Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12429, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127712

RESUMO

Strongly oxidative H2O2 is biologically important, but if uncontrolled, would lead to tissue injuries. Lactoperoxidase (LPO) catalyzes the redox reaction of reducing highly reactive H2O2 to H2O while oxidizing thiocyanate (SCN-) to relatively tissue-innocuous hypothiocyanite (OSCN-). SCN- is the only known natural, effective reducing-substrate of LPO; humans normally derive SCN- solely from food. While its enzymatic mechanism is understood, the actual biological role of the LPO-SCN- system in mammals remains unestablished. Our group previously showed that this system protected cultured human cells from H2O2-caused injuries, a basis for the hypothesis that general deficiency of such an antioxidative mechanism would lead to multisystem inflammation and tumors. To test this hypothesis, we globally deleted the Lpo gene in mice. The mutant mice exhibited inflammation and lesions in the cardiovascular, respiratory, digestive or excretory systems, neuropathology, and tumors, with high incidence. Thus, this understudied LPO-SCN- system is an essential protective mechanism in vivo.


Assuntos
Carcinogênese/metabolismo , Inflamação/metabolismo , Lactoperoxidase/deficiência , Neoplasias/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Inflamação/genética , Inflamação/imunologia , Lactoperoxidase/genética , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Neoplasias/genética , Neoplasias/imunologia , Oxirredução , Tiocianatos/metabolismo
2.
Protein J ; 40(1): 8-18, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389415

RESUMO

Lactoperoxidase (LPO) is a heme containing oxido-reductase enzyme. It is secreted from mammary, salivary, lachrymal and mucosal glands. It catalyses the conversion of thiocyanate into hypothiocyanate and halides into hypohalides. LPO belongs to the superfamily of mammalian heme peroxidases which also includes myeloperoxidase (MPO), eosinophil peroxidase (EPO) and thyroid peroxidase (TPO). The heme prosthetic group is covalently linked in LPO through two ester bonds involving conserved residues Glu258 and Asp108. It was isolated from colostrum of yak (Bos grunniens), purified to homogeneity and crystallized using ammonium iodide as a precipitating agent. The crystals belonged to monoclinic space group P21 with cell dimensions of a = 53.91 Å, b = 78.98 Å, c = 67.82 Å and ß = 92.96°. The structure was determined at 1.55 Å resolution. This is the first structure of LPO from yak. Also, this is the highest resolution structure of LPO determined so far from any source. The structure determination revealed that three segments (Ser1-Cys15), (Thr117-Asn138) and (Cys167-Leu175) were disordered and formed one surface of LPO structure. In the substrate binding site, the iodide ions were observed in three subsites which are formed by (1) heme moiety and residues, Gln105, Asp108, His109, Phe113, Arg255, Glu258, Phe380 and Phe381, (2) residues, Asn230, Lys232, Pro236, Cys248, Phe254, Phe381 and Pro424 and (3) residues, Ser198, Leu199 and Arg202. The structure determination also revealed that the side chain of Phe254 was disordered. It was observed to adopt two conformations in the structures of LPO.


Assuntos
Aminoácidos/química , Compostos de Amônio/química , Heme/química , Peróxido de Hidrogênio/química , Lactoperoxidase/química , Aminoácidos/metabolismo , Compostos de Amônio/metabolismo , Animais , Sítios de Ligação , Bovinos , Colostro/química , Cristalização , Cristalografia por Raios X , Feminino , Expressão Gênica , Heme/metabolismo , Peróxido de Hidrogênio/metabolismo , Lactoperoxidase/genética , Lactoperoxidase/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Especificidade por Substrato
3.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901933

RESUMO

Lactoperoxidase (LPO) present in saliva are an important element of the nonspecific immune response involved in maintaining oral health. The main role of this enzyme is to oxidize salivary thiocyanate ions (SCN-) in the presence of hydrogen peroxide (H2O2) to products that exhibit antimicrobial activity. LPO derived from bovine milk has found an application in food, cosmetics, and medical industries due to its structural and functional similarity to the human enzyme. Oral hygiene products enriched with the LPO system constitute an alternative to the classic fluoride caries prophylaxis. This review describes the physiological role of human salivary lactoperoxidase and compares the results of clinical trials and in vitro studies of LPO alone and complex dentifrices enriched with bovine LPO. The role of reactivators and inhibitors of LPO is discussed together with the possibility of using nanoparticles to increase the stabilization and activity of this enzyme.


