Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(12): e0261143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34910738

RESUMO

The North American endemic genus Penstemon (Mitchell) has a recent geologic origin of ca. 3.6 million years ago (MYA) during the Pliocene/Pleistocene transition and has undergone a rapid adaptive evolutionary radiation with ca. 285 species of perennial forbs and sub-shrubs. Penstemon is divided into six subgenera occupying all North American habitats including the Arctic tundra, Central American tropical forests, alpine meadows, arid deserts, and temperate grasslands. Due to the rapid rate of diversification and speciation, previous phylogenetic studies using individual and concatenated chloroplast sequences have failed to resolve many polytomic clades. We investigated the efficacy of utilizing the plastid genomes (plastomes) of 29 species in the Lamiales order, including five newly sequenced Penstemon plastomes, for analyzing phylogenetic relationships and resolving problematic clades. We compared whole-plastome based phylogenies to phylogenies based on individual gene sequences (matK, ndhF, psaA, psbA, rbcL, rpoC2, and rps2) and concatenated sequences. We also We found that our whole-plastome based phylogeny had higher nodal support than all other phylogenies, which suggests that it provides greater accuracy in describing the hierarchal relationships among taxa as compared to other methods. We found that the genus Penstemon forms a monophyletic clade sister to, but separate from, the Old World taxa of the Plantaginaceae family included in our study. Our whole-plastome based phylogeny also supports the rearrangement of the Scrophulariaceae family and improves resolution of major clades and genera of the Lamiales.


Assuntos
DNA de Plantas/genética , Evolução Molecular , Genomas de Plastídeos , Lamiales/genética , Penstemon/genética , Plastídeos/genética , Lamiales/classificação , Penstemon/classificação , Filogenia
2.
Mol Plant ; 14(10): 1668-1682, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34214658

RESUMO

Paulownias are among the fastest growing trees in the world, but they often suffer tremendous loss of wood production due to infection by Paulownia witches' broom (PaWB) phytoplasmas. In this study, we have sequenced and assembled a high-quality nuclear genome of Paulownia fortunei, a commonly cultivated paulownia species. The assembled genome of P. fortunei is 511.6 Mb in size, with 93.2% of its sequences anchored to 20 pseudo-chromosomes, and it contains 31 985 protein-coding genes. Phylogenomic analyses show that the family Paulowniaceae is sister to a clade composed of Phrymaceae and Orobanchaceae. Higher photosynthetic efficiency is achieved by integrating C3 photosynthesis and the crassulacean acid metabolism pathway, which may contribute to the extremely fast growth habit of paulownia trees. Comparative transcriptome analyses reveal modules related to cambial growth and development, photosynthesis, and defense responses. Additional genome sequencing of PaWB phytoplasma, combined with functional analyses, indicates that the effector PaWB-SAP54 interacts directly with Paulownia PfSPLa, which in turn causes the degradation of PfSPLa by the ubiquitin-mediated pathway and leads to the formation of witches' broom. Taken together, these results provide significant insights into the biology of paulownias and the regulatory mechanism for the formation of PaWB.


Assuntos
Genoma de Planta , Lamiales/crescimento & desenvolvimento , Lamiales/genética , Árvores/crescimento & desenvolvimento , Evolução Molecular , Agricultura Florestal , Redes Reguladoras de Genes , Lamiales/classificação , Anotação de Sequência Molecular , Fotossíntese/genética , Filogenia , Phytoplasma/genética , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Árvores/genética , Sequenciamento Completo do Genoma
3.
PLoS One ; 16(6): e0252581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34097720

