genes revealed that its holin but not its endolysin plays a major role. Accordingly, it is shown that the lytic activity of the recombinant CAP endolysin relies on membrane depolarization. Revisiting the seminal work that generated the extensively used L. lactis MG1363 strain led us to conclude that the CAP phage was originally present in its ancestor, L. lactis NCDO712, and our results solved long-standing mysteries around the MG1363 resident prophage TP712 reported in the "presequencing" era. IMPORTANCE Prophages are bacterial viruses that integrate into the chromosomes of bacteria until an environmental trigger induces their lytic cycle, ending with lysis of the host. Prophages present in dairy starters can compromise milk fermentation and represent a serious threat in dairy plants. In this work, we discovered that two temperate phages, TP712 and CAP, infecting the laboratory strain Lactococcus lactis MG1363 join forces to lyse the host. Based on the in vitro lytic activity of the LysCAP endolysin, in combination with mutated versions of TP712 lacking either its holin or endolysin, we conclude that this cooperation relies on the combined activity of the holins of both phages that boost the activity of LysCAP. The presence of an additional prophage explains the lytic phenotype of the lysogens formerly thought to be single TP712 lysogens that had remained a mystery for many years.


Assuntos
Bacteriófagos , Lactococcus lactis/virologia , Bacteriólise , Bacteriófagos/genética , Lactococcus lactis/genética , Lisogenia
4.
Viruses ; 13(1)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374840

RESUMO

Double-stranded DNA viruses package their genomes into pre-assembled protein procapsids. This process is driven by macromolecular motors that transiently assemble at a unique vertex of the procapsid and utilize homomeric ring ATPases to couple genome encapsidation to ATP hydrolysis. Here, we describe the biochemical and biophysical characterization of the packaging ATPase from Lactococcus lactis phage asccφ28. Size-exclusion chromatography (SEC), analytical ultracentrifugation (AUC), small angle X-ray scattering (SAXS), and negative stain transmission electron microscopy (TEM) indicate that the ~45 kDa protein formed a 443 kDa cylindrical assembly with a maximum dimension of ~155 Å and radius of gyration of ~54 Å. Together with the dimensions of the crystallographic asymmetric unit from preliminary X-ray diffraction experiments, these results indicate that gp11 forms a decameric D5-symmetric complex consisting of two pentameric rings related by 2-fold symmetry. Additional kinetic analysis shows that recombinantly expressed gp11 has ATPase activity comparable to that of functional ATPase rings assembled on procapsids in other genome packaging systems. Hence, gp11 forms rings in solution that likely reflect the fully assembled ATPases in active virus-bound motor complexes. Whereas ATPase functionality in other double-stranded DNA (dsDNA) phage packaging systems requires assembly on viral capsids, the ability to form functional rings in solution imparts gp11 with significant advantages for high-resolution structural studies and rigorous biophysical/biochemical analysis.


Assuntos
Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Fenômenos Químicos , Empacotamento do DNA , DNA Viral , Lactococcus lactis/virologia , Adenosina Trifosfatases , Bacteriófagos/ultraestrutura , Clonagem Molecular , Expressão Gênica , Modelos Moleculares , Proteínas Recombinantes , Análise Espectral , Relação Estrutura-Atividade , Estruvita , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/ultraestrutura , Montagem de Vírus
5.
Nat Commun ; 11(1): 5294, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082347

RESUMO

Non-model bacteria like Pseudomonas putida, Lactococcus lactis and other species have unique and versatile metabolisms, offering unique opportunities for Synthetic Biology (SynBio). However, key genome editing and recombineering tools require optimization and large-scale multiplexing to unlock the full SynBio potential of these bacteria. In addition, the limited availability of a set of characterized, species-specific biological parts hampers the construction of reliable genetic circuitry. Mining of currently available, diverse bacteriophages could complete the SynBio toolbox, as they constitute an unexplored treasure trove for fully adapted metabolic modulators and orthogonally-functioning parts, driven by the longstanding co-evolution between phage and host.