Assuntos
Lactoperoxidase/metabolismo , Lactoperoxidase/farmacologia , Saúde Bucal , Higiene Bucal , Animais , Biotecnologia , Fenômenos Químicos , Ensaios Clínicos como Assunto , Cárie Dentária/prevenção & controle , Humanos , Lactoperoxidase/química , Lactoperoxidase/genética , Oxirredução/efeitos dos fármacos , Periodontite/prevenção & controle , Saliva/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Mol Cell Probes ; 41: 39-42, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30217657

RESUMO

This study compared the expression profile of the candidate genes, CSF3 and LPO, by investigating the immune response mechanisms involved in the phenotype of resistance and susceptibility to mastitis of healthy and infected buffaloes. The Granulocyte Colony Stimulating Factor 3 (CSF3) and Lactoperoxidase (LPO) genes expression profiles were determined in 24 milk samples from buffaloes with (N = 12) and without (N = 12) mastitis, using the quantitative real-time PCR (qRT-PCR) technique. CSF3 and LPO expressions were 5.14 (P = 0.001) and 2.41 (P = 0.097) times higher in animals with mastitis compared to healthy animals, respectively, evidencing a trend toward different expressions of this gene in the studied groups. Our finding suggests that LPO and CSF3 genes are an important defense mechanism against mastitis in dairy buffaloes, and may be putative genes for selecting healthier animals in buffalo breeding programs.


Assuntos
Búfalos/genética , Fator Estimulador de Colônias de Granulócitos/genética , Lactoperoxidase/genética , Mastite/genética , Leite/metabolismo , Transcriptoma , Animais , Feminino , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/metabolismo , Lactoperoxidase/metabolismo
5.
Acta Cir Bras ; 33(5): 462-471, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29924206

RESUMO

PURPOSE: To evaluate the effect of hyperbaric oxygenation (HBO) on the expression of the genes antioxidant glutathione peroxidase 4 (Gpx4) and lactoperoxidase (Lpo) in the lung of mice subjected to intestinal ischemia and reperfusion (IIR). METHODS: Control group (CG) in which were subjected to anesthesia, laparotomy and observation for 120 minutes; an ischemia and reperfusion group (IRG) subjected to anesthesia, laparotomy, small bowel ischemia for 60 minutes and reperfusion for 60 minutes; and three groups treated with HBO during ischemia (HBOG + I), during reperfusion (HBOG + R) and during ischemia and reperfusion (HBOG + IR). Studied 84 genes of oxidative stress by the method (RT-qPCR). Genes with expression levels three times below or above the threshold cycle were considered significantly hypoexpressed or hyperexpressed, respectively (Student's t-test p<0.05). RESULTS: Gpx4 and Lpo were hiperexpressed on IRG, showing a correlation with these genes with lung oxidative stress. Treated with HBO, there was a significant reduction on genic expression on HBOG+I. CONCLUSION: Hyperbaric oxygenation showed to be associated with decreased expression of these antioxidant genes, suggesting a beneficial effect on the mechanism of pulmonary oxidative stress whenever applied during the ischemia.


Assuntos
Glutationa Peroxidase/metabolismo , Oxigenoterapia Hiperbárica/métodos , Lactoperoxidase/genética , Pulmão/metabolismo , Estresse Oxidativo/genética , Traumatismo por Reperfusão/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Modelos Animais de Doenças , Intestinos/irrigação sanguínea , Isquemia/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase
6.
Acta cir. bras ; 33(5): 462-471, May 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-949341

RESUMO

Abstract Purpose: To evaluate the effect of hyperbaric oxygenation (HBO) on the expression of the genes antioxidant glutathione peroxidase 4 (Gpx4) and lactoperoxidase (Lpo) in the lung of mice subjected to intestinal ischemia and reperfusion (IIR). Methods: Control group (CG) in which were subjected to anesthesia, laparotomy and observation for 120 minutes; an ischemia and reperfusion group (IRG) subjected to anesthesia, laparotomy, small bowel ischemia for 60 minutes and reperfusion for 60 minutes; and three groups treated with HBO during ischemia (HBOG + I), during reperfusion (HBOG + R) and during ischemia and reperfusion (HBOG + IR). Studied 84 genes of oxidative stress by the method (RT-qPCR). Genes with expression levels three times below or above the threshold cycle were considered significantly hypoexpressed or hyperexpressed, respectively (Student's t-test p<0.05). Results: Gpx4 and Lpo were hiperexpressed on IRG, showing a correlation with these genes with lung oxidative stress. Treated with HBO, there was a significant reduction on genic expression on HBOG+I. Conclusion: Hyperbaric oxygenation showed to be associated with decreased expression of these antioxidant genes, suggesting a beneficial effect on the mechanism of pulmonary oxidative stress whenever applied during the ischemia.