RESUMO

Earlier phylogenetic studies in the genus Pinguicua (Lentibulariaceae) suggested that the species within a geographical region was rather monophyletic, although the sampling was limited or was restricted to specific regions. Those results conflicted with the floral morphology-based classification, which has been widely accepted to date. In the current study, one nuclear ribosomal DNA (internal transcribed spacer; ITS) and two regions of chloroplast DNA (matK and rpl32-trnL), from up to ca. 80% of the taxa in the genus Pinguicula, covering all three subgenera, were sequenced to demonstrate the inconsistency and explore a possible evolutionary history of the genus. Some incongruence was observed between nuclear and chloroplast topologies and the results from each of the three DNA analyses conflicted with the morphology-based subgeneric divisions. Both the ITS tree and network, however, corresponded with the biogeographical patterns of the genus supported by life-forms (winter rosette or hibernaculum formation) and basic chromosome numbers (haploidy). The dormant strategy evolved in a specific geographical region is a phylogenetic constraint and a synapomorphic characteristic within a lineage. Therefore, the results denied the idea that the Mexican group, morphologically divided into the three subgenera, independently acquired winter rosette formations. Topological incongruence among the trees or reticulations, indicated by parallel edges in phylogenetic networks, implied that some taxa originated by introgressive hybridisation. Although there are exceptions, species within the same geographical region arose from a common ancestor. Therefore, the classification by the floral characteristics is rather unreliable. The results obtained from this study suggest that evolution within the genus Pinguicula has involved; 1) ancient expansions to geographical regions with gene flow and subsequent vicariance with genetic drift, 2) acquirement of a common dormant strategy within a specific lineage to adapt a local climate (i.e., synapomorphic characteristic), 3) recent speciation in a short time span linked to introgressive hybridisation or multiplying the ploidy level (i.e., divergence), and 4) parallel evolution in floral traits among lineages found in different geographical regions (i.e., convergence). As such, the floral morphology masks and obscures the phylogenetic relationships among species in the genus.


Assuntos
Lamiales/classificação , Núcleo Celular/genética , Cloroplastos/genética , DNA de Cloroplastos/classificação , DNA de Cloroplastos/genética , DNA de Cloroplastos/metabolismo , DNA de Plantas/classificação , DNA de Plantas/genética , DNA de Plantas/metabolismo , Evolução Molecular , Geografia , Lamiales/anatomia & histologia , Lamiales/genética , Filogenia , Folhas de Planta/genética
4.
PLoS One ; 16(4): e0249976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33826676

RESUMO

Utricularia multifida is carnivorous bladderwort from Western Australia and belongs to a phylogenetically early-diverging lineage of the genus. We present a prey spectrum analysis resulting from a snapshot sampling of 17 traps-the first of this species to our knowledge. The most abundant prey groups were Ostracoda, Copepoda, and Cladocera. The genus cf. Cypretta (Cyprididae, Ostracoda) was the predominant prey. However, a high variety of other prey organisms with different taxonomic backgrounds was also detected. Our results indicate that U. multifida may potentially be specialized in capturing substrate-bound prey. Future approaches should sample plants from different localities to allow for robust comparative analyses.


Assuntos
Cladocera/fisiologia , Copépodes/fisiologia , Lamiales/parasitologia , Animais , Ecossistema , Lamiales/classificação , Filogenia , Austrália Ocidental
5.
Sci Rep ; 10(1): 2225, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042041

RESUMO

Paulownia species are important ecological, economic and ornamental species, but their phylogenetic relationship remains unclear, which seriously affects the development and utilization of these important resources. The complete chloroplast genomes of six Paulownia species were assembled by next-generation sequencing data. By adding two known Paulownia chloroplast genomes to these six assembled genomes, we performed the comparative analysis and phylogenetic tree reconstruction of Paulownia. The results indicated that the chloroplast genomes of Paulownia species ranged in size from 154,107 to 154,694 bp. These chloroplast genomes contained 117 unique functional genes, including 80 protein-coding genes, four rRNA genes, and 33 tRNA genes. Twelve hotspot regions, five protein-coding genes and seven noncoding regions, were identified in the chloroplast genomes that showed high levels of sequence variation. Additionally, positive selection was observed in three genes, rps2, rbcL and ndhG. The maximum likelihood (ML) and Bayesian (BI) analysis strongly supported the monophyletic origin of Paulownia species, which clustered into two major clades: One clade included P. coreana, P. tomentosa and P. kawakamii, while the other clade comprised the 5 other species including P. fargesii and P. australis. This study provides useful genetic information for phylogenetic reconstruction, taxonomic discrepancies, and studying species evolution and phylogeography in Paulownia.