Assuntos
Bacteriófagos/genética , Lactococcus lactis/genética , Pseudomonas putida/genética , Biologia Sintética , Bacteriófagos/fisiologia , Edição de Genes , Lactococcus lactis/metabolismo , Lactococcus lactis/virologia , Pseudomonas putida/metabolismo , Pseudomonas putida/virologia
6.
Viruses ; 12(8)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796652

RESUMO

Virulent phages infecting L. lactis, an industry-relevant bacterium, pose a significant risk to the quality of the fermented milk products. Phages of the Skunavirus genus are by far the most isolated lactococcal phages in the cheese environments and phage p2 is the model siphophage for this viral genus. The baseplate of phage p2, which is used to recognize its host, was previously shown to display two conformations by X-ray crystallography, a rested state and an activated state ready to bind to the host. The baseplate became only activated and opened in the presence of Ca2+. However, such an activated state was not previously observed in the virion. Here, using nanobodies binding to the baseplate, we report on the negative staining electron microscopy structure of the activated form of the baseplate directly observed in the p2 virion, that is compatible with the activated baseplate crystal structure. Analyses of this new structure also established the presence of a second distal tail (Dit) hexamer as a component of the baseplate, the topology of which differs largely from the first one. We also observed an uncoupling between the baseplate activation and the tail tip protein (Tal) opening, suggesting an infection mechanism more complex than previously expected.


Assuntos
Bacteriófagos/química , Lactococcus lactis/virologia , Proteínas da Cauda Viral/química , Bacteriófagos/genética , Cristalografia por Raios X , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio Único/química , Proteínas da Cauda Viral/ultraestrutura
7.
Proc Natl Acad Sci U S A ; 117(34): 20576-20585, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788352

RESUMO

Temperate bacteriophages can enter one of two life cycles following infection of a sensitive host: the lysogenic or the lytic life cycle. The choice between the two alternative life cycles is dependent upon a tight regulation of promoters and their cognate regulatory proteins within the phage genome. We investigated the genetic switch of TP901-1, a bacteriophage of Lactococcus lactis, controlled by the CI repressor and the modulator of repression (MOR) antirepressor and their interactions with DNA. We determined the solution structure of MOR, and we solved the crystal structure of MOR in complex with the N-terminal domain of CI, revealing the structural basis of MOR inhibition of CI binding to the DNA operator sites. 15N NMR Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion and rotating frame R1ρ measurements demonstrate that MOR displays molecular recognition dynamics on two different time scales involving a repacking of aromatic residues at the interface with CI. Mutations in the CI:MOR binding interface impair complex formation in vitro, and when introduced in vivo, the bacteriophage switch is unable to choose the lytic life cycle showing that the CI:MOR complex is essential for proper functioning of the genetic switch. On the basis of sequence alignments, we show that the structural features of the MOR:CI complex are likely conserved among a larger family of bacteriophages from human pathogens implicated in transfer of antibiotic resistance.


Assuntos
Bacteriófagos/fisiologia , Lisogenia , Proteínas Repressoras/fisiologia , Proteínas Virais Reguladoras e Acessórias/fisiologia , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Cinética , Lactococcus lactis/virologia , Simulação de Dinâmica Molecular , Regiões Operadoras Genéticas , Conformação Proteica , Proteínas Repressoras/química , Proteínas Virais Reguladoras e Acessórias/química
8.
Viruses ; 12(8)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722163

RESUMO

The lactococcal virulent phage p2 is a model for studying the Skunavirus genus, the most prevalent group of phages causing milk fermentation failures in cheese factories worldwide. This siphophage infects Lactococcus lactis MG1363, a model strain used to study Gram-positive lactic acid bacteria. The structural proteins of phage p2 have been thoroughly described, while most of its non-structural proteins remain uncharacterized. Here, we developed an integrative approach, making use of structural biology, genomics, physiology, and proteomics to provide insights into the function of ORF47, the most conserved non-structural protein of unknown function among the Skunavirus genus. This small phage protein, which is composed of three α-helices, was found to have a major impact on the bacterial proteome during phage infection and to significantly reduce the emergence of bacteriophage-insensitive mutants.