Assuntos
Animais , Ratos , Traumatismo por Reperfusão/metabolismo , Estresse Oxidativo/genética , Glutationa Peroxidase/metabolismo , Oxigenoterapia Hiperbárica/métodos , Lactoperoxidase/genética , Pulmão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Intestinos/irrigação sanguínea , Isquemia/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia
7.
Inflamm Bowel Dis ; 24(1): 136-148, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29272487

RESUMO

Background: DUOX2 and DUOXA2 form the predominant H2O2-producing system in human colorectal mucosa. Inflammation, hypoxia, and 5-aminosalicylic acid increase H2O2 production, supporting innate defense and mucosal healing. Thiocyanate reacts with H2O2 in the presence of lactoperoxidase (LPO) to form hypothiocyanate (OSCN-), which acts as a biocide and H2O2 scavenging system to reduce damage during inflammation. We aimed to discover the organization of Duox2, Duoxa2, and Lpo expression in colonic crypts of Lieberkühn (intestinal glands) of mice and how distributions respond to dextran sodium sulfate (DSS)-induced colitis and subsequent mucosal regeneration. Methods: We studied tissue from DSS-exposed mice and human biopsies using in situ hybridization, reverse transcription quantitative polymerase chain reaction, and cDNA microarray analysis. Results: Duox2 mRNA expression was mostly in the upper crypt quintile while Duoxa2 was more apically focused. Most Lpo mRNA was in the basal quintile, where stem cells reside. Duox2 and Duoxa2 mRNA were increased during the induction and resolution of DSS colitis, while Lpo expression did not increase during the acute phase. Patterns of Lpo expression differed from Duox2 in normal, inflamed, and regenerative mouse crypts (P < 0.001). We found no evidence of LPO expression in the human gut. Conclusions: The spatial and temporal separation of H2O2-consuming and -producing enzymes enables a thiocyanate- H2O2 "scavenging" system in murine intestinal crypts to protect the stem/proliferative zones from DNA damage, while still supporting higher H2O2 concentrations apically to aid mucosal healing. The absence of LPO expression in the human gut suggests an alternative mechanism or less protection from DNA damage during H2O2-driven mucosal healing.


Assuntos
Colite/metabolismo , Oxidases Duais/metabolismo , Peróxido de Hidrogênio/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Lactoperoxidase/metabolismo , Cicatrização , Animais , Colite/induzido quimicamente , Colite/patologia , Oxidases Duais/genética , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/metabolismo , Humanos , Inflamação/patologia , Mucosa Intestinal/patologia , Lactoperoxidase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade da Espécie
8.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28739829

RESUMO

The course of Toxoplasma gondii infection in rats closely resembles that in humans. However, compared to the Brown Norway (BN) rat, the Lewis (LEW) rat is extremely resistant to T. gondii infection. Thus, we performed RNA sequencing analysis of the LEW rat versus the BN rat, with or without T. gondii infection, in order to unravel molecular factors directing robust and rapid early T. gondii-killing mechanisms in the LEW rat. We found that compared to the uninfected BN rat, the uninfected LEW rat has inherently higher transcript levels of cytochrome enzymes (Cyp2d3, Cyp2d5, and Cybrd1, which catalyze generation of reactive oxygen species [ROS]), with concomitant higher levels of ROS. Interestingly, despite having higher levels of ROS, the LEW rat had lower transcript levels for antioxidant enzymes (lactoperoxidase, microsomal glutathione S-transferase 2 and 3, glutathione S-transferase peroxidase kappa 1, and glutathione peroxidase) than the BN rat, suggesting that the LEW rat maintains cellular oxidative stress that it tolerates. Corroboratively, we found that scavenging of superoxide anion by Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) decreased the refractoriness of LEW rat peritoneal cells to T. gondii infection, resulting in proliferation of parasites in LEW rat peritoneal cells which, in turn, led to augmented cell death in the infected cells. Together, our results indicate that the LEW rat maintains inherent cellular oxidative stress that contributes to resistance to invading T. gondii, and they thus unveil new avenues for developing therapeutic agents targeting induction of host cell oxidative stress as a mechanism for killing T. gondii.


Assuntos
Resistência à Doença , Estresse Oxidativo , Toxoplasmose Animal/imunologia , Animais , Antioxidantes/metabolismo , Morte Celular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos/genética , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Lactoperoxidase/genética , Lactoperoxidase/metabolismo , Cavidade Peritoneal/parasitologia , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Lew , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA/métodos , Toxoplasma/imunologia , Toxoplasma/fisiologia , Toxoplasmose Animal/metabolismo , Toxoplasmose Animal/parasitologia
9.
Dig Dis Sci ; 61(8): 2328-2337, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27048452