Assuntos
Especiação Genética , Genoma de Cloroplastos , Lamiales/genética , Genes de Plantas/genética , Lamiales/classificação , Repetições de Microssatélites/genética , Filogenia , Filogeografia , Proteínas de Plantas/genética , Análise de Sequência de DNA
6.
PLoS One ; 15(1): e0226337, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940359

RESUMO

Genlisea hawkingii, which is a new species of Genlisea subgen. Tayloria (Lentibulariaceae) from cerrado in southwest Brazil, is described and illustrated. This species has been found in only one locality thus far, in the Serra da Canastra, which is located in the Delfinópolis municipality in Minas Gerais, Brazil. The new species is morphologically similar to Genlisea violacea and G. flexuosa, but differs from them in having a corolla with a conical and curved spur along with sepals with an acute apex and reproductive organs that only have glandular hairs. Moreover, it is similar to G. uncinata's curved spur. G. hawkingii is nested within the subgen. Tayloria clade as a sister group to all the other species of this subgenus. Therefore, both morphological and phylogenetic results strongly support G. hawkingii as a new species in the subgen. Tayloria.


Assuntos
Lamiales/classificação , Filogenia , Brasil , Conservação dos Recursos Naturais
7.
Zhongguo Zhong Yao Za Zhi ; 44(3): 472-474, 2019 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-30989910

RESUMO

By the fourth survey of Chinese medicinal resources, new medicinal plants records of 2 genera and 5 species were reported in Tibet. They are two genera Rhynchoglossum and Asteropyrum, and five species including Rh. obliquum, A. peltatum, Urena repanda, Schefflera khasiana and Mimulus tenellus. All the voucher specimens are preserved in Herbarium of Tibet Agriculture and Animal Husbandry University.


Assuntos
Araliaceae/classificação , Lamiales/classificação , Malvaceae/classificação , Plantas Medicinais/classificação , Ranunculaceae/classificação , Tibet
8.
Molecules ; 23(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518967

RESUMO

The genus Lancea is native to the Qinghai-Tibetan Plateau and consists of two species, Lancea tibetica Hook. f. et Thoms. and Lancea hirsuta Bonati. Here, we report the complete sequences of the chloroplast genomes of L. tibetica and L. hirsuta, which were 153,665 and 154,045 bp in length, respectively, and each included a pair of inverted repeated regions (25,624 and 25,838 bp in length, respectively) that were separated by a large single copy region (84,401 and 84,588 bp in length, respectively) and a smaller single copy region (18,016 and 17,781 bp in length, respectively). A total of 106 genes in L. tibetica and 105 in L. hirsuta comprised 79 protein-coding genes, and 4 ribosomal RNA (rRNA) genes, as well as 23 and 22 transfer RNA (tRNA) genes in L. tibetica and L. hirsuta, respectively. The gene order, content, and orientation of the two Lancea chloroplast genomes exhibited high similarity. A large number of informative repetitive sequences, including SSRs, were observed in both genomes. Comparisons of the genomes with those of three other Lamiales species revealed 12 highly divergent regions in the intergenic spacers and in the matK, rpoA, rps19, ndhF, ccsA, ndhD, and ycf1 coding regions. A phylogenomic analysis suggested that Lancea forms a monophyletic group that is closely related to the clade composed of the families Phrymaceae, Paulowniaceae, and Rehmanniaceae.