Assuntos
Bacteriófagos/química , Interações entre Hospedeiro e Microrganismos , Lactococcus lactis/virologia , Proteoma/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Genômica , Lactococcus lactis/genética , Mutação , Fases de Leitura Aberta/genética , Proteômica , Proteínas não Estruturais Virais/metabolismo
9.
Viruses ; 12(5)2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384698

RESUMO

Bacteriophages can play beneficial roles in phage therapy and destruction of food pathogens. Conversely, they play negative roles as they infect bacteria involved in fermentation, resulting in serious industrial losses. Siphoviridae phages possess a long non-contractile tail and use a mechanism of infection whose first step is host recognition and binding. They have evolved adhesion devices at their tails' distal end, tuned to recognize specific proteinaceous or saccharidic receptors on the host's surface that span a large spectrum of shapes. In this review, we aimed to identify common patterns beyond this apparent diversity. To this end, we analyzed siphophage tail tips or baseplates, evaluating their known structures, where available, and uncovering patterns with bioinformatics tools when they were not. It was thereby identified that a triad formed by three proteins in complex, i.e., the tape measure protein (TMP), the distal tail protein (Dit), and the tail-associated lysozyme (Tal), is conserved in all phages. This common scaffold may harbor various functional extensions internally while it also serves as a platform for plug-in ancillary or receptor-binding proteins (RBPs). Finally, a group of siphophage baseplates involved in saccharidic receptor recognition exhibits an activation mechanism reminiscent of that observed in Myoviridae.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Lactococcus lactis/metabolismo , Siphoviridae/metabolismo , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriófagos/química , Bacteriófagos/genética , Cristalografia por Raios X , Lactococcus lactis/química , Lactococcus lactis/genética , Lactococcus lactis/virologia , Receptores Virais/genética , Siphoviridae/química , Siphoviridae/genética , Proteínas da Cauda Viral/genética
10.
Sci Rep ; 10(1): 8659, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457340

RESUMO

A functional genetic switch from the lactococcal bacteriophage TP901-1, deciding which of two divergently transcribing promoters becomes most active and allows this bi-stable decision to be inherited in future generations requires a DNA region of less than 1 kb. The fragment encodes two repressors, CI and MOR, transcribed from the PR and PL promoters respectively. CI can repress the transcription of the mor gene at three operator sites (OR, OL, and OD), leading to the immune state. Repression of the cI gene, leading to the lytic (anti-immune) state, requires interaction between CI and MOR by an unknown mechanism, but involving a CI:MOR complex. A consensus for putative MOR binding sites (OM sites), and a common topology of three OM sites adjacent to the OR motif was here identified in diverse phage switches that encode CI and MOR homologs, in a search for DNA sequences similar to the TP901-1 switch. The OR site and all putative OM sites are important for establishment of the anti-immune repression of PR, and a putative DNA binding motif in MOR is needed for establishment of the anti-immune state. Direct evidence for binding between CI and MOR is here shown by pull-down experiments, chemical crosslinking, and size exclusion chromatography. The results are consistent with two possible models for establishment of the anti-immune repression of cI expression at the PR promoter.


Assuntos
Bacteriófagos/genética , Lactococcus lactis/virologia , Regiões Promotoras Genéticas/genética , Elementos Reguladores de Transcrição/genética , Proteínas Repressoras/genética , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias/genética , Bacteriófagos/crescimento & desenvolvimento , Sítios de Ligação/genética , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Enterococcus/virologia , Regulação Viral da Expressão Gênica/genética , Genoma Viral/genética , Lactococcus lactis/genética , Lisogenia/genética , Regiões Operadoras Genéticas/genética , Proteínas Repressoras/metabolismo , Staphylococcus/virologia , Streptococcus/virologia , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
11.
BMC Biotechnol ; 19(1): 82, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775775