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) is a well-recognized gastroduodenal pathogen and class I carcinogen. Dual oxidase-2 (DUOX2), a member of NADPH oxidase family, has several critical physiological functions, including thyroid hormone biosynthesis and host mucosal defense. AIM: To investigate the effect of H. pylori infection on DUOX2 gene expression in human stomach. MATERIALS AND METHODS: The biopsies were obtained from patients who underwent endoscopic diagnosis. The patient serum was assayed for two virulence factors of H. pylori, CagA IgG and VacA. The inflammation in gastric mucosa was analyzed with histology. Real-time quantitative PCR was used to detect the expression of three members of NADPH oxidase, NOX1, NOX2, and DUOX2, as well as lactoperoxidase (LPO) in the gastric mucosa. NOX2, DUOX2, and myeloperoxidase (MPO) protein levels were quantified by Western blots or immunohistochemistry. RESULTS: The H. pylori-infected gastric mucosa had more severe inflammation than uninfected samples. However, the expression of DUOX2 mRNA and protein was lower in gastric mucosa of patients with H. pylori infection compared to the uninfected. Among the H. pylori-infected patients, those having CagA IgG or VacA in the serum had lower DUOX2 expression levels than those infected with H. pylori without either virulence factor. The NOX2 and MPO levels were higher in those patients infected with H. pylori irrespective of the virulence factors than those uninfected patients. NOX1 and LPO mRNA were undetectable in the gastric mucosa. CONCLUSION: CagA+ or VacA+ H. pylori in the stomach of patients may suppress DUOX2 expression to promote its own survival. Increased NOX2 could not eliminate H. pylori infection.


Assuntos
Mucosa Gástrica/metabolismo , Gastrite Atrófica/genética , Infecções por Helicobacter/genética , NADPH Oxidases/genética , Úlcera Péptica/genética , RNA Mensageiro/metabolismo , Adolescente , Adulto , Idoso , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Western Blotting , Oxidases Duais , Ensaio de Imunoadsorção Enzimática , Feminino , Gastrite/genética , Gastrite/imunologia , Gastrite/metabolismo , Gastrite/microbiologia , Gastrite Atrófica/imunologia , Gastrite Atrófica/metabolismo , Gastrite Atrófica/microbiologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/imunologia , Humanos , Imunoglobulina G/imunologia , Imuno-Histoquímica , Lactoperoxidase/genética , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Úlcera Péptica/imunologia , Úlcera Péptica/metabolismo , Úlcera Péptica/microbiologia , Peroxidase/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
10.
Clin Oral Implants Res ; 27(12): e190-e198, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25864924

RESUMO

OBJECTIVES: The peri-implant epithelium (PIE) plays an important role in the prevention against initial stage of inflammation. To minimize the risk of peri-implantitis, it is necessary to understand the biological characteristics of the PIE. The aim of this study was to investigate the characteristic gene expression profile of PIE as compared to junctional epithelium (JE) using laser microdissection and microarray analysis. METHODS: Left upper first molars of 4-week-old rat were extracted, and titanium alloy implants were placed. Four weeks after surgery, samples were harvested by laser microdissection, and total RNA samples were isolated. Comprehensive analyses of genes expressed in the JE and PIE were performed using microarray analysis. Confirmation of the differential expression of selected genes was performed by quantitative real-time polymerase chain reaction and immunohistochemistry. RESULTS: The microarray analysis showed that 712 genes were more than twofold change upregulated in the PIE compared with the JE. Genes Scgb1a1 were significantly upregulated more than 19.1-fold, Lpo more than 19.0-fold, and Gbp2 more than 8.9-fold, in the PIE (P < 0.01). Immunohistochemical localization of SCGB1A1, LPO, and GBP2 was observed in PIE. CONCLUSION: The present results suggested that genes Scgb1a1, Lpo, and Gbp2 are characteristically expressed in the PIE.


Assuntos
Implantação Dentária Endóssea , Inserção Epitelial/metabolismo , Epitélio/metabolismo , Proteínas de Ligação ao GTP/genética , Lactoperoxidase/genética , Regulação para Cima , Uteroglobina/genética , Animais , Proteínas de Ligação ao GTP/metabolismo , Imuno-Histoquímica , Lactoperoxidase/metabolismo , Microdissecção e Captura a Laser , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Peri-Implantite/genética , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Uteroglobina/metabolismo
11.
Mol Nutr Food Res ; 59(2): 303-14, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25351664