RESUMO

BACKGROUND: Site-specific integration system allows foreign DNA to be integrated into the specific site of the host genome, enabling stable expression of heterologous protein. In this study, integrative vectors for secretion and surface display of proteins were constructed based on a lactococcal phage TP901-1 integrating system. RESULTS: The constructed integration system comprises of a lactococcal promoter (PnisA or P170), phage attachment site (attP) from bacteriophage TP901-1, a signal peptide (USP45 or SPK1) for translocation of the target protein, and a PrtP344 anchor domain in the case of the integrative vectors for surface display. There were eight successfully constructed integrative vectors with each having a different combination of promoter and signal peptide; pS1, pS2, pS3 and pS4 for secretion, and pSD1, pSD2, pSD3 and pSD4 for surface display of desired protein. The integration of the vectors into the host genome was assisted by a helper vector harbouring the integrase gene. A nuclease gene was used as a reporter and was successfully integrated into the L. lactis genome and Nuc was secreted or displayed as expected. The signal peptide SPK1 was observed to be superior to USP45-LEISSTCDA fusion in the secretion of Nuc. As for the surface display integrative vector, all systems developed were comparable with the exception of the combination of P170 promoter with USP45 signal peptide which gave very low signals in whole cell ELISA. CONCLUSION: The engineered synthetic integrative vectors have the potential to be used for secretion or surface display of heterologous protein production in lactococcal expression system for research or industrial purposes, especially in live vaccine delivery.


Assuntos
Bacteriófagos/fisiologia , Lactococcus lactis/genética , Lactococcus lactis/virologia , Recombinação Genética , Sítios de Ligação Microbiológicos , Bacteriófagos/genética , Engenharia Genética , Vetores Genéticos/genética , Vetores Genéticos/fisiologia , Genoma Bacteriano , Lactococcus lactis/metabolismo , Sinais Direcionadores de Proteínas/genética , Integração Viral
12.
Viruses ; 11(10)2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31546996

RESUMO

The lytic cassette of Lactococcus lactis prophage TP712 contains a putative membrane protein of unknown function (Orf54), a holin (Orf55), and a modular endolysin with a N-terminal glycoside hydrolase (GH_25) catalytic domain and two C-terminal LysM domains (Orf56, LysTP712). In this work, we aimed to study the mode of action of the endolysin LysTP712. Inducible expression of the holin-endolysin genes seriously impaired growth. The growth of lactococcal cells overproducing the endolysin LysTP712 alone was only inhibited upon the dissipation of the proton motive force by the pore-forming bacteriocin nisin. Processing of a 26-residues signal peptide is required for LysTP712 activation, since a truncated version without the signal peptide did not impair growth after membrane depolarization. Moreover, only the mature enzyme displayed lytic activity in zymograms, while no lytic bands were observed after treatment with the Sec inhibitor sodium azide. LysTP712 might belong to the growing family of multimeric endolysins. A C-terminal fragment was detected during the purification of LysTP712. It is likely to be synthesized from an alternative internal translational start site located upstream of the cell wall binding domain in the lysin gene. Fractions containing this fragment exhibited enhanced activity against lactococcal cells. However, under our experimental conditions, improved in vitro inhibitory activity of the enzyme was not observed upon the supplementation of additional cell wall binding domains in. Finally, our data pointed out that changes in the lactococcal cell wall, such as the degree of peptidoglycan O-acetylation, might hinder the activity of LysTP712. LysTP712 is the first secretory endolysin from a lactococcal phage described so far. The results also revealed how the activity of LysTP712 might be counteracted by modifications of the bacterial peptidoglycan, providing guidelines to exploit the biotechnological potential of phage endolysins within industrially relevant lactococci and, by extension, other bacteria.


Assuntos
Endopeptidases/metabolismo , Lactococcus lactis/virologia , Prófagos/fisiologia , Siphoviridae/fisiologia , Acetilação , Bacteriólise/efeitos dos fármacos , Parede Celular/metabolismo , Endopeptidases/química , Endopeptidases/genética , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/metabolismo , Nisina/farmacologia , Peptidoglicano/metabolismo , Prófagos/genética , Prófagos/metabolismo , Domínios Proteicos , Sinais Direcionadores de Proteínas , Siphoviridae/genética , Siphoviridae/metabolismo
13.
Viruses ; 11(7)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31324000