RESUMO

SCOPE: Phosphoserine-containing peptides have been shown to exert antioxidative stress effects, by lowering lipid peroxidation, increasing intracellular glutathione, and increasing the expression of antioxidant enzymes in human intestinal epithelial cells. However, the role of phosphoserine residues in antioxidative stress activity, and their mechanism of action, remains unknown. METHODS AND RESULTS: The antioxidative stress activity of phosphoserine and phosphoserine peptides was examined using an in vitro model of hydrogen peroxide (H2 O2 )-induced oxidative stress in Caco-2 cells. Phosphoserine dimers (2PS) reduced IL-8 secretion in H2 O2 -treated Caco-2 cells, and reduced H2 O2 -induced expression of genes involved in inflammation and generation of reactive oxygen species (ROS), including chemokine (C-C motif) ligand 5 (CCL5), lactoperoxidase (LPO), myeloperoxidase (MPO), neutrophil cytosolic factor 1/2 (NCF1/2), and nitric oxide synthase 2A (NOS2), and upregulated metallothionein 3 (MT3), peroxiredoxin 3 (PRDX3), and surfactant, pulmonary-associated protein D (SFTPD), which are involved in protection against oxidative stress and activation of the Nrf2 signaling pathway. At the protein level, 2PS reduced H2 O2 -induced phosphorylation of the ERK1/2 and JNK MAPKs, and increased Nrf2 expression. Moreover, the ability of 2PS to reduce H2 O2 -induced IL-8 secretion, a marker of inflammation and oxidative stress, was abrogated in Nrf2 knockdown cells. CONCLUSION: These results suggest that 2PS reduce H2 O2 -induced oxidative stress via the Nrf2 signaling pathway, and reveal a potential mechanism for the antioxidative stress activity of phosphoserine-containing peptides.


Assuntos
Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfosserina/farmacologia , Células CACO-2 , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Inflamação/tratamento farmacológico , Interleucina-8/metabolismo , Lactoperoxidase/genética , Lactoperoxidase/metabolismo , Peroxidação de Lipídeos , Metalotioneína 3 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Peroxirredoxina III/genética , Peroxirredoxina III/metabolismo , Fosforilação , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Regulação para Cima
12.
PLoS Genet ; 9(10): e1003913, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204315

RESUMO

miRNAs are small regulatory RNAs that, due to their considerable potential to target a wide range of mRNAs, are implicated in essentially all biological process, including cancer. miR-10a is particularly interesting considering its conserved location in the Hox cluster of developmental regulators. A role for this microRNA has been described in developmental regulation as well as for various cancers. However, previous miR-10a studies are exclusively based on transient knockdowns of this miRNA and to extensively study miR-10a loss we have generated a miR-10a knock out mouse. Here we show that, in the Apc(min) mouse model of intestinal neoplasia, female miR-10a deficient mice develop significantly more adenomas than miR-10(+/+) and male controls. We further found that Lpo is extensively upregulated in the intestinal epithelium of mice deprived of miR-10a. Using in vitro assays, we demonstrate that the primary miR-10a target KLF4 can upregulate transcription of Lpo, whereas siRNA knockdown of KLF4 reduces LPO levels in HCT-116 cells. Furthermore, Klf4 is upregulated in the intestines of miR-10a knockout mice. Lpo has previously been shown to have the capacity to oxidize estrogens into potent depurinating mutagens, creating an instable genomic environment that can cause initiation of cancer. Therefore, we postulate that Lpo upregulation in the intestinal epithelium of miR-10a deficient mice together with the predominant abundance of estrogens in female animals mainly accounts for the sex-related cancer phenotype we observed. This suggests that miR-10a could be used as a potent diagnostic marker for discovering groups of women that are at high risk of developing colorectal carcinoma, which today is one of the leading causes of cancer-related deaths.


Assuntos
Neoplasias Intestinais/genética , Fatores de Transcrição Kruppel-Like/biossíntese , Lactoperoxidase/genética , MicroRNAs/genética , Animais , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Neoplasias Intestinais/patologia , Fator 4 Semelhante a Kruppel , Lactoperoxidase/biossíntese , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Via de Sinalização Wnt/genética
13.
J Clin Immunol ; 32(6): 1390-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22806177

RESUMO

PURPOSE: Chronic graft-versus-host disease (cGVHD) is a severe immunological complication that occurs after allogeneic hematopoietic stem cell transplantation (HSCT). Although oral cGVHD occurs in >25% of cGVHD patients and leads to decreased quality of life, its etiology is poorly understood. The present retrospective cross-sectional analysis of oral cGVHD patients sought to (1) test the feasibility of liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify protein biomarkers of oral cGVHD and (2) to gain a clearer understanding of salivary proteins impacted by oral cGVHD. METHODS: Using unstimulated whole saliva, we compared pooled saliva from five patients with a diagnosis of moderate or severe oral cGVHD, with a gender-and age- matched pool of five cGVHD patients with no oral mucosal findings. LC-MS/MS was used to identify salivary proteins, followed by Ingenuity Pathway Analysis (IPA). Selected mass spectrometric findings, including lactotransferrin, lactoperoxidase, and albumin, were confirmed by targeted label-free quantification. RESULTS: LC-MS/MS led to confident identification of 180 proteins. Of these proteins, 102 changed in abundance at least 2 fold, including 12 proteins identified only in the No oral cGVHD group. Downregulation of ~0.4 fold was confirmed for both lactotransferrin and lactoperoxidase in Oral cGVHD saliva using targeted label-free quantification. IPA analysis implicated pathways involved in cellular metabolism and immunoregulation. CONCLUSIONS: Reduction of salivary lactoperoxidase, lactotransferrin, and several cysteine proteinase inhibitor family proteins suggests impaired oral antimicrobial host immunity in cGVHD patients. This shotgun proteomic analysis of oral cGVHD saliva using targeted label-free quantification of select proteins supports the use of mass spectrometry for future validation in a large patient population as noninvasive tests for screening, early detection, and monitoring of cGVHD.


Assuntos
Regulação da Expressão Gênica , Doença Enxerto-Hospedeiro/genética , Transplante de Células-Tronco Hematopoéticas , Proteínas e Peptídeos Salivares/genética , Adulto , Albuminas/genética , Albuminas/imunologia , Cromatografia Líquida , Doença Crônica , Estudos Transversais , Inibidores de Cisteína Proteinase/genética , Inibidores de Cisteína Proteinase/imunologia , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Humanos , Lactoferrina/genética , Lactoferrina/imunologia , Lactoperoxidase/genética , Lactoperoxidase/imunologia , Masculino , Pessoa de Meia-Idade , Proteômica , Estudos Retrospectivos , Saliva/imunologia , Saliva/metabolismo , Proteínas e Peptídeos Salivares/imunologia , Espectrometria de Massas em Tandem
14.
J Biol Inorg Chem ; 15(7): 1099-107, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20461536

RESUMO

The mode of binding of aromatic ligands in the substrate binding site on the distal heme side in heme peroxidases is well understood. However, the mode of diffusion through the extended hydrophobic channel and the regulatory role of the channel are not yet clear. To provide answers to these questions, the crystal structure of the complex of lactoperoxidase and 3-amino-1,2,4-triazole (amitrole) has been determined, which revealed the presence of two ligand molecules, one in the substrate binding site and the second in the hydrophobic channel. The binding of ligand in the channel induced a remarkable conformational change in the side chain of Phe254, which flips from its original distant position to interact with the trapped ligand in the hydrophobic channel. As a result, the channel is completely blocked so that no ligand can diffuse through it to the substrate binding site. Another amitrole molecule is bound to lactoperoxidase in the substrate binding site by replacing three water molecules, including the crucial iron-bound water molecule, W1. In this arrangement, the amino nitrogen atom of amitrole occupies the position of W1 and interacts directly with ferric iron. As a consequence, it prevents the binding of H2O2 to heme iron. Thus, the interactions of amitrole with lactoperoxidase obstruct both the passage of ligands through the hydrophobic channel as well as the binding of H2O2. This explains the amitrole toxicity. From binding studies, the dissociation constant (Kd) for amitrole with lactoperoxidase was found to be approximately 5.5x10(-7) M, indicating high affinity.


Assuntos
Hemeproteínas/química , Hidrocarbonetos Aromáticos/química , Lactoperoxidase/química , Ligantes , Estrutura Terciária de Proteína , Amitrol (Herbicida)/química , Animais , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Inibidores Enzimáticos/química , Lactoperoxidase/genética , Modelos Moleculares , Dados de Sequência Molecular
15.
J Endocrinol Invest ; 33(1): 2-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19794300

RESUMO

BACKGROUND: Agents capable of increasing radioiodine concentration by stimulating the sodium/iodide symporter (NIS) expression have been extensively investigated for the treatment of certain well-differentiated breast cancers. AIM: In this study, we analyzed the regulation of the NIS and lactoperoxidase (LPO) gene expression in 4 different human breast cancer cell lines, representative of different histotypes of breast cancer. METHODS: MCF-7, T-47D, MDA-MB231, and HCC-1937 (the latter carrying the BRCA-1 mutation) were exposed to different stimulators and the levels of NIS and LPO mRNA measured by a quantitative RT-PCR. RESULTS: All-trans-Retinoic Acid (RA), Dexamethasone (DEX), Trichostatin A (TSA), and Sodium Butyrate (NaB) induced the expression of NIS mRNA in MCF-7 and T-47D cell lines, whereas HCC-1937 and MBA-MB231 were slightly responsive only to the histone-deacetylase inhibitors TSA and NaB. Minor stimulatory effects were detected on LPO mRNA in MCF-7 and T-47D treated with TSA and NaB or RA only in MCF-7, while no effect was detectable in the other two cell lines. CONCLUSIONS: These data indicate that retinoic acid, alone or in combination with DEX, as well as HDAC-inhibitors are very promising agents for a radioiodine- based therapy in a large spectrum of breast cancers, including neoplasms from both basal and ductal cells, especially for the well-differentiated estrogen-dependent tumors. Other molecules or other drug combinations should be tested to extend the same strategy to the less differentiated and more aggressive tumor cells, including those carrying the BRCA mutation.