RESUMO

With the availability of an increasing number of 3D structures of bacteriophage components, combined with powerful in silico predictive tools, it has become possible to decipher the structural assembly and functionality of phage adhesion devices. In the current study, we examined 113 members of the 936 group of lactococcal siphophages, and identified a number of Carbohydrate Binding Modules (CBMs) in the neck passage structure and major tail protein, on top of evolved Dit proteins, as recently reported by us. The binding ability of such CBM-containing proteins was assessed through the construction of green fluorescent protein fusion proteins and subsequent binding assays. Two CBMs, one from the phage tail and another from the neck, demonstrated definite binding to their phage-specific host. Bioinformatic analysis of the structural proteins of 936 phages reveals that they incorporate binding modules which exhibit structural homology to those found in other lactococcal phage groups and beyond, indicating that phages utilize common structural "bricks" to enhance host binding capabilities. The omnipresence of CBMs in Siphophages supports their beneficial role in the infection process, as they can be combined in various ways to form appendages with different shapes and functionalities, ensuring their success in host detection in their respective ecological niches.


Assuntos
Bacteriófagos/química , Carboidratos/química , Lactococcus lactis/virologia , Siphoviridae/química , Proteínas da Cauda Viral/química , Vírion/química , Bacteriófagos/genética , Biologia Computacional , Interações entre Hospedeiro e Microrganismos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Siphoviridae/genética , Proteínas da Cauda Viral/genética , Vírion/genética
14.
Mar Genomics ; 48: 100696, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31301990

RESUMO

To date, a number of bacteriophages that infect Lactococcus garvieae isolated from marine fish have been identified. However, the evolutionary insight between L. garvieae phages and other viral community have not yet been immersedly investigated. In this study, completed genomic sequence of phage PLgY-30 was obtained, a comparative analysis of three lytic phages, which have been using for phage typing and treatment of L. garvieae infecting marine fish, is conducted. The results revealed that the genomes of lytic phages specific for L. garvieae isolated from diseased marine fish share a high level of homology and almost all proteins are conserved. At genome level, no similarity was detected for either PLgY-30 or PLgY-16, while PLgW-1 shares only very limited homology (1%) with other sequences in Genbank database. In addition, the function of only 35% of ORFs in the PLgY-30 phage genomes could be predicted, demonstrating that it is novel phage. At protein level, lytic phage proteins shared a significant similarity to various proteins of global phage species isolated from dairy fermentation facilities that utilize L. lactis as a primary starter culture, called the 936 phage group. Genome organization and architecture of three lytic phages are also similar to that of the 936 phage group. To our knowledge, this is the first time lytic bacteriophages infecting L. garvieae from marine fish were characterized to genome level.


Assuntos
Bacteriófagos/classificação , Genoma Viral , Genômica , Lactococcus/virologia , Sequência de Aminoácidos , Evolução Biológica , Mutação INDEL , Lactococcus lactis/virologia , Fases de Leitura Aberta , Filogenia
15.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31350317

RESUMO

Lactococcus lactis is a Gram-positive bacterium widely used as a starter culture for the production of different dairy products, especially a large variety of cheeses. Infection of lactococcal starter cultures by bacteriophages is one of the major causes of fermentation failure and often leads to production halt. Lactococcal bacteriophages belonging to the c2, 936, and P335 species are the most commonly isolated in dairy plants and have been extensively investigated in the past three decades. Information regarding bacteriophages belonging to less commonly isolated species is, on the other hand, less extensive, although these phages can also contribute to starter culture infection. Here, we report the nucleotide sequence of the newly isolated L. lactis phage CHPC971, belonging to the rare 1706 species of lactococcal phages. We investigated the nature of the host receptor recognized by the phage and collected evidence that strongly suggests that it binds to a specific sugar moiety in the cell wall pellicle of its host. An in silico analysis of the genome of phage CHPC971 identified the hypothetical genes involved in receptor binding.IMPORTANCE Gathering information on how lactococcal bacteriophages recognize their host and proliferate in the dairy environment is of vital importance for the establishment of proper starter culture rotation plans and to avoid fermentation failure and consequent great economic losses for dairy industries. We provide strong evidence on the type of receptor recognized by a newly isolated 1706-type lactococcal bacteriophage, increasing knowledge of phage-host interactions relevant to dairying. This information can help to prevent phage infection events that, so far, are hard to predict and avoid.


Assuntos
Bacteriófagos/genética , Parede Celular/química , Interações entre Hospedeiro e Microrganismos , Lactococcus lactis/química , Lactococcus lactis/virologia , Açúcares/química , Bacteriófagos/isolamento & purificação , Sequência de Bases , Laticínios , Fermentação , Genoma Viral , Ligação Proteica , Receptores Virais/genética
16.
Viruses ; 11(5)2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100780

RESUMO

Lactococcus lactis is one of the most important bacteria in dairy fermentations, being used in the production of cheese and buttermilk. The processes are vulnerable to phage attacks, and undefined mixtures of lactococcal strains are often used to reduce the risk of bacteriophage caused fermentation failure. Other preventive measures include culture rotation to prevent phage build-up and phage monitoring. Phage diversity, rather than quantity, is the largest threat to fermentations using undefined mixed starter cultures. We have developed a method for culture independent diversity analysis of lytic bacteriophages of the 936 group, the phages most commonly found in dairies. Using, as a target, a highly variable region of the portal protein gene, we demonstrate an unprecedented diversity and the presence of new 936 phages in samples taken from cheese production. The method should be useful to the dairy industry and starter culture manufacturers in their efforts to reduce phage problems.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Biodiversidade , Lactococcus lactis/virologia , Bacteriófagos/isolamento & purificação , Queijo/virologia , Laticínios , Fermentação , Tecnologia de Alimentos , Filogenia
17.
Mol Cell Proteomics ; 18(4): 704-714, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30679258

RESUMO

Phages are viruses that specifically infect and eventually kill their bacterial hosts. Bacterial fermentation and biotechnology industries see them as enemies, however, they are also investigated as antibacterial agents for the treatment or prevention of bacterial infections in various sectors. They also play key ecological roles in all ecosystems. Despite decades of research some aspects of phage biology are still poorly understood. In this study, we used label-free quantitative proteomics to reveal the proteotypes of Lactococcus lactis MG1363 during infection by the virulent phage p2, a model for studying the biology of phages infecting Gram-positive bacteria. Our approach resulted in the high-confidence detection and quantification of 59% of the theoretical bacterial proteome, including 226 bacterial proteins detected only during phage infection and 6 proteins unique to uninfected bacteria. We also identified many bacterial proteins of differing abundance during the infection. Using this high-throughput proteomic datasets, we selected specific bacterial genes for inactivation using CRISPR-Cas9 to investigate their involvement in phage replication. One knockout mutant lacking gene llmg_0219 showed resistance to phage p2 because of a deficiency in phage adsorption. Furthermore, we detected and quantified 78% of the theoretical phage proteome and identified many proteins of phage p2 that had not been previously detected. Among others, we uncovered a conserved small phage protein (pORFN1) coded by an unannotated gene. We also applied a targeted approach to achieve greater sensitivity and identify undetected phage proteins that were expected to be present. This allowed us to follow the fate of pORF46, a small phage protein of low abundance. In summary, this work offers a unique view of the virulent phages' takeover of bacterial cells and provides novel information on phage-host interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófago P2/fisiologia , Lactococcus lactis/virologia , Proteoma/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Genes Bacterianos , Lactococcus lactis/genética , Lactococcus lactis/crescimento & desenvolvimento , Proteínas Virais/metabolismo
18.
Viruses ; 10(12)2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486343

RESUMO

Siphoviridae of the lactococcal 936 group are the most commonly encountered bacteriophages in the dairy processing environment. The 936 group phages possess a discrete baseplate at the tip of their tail-a complex harbouring the Receptor Binding Protein (RBP) which is responsible for host recognition and attachment. The baseplate-encoding region is highly conserved amongst 936 phages, with 112 of 115 publicly available phages exhibiting complete synteny. Here, we detail the three exceptions (Phi4.2, Phi4R15L, and Phi4R16L), which differ from this genomic architecture in possessing an apparent second RBP-encoding gene upstream of the "classical" rbp gene. The newly identified RBP possesses an elongated neck region relative to currently defined 936 phage RBPs and is genetically distinct from defined 936 group RBPs. Through detailed characterisation of the representative phage Phi4.2 using a wide range of complementary techniques, we demonstrated that the above-mentioned three phages possess a complex and atypical baseplate structure. Furthermore, the presence of both RBPs in the tail tip of the mature virion was confirmed, while the anticipated host-binding capabilities of both proteins were also verified.