Assuntos
Neoplasias da Mama/metabolismo , Lactoperoxidase/genética , Simportadores/genética , Butiratos/farmacologia , Linhagem Celular Tumoral , Dexametasona/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Lactoperoxidase/biossíntese , RNA Mensageiro/metabolismo , Simportadores/biossíntese , Tretinoína/farmacologia
16.
Free Radic Biol Med ; 47(10): 1450-8, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19703552

RESUMO

Epithelia express oxidative antimicrobial protection that uses lactoperoxidase (LPO), hydrogen peroxide (H(2)O(2)), and thiocyanate to generate the reactive hypothiocyanite. Duox1 and Duox2, found in epithelia, are hypothesized to provide H(2)O(2) for use by LPO. To investigate the regulation of oxidative LPO-mediated host defense by bacterial and inflammatory stimuli, LPO and Duox mRNA were followed in differentiated primary human airway epithelial cells challenged with Pseudomonas aeruginosa flagellin or IFN-gamma. Flagellin upregulated Duox2 mRNA 20-fold, but upregulated LPO mRNA only 2.5-fold. IFN-gamma increased Duox2 mRNA 127-fold and upregulated LPO mRNA 10-fold. DuoxA2, needed for Duox2 activity, was also upregulated by flagellin and IFN-gamma. Both stimuli increased H(2)O(2) synthesis and LPO-dependent killing of P. aeruginosa. Reduction of Duox1 by siRNA showed little effect on basal H(2)O(2) production, whereas Duox2 siRNA markedly reduced basal H(2)O(2) production and resulted in an 8-fold increase in Nox4 mRNA. In conclusion, large increases in Duox2-mediated H(2)O(2) production seem to be coordinated with increases in LPO mRNA and, without increased LPO, H(2)O(2) levels in airway secretion are expected to increase substantially. The data suggest that Duox2 is the major contributor to basal H(2)O(2) synthesis despite the presence of greater amounts of Duox1.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Flagelina/imunologia , Interferon gama/imunologia , Lactoperoxidase/imunologia , Estresse Oxidativo , Pseudomonas aeruginosa/imunologia , Células Cultivadas , Oxidases Duais , Humanos , Peróxido de Hidrogênio/imunologia , Peróxido de Hidrogênio/metabolismo , Inflamação/imunologia , Lactoperoxidase/genética , NADPH Oxidases/genética , NADPH Oxidases/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia
17.
J Biol Chem ; 284(38): 25929-37, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19608745

RESUMO

In heme enzymes belonging to the peroxidase-cyclooxygenase superfamily the proximal histidine is in close interaction with a fully conserved asparagine. The crystal structure of a mixture of glycoforms of myeloperoxidase (MPO) purified from granules of human leukocytes prompted us to revise the orientation of this asparagine and the protonation status of the proximal histidine. The data we present contrast with previous MPO structures, but are strongly supported by molecular dynamics simulations. Moreover, comprehensive analysis of published lactoperoxidase structures suggest that the described proximal heme architecture is a general structural feature of animal heme peroxidases. Its importance is underlined by the fact that the MPO variant N421D, recombinantly expressed in mammalian cell lines, exhibited modified spectral properties and diminished catalytic activity compared with wild-type recombinant MPO. It completely lost its ability to oxidize chloride to hypochlorous acid, which is a characteristic feature of MPO and essential for its role in host defense. The presented crystal structure of MPO revealed further important differences compared with the published structures including the extent of glycosylation, interaction between light and heavy polypeptides, as well as heme to protein covalent bonds. These data are discussed with respect to biosynthesis and post-translational maturation of MPO as well as to its peculiar biochemical and biophysical properties.


Assuntos
Asparagina/química , Histidina/química , Leucócitos/enzimologia , Peroxidase/química , Asparagina/genética , Asparagina/metabolismo , Linhagem Celular , Cloretos/metabolismo , Cristalografia por Raios X , Glicosilação , Heme/química , Heme/genética , Heme/metabolismo , Histidina/genética , Histidina/metabolismo , Humanos , Ácido Hipocloroso/metabolismo , Lactoperoxidase/química , Lactoperoxidase/genética , Lactoperoxidase/metabolismo , Mutação de Sentido Incorreto , Oxirredução , Peroxidase/genética , Peroxidase/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Estrutura Terciária de Proteína/fisiologia
18.
Arch Biochem Biophys ; 482(1-2): 52-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19059195

RESUMO

Human lactoperoxidase (LPO) exists as two distinct molecules independent of glycosylation. The N-terminus of one form is blocked and has not been identified while the other is proteolytically processed at the N-terminus similar to myeloperoxidase. Our analysis identified alternatively spliced human LPO mRNAs that may explain the observed molecular heterogeneity of LPO. Two mRNAs omit propeptide encoding exons while retaining the 5' exon encoding the secretion signal, consistent with the heterogeneity and suggesting a possible functional role for the propeptide. Two LPO forms were expressed using baculovirus and both showed similar enzyme activity. LC/MS/MS analysis of trypsin digested, partially purified, salivary LPO confirmed the larger unprocessed LPO is present in saliva. To compare variant expression patterns, antisera were raised against purified recombinant (rhLPO) as well as against an antigenic peptide sequence within the exons encoding the propeptide region. Immunohistochemistry demonstrated proLPO was differently localized within gland cells compared to other forms of LPO. The data suggested splice variants may contribute to LPO molecular heterogeneity and its regulation by intracellular compartmental localization.