Assuntos
Bacteriófagos/fisiologia , Lactococcus lactis/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Bacteriófagos/ultraestrutura , Produtos Biológicos , Genoma Viral , Interações entre Hospedeiro e Microrganismos , Modelos Moleculares , Fases de Leitura Aberta , Conformação Proteica , Proteínas Virais/química
19.
BMC Microbiol ; 18(1): 120, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30249194

RESUMO

BACKGROUND: In complex microbial ecosystems such as the marine environment, the gastrointestinal tract, but also in mixed culture fermentations, bacteriophages are frequently found to be a part of the microbial community. Moreover, prophages or prophage-like elements are frequently identified in sequenced bacterial genomes. The mixed undefined starter cultures represent an ecosystem which is shaped by long term evolution under relatively defined environmental conditions and provides an interesting model to study co-evolution of phages and their hosts as well as the impact of diversity on microbial community stability. RESULTS: In the present study we investigated the presence, identity and behaviour of prophages in lactococci being part of a complex cheese starter culture. Genome analysis of representative strains of the 7 genetic lineages of Lactococcus lactis constituting the culture indicated the presence of prophages in all strains. Exposure of potential lysogens to mitomycin C confirmed the release of ~ 1010·ml- 1 phage particles from all tested strains. Furthermore, phages were also released in substantial amounts due to spontaneous induction: more than 108·ml- 1 phage particles were present in cultures under non-inducing conditions. This observation suggests continuous release of phage particles by the lactococci. The released bacteriophages exhibited an unusual morphology. For most strains tested, tailless icosahedral phage heads were found. The competitive advantage of lysogens compared to their cured derivatives and their high abundance in the culture suggests that the released tailless bacteriophages play an important role in the ecosystem. CONCLUSIONS: The results of this study indicate that chromosomal genetic elements are active participants in the stable complex microbial community of the starter culture. We show that prophages are abundant in such a community, are produced continuously in large amounts and, despite the huge metabolic burden imposed on the cells by phage particle production, provide a selective advantage to the host.


Assuntos
Bacteriófagos/fisiologia , Queijo/microbiologia , Lactococcus lactis/virologia , Prófagos/fisiologia , Bacteriófagos/genética , Evolução Biológica , Fermentação , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lisogenia , Prófagos/genética , Ativação Viral
20.
Mol Microbiol ; 110(5): 777-795, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30204278

RESUMO

With increasing numbers of 3D structures of bacteriophage components, combined with powerful in silico predictive tools, it has become possible to decipher the structural assembly and associated functionality of phage adhesion devices. Recently, decorations have been reported in the tail and neck passage structures of members of the so-called 936 group of lactococcal siphophages. In the current report, using bioinformatic analysis we identified a conserved carbohydrate binding module (CBM) among many of the virion baseplate Dit components, in addition to the CBM present in the 'classical' receptor binding proteins (RBPs). We observed that, within these so-called 'evolved' Dit proteins, the identified CBMs have structurally conserved folds, yet can be grouped into four distinct classes. We expressed such modules in fusion with GFP, and demonstrated their binding capability to their specific host using fluorescent binding assays with confocal microscopy. We detected evolved Dits in several phages infecting various Gram-positive bacterial species, including mycobacteria. The omnipresence of CBM domains in siphophages indicates their auxiliary role in infection, as they can assist in the specific recognition of and attachment to their host, thus ensuring a highly efficient and specific phage-host adhesion process as a prelude to DNA injection.


Assuntos
Lactococcus lactis/virologia , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas da Cauda Viral/genética , Vírion/genética , Carboidratos/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...