Assuntos
Processamento Alternativo , Lactoperoxidase/química , Lactoperoxidase/genética , Células Cultivadas , Clonagem Molecular , Éxons , Variação Genética , Humanos , Íntrons , Pulmão/enzimologia , RNA Mensageiro/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/enzimologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Traqueia/enzimologia
19.
Am J Respir Crit Care Med ; 175(2): 174-83, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17082494

RESUMO

RATIONALE: The respiratory tract is constantly exposed to airborne microorganisms. Nevertheless, normal airways remain sterile without recruiting phagocytes. This innate immune activity has been attributed to mucociliary clearance and antimicrobial polypeptides of airway surface liquid. Defective airway immunity characterizes cystic fibrosis (CF), a disease caused by mutations in the CF transmembrane conductance regulator, a chloride channel. The pathophysiology of defective immunity in CF remains to be elucidated. OBJECTIVE: We investigated the ability of non-CF and CF airway epithelia to kill bacteria through the generation of reactive oxygen species (ROS). METHODS: ROS production and ROS-mediated bactericidal activity were determined on the apical surfaces of human and rat airway epithelia and on cow tracheal explants. MEASUREMENTS AND MAIN RESULTS: Dual oxidase enzyme of airway epithelial cells generated sufficient H(2)O(2) to support production of bactericidal hypothiocyanite (OSCN(-)) in the presence of airway surface liquid components lactoperoxidase and thiocyanate (SCN(-)). This OSCN(-) formation eliminated Staphylococcus aureus and Pseudomonas aeruginosa on airway mucosal surfaces, whereas it was nontoxic to the host. In contrast to normal epithelia, CF epithelia failed to secrete SCN(-), thereby rendering the oxidative antimicrobial system inactive. CONCLUSIONS: These data indicate a novel innate defense mechanism of airways that kills bacteria via ROS and suggest a new cellular and molecular basis for defective airway immunity in CF.


Assuntos
Fibrose Cística/imunologia , Flavoproteínas/metabolismo , Lactoperoxidase/metabolismo , Pneumopatias/imunologia , Mucosa Respiratória/imunologia , Animais , Bovinos , Células Cultivadas , Fibrose Cística/enzimologia , Fibrose Cística/microbiologia , Oxidases Duais , Flavoproteínas/análise , Flavoproteínas/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Imunidade Inata/genética , Imunidade nas Mucosas , Lactoperoxidase/análise , Lactoperoxidase/genética , Pneumopatias/enzimologia , Pneumopatias/microbiologia , Pseudomonas aeruginosa/imunologia , RNA Interferente Pequeno/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/enzimologia , Mucosa Respiratória/microbiologia , Staphylococcus aureus/imunologia , Tiocianatos/metabolismo , Traqueia/citologia , Traqueia/imunologia , Traqueia/microbiologia
20.
Biosci Biotechnol Biochem ; 67(10): 2254-61, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14586116

RESUMO

Lactoperoxidase (LPO) is a heme-containing oxidation-reduction enzyme present in milk. In this study, the gene encoding bovine lactoperoxidase (bLPO) was inserted into a baculovirus transfer vector, and a recombinant virus expressing bLPO was isolated. A bLPO-related recombinant baculovirus-expressed protein of 78 kDa was detected using anti-bLPO antibodies. After digestion with N-glycosidase F, the molecular weight of the recombinant bLPO (rbLPO) decreased. In addition, rbLPO reacted with lectin, indicating that the protein was glycosylated. The rbLPO activity and heme content in the culture supernatants increased upon addition of delta-aminolevulinic acid, which is a heme precursor. Differences in the delta-aminolevulinic acid-dependent circular dichroism spectrum and rbLPO pepsin hydrolysis were observed. These results suggest that the secondary structure and structural stability of rbLPO depends on the heme environment. Our data suggest that this bLPO expression system is useful for studying structure, catalytic mechanisms, and biological function.


Assuntos
Baculoviridae/genética , Lactoperoxidase/genética , Animais , Bovinos , Clonagem Molecular/métodos , Vetores Genéticos , Glicosilação , Lactoperoxidase/biossíntese , Lactoperoxidase/química , Organismos Geneticamente Modificados , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...