Assuntos
Genoma de Cloroplastos , Genômica , Lamiales/classificação , Lamiales/genética , Biologia Computacional/métodos , Variação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Fases de Leitura Aberta , Filogenia , Sequências Repetitivas de Ácido Nucleico
9.
Mol Phylogenet Evol ; 118: 244-264, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054811

RESUMO

The carnivorous plant genus Utricularia L. (bladderwort) comprises about 240 species distributed worldwide and is traditionally classified into two subgenera (Polypompholyx and Utricularia) and 35 sections, based mainly on general and trap morphology. It is one out of the largest carnivorous genera, representing ca. 30% of all carnivorous plant species, and is also the most widely distributed. According to previous phylogenetic studies, most infrageneric sections are monophyletic, but there are several incongruences considering their relationships and also the dissenting position of some species as a result of a too few (mostly one or two) molecular markers analyzed. Thus, here we present a multilocus phylogeny for Utricularia species with a wide taxonomic sampling (78 species and 115 accessions) based on six plastid (rbcL, matK, rpl20-rps12, rps16, trnL-F) and nuclear DNA (ITS region) sequences. The aim is to reconstruct a well-resolved tree to propose evolutionary and biogeographic hypotheses for the radiation of lineages with inferences about the divergence times of clades using a molecular clock approach.


Assuntos
DNA de Plantas/química , Lamiales/genética , Plastídeos/genética , Sequência de Bases , Teorema de Bayes , Evolução Biológica , Núcleo Celular/genética , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Lamiales/classificação , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/classificação , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
10.
Sci Rep ; 7(1): 12052, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935893

RESUMO

Bladderworts (Utricularia, Lentibulariaceae, Lamiales) constitute the largest genus of carnivorous plants but only aquatic species (about one fifth of the genus) have so far been thoroughly studied as to their suction trap functioning. In this study, we comparatively investigated trap biomechanics in 19 Utricularia species to examine correlations between life-forms, trapping mechanisms, and functional-morphological traits. Our investigations show the existence of two functional trap principles (passive trap in U. multifida vs. active suction traps), and - in active suction traps - three main trapdoor movement types (with several subtypes). The trapdoor movement types and their corresponding functional-morphological features most presumably represent adaptations to the respective habitat. We furthermore give insights into fluid dynamics during suction in three representatives of the main types of trapdoor movement. The results on functional morphology and trapdoor movement were mapped onto a new phylogenetic reconstruction of the genus, derived from the rapidly evolving chloroplast regions trnK, rps16 and trnQ-rps16 and a sampling of 105 Utricularia species in total. We discuss potential scenarios of trap character evolution and species radiation, highlighting possible key innovations that enable such a unique carnivorous lifestyle in different habitats.


Assuntos
Ecossistema , Evolução Molecular , Variação Genética , Lamiales/genética , Endorribonucleases/genética , Lamiales/classificação , Lamiales/parasitologia , Microscopia Eletrônica de Varredura , Nucleotidiltransferases/genética , Filogenia , RNA de Transferência de Lisina/genética , Especificidade da Espécie , Tricomas/parasitologia , Tricomas/ultraestrutura
11.
Mol Phylogenet Evol ; 116: 30-48, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28705455

RESUMO

Cyrtandra (Gesneriaceae) is among the largest genera of flowering plants in the remote oceanic islands of the Pacific, with an estimated 175 species distributed across an area that extends from the Solomon Islands, east to the Marquesas Islands, and north to the Hawaiian Islands. The vast majority of species are single-island endemics that inhabit upland rainforests. Although previous molecular phylogenetic studies greatly advanced our understanding of the diversification of Pacific Cyrtandra, a number of uncertainties remain regarding phylogenetic relationships, divergence times, and biogeographic patterns within this large and widely dispersed group. In the present study, five loci (ITS, ETS, Cyrt1, psbA-trnH, and rpl32-trnL) were amplified and sequenced for phylogenetic reconstruction of 121 Cyrtandra taxa. Maximum likelihood and Bayesian inference confirmed that C. taviunensis from Fiji is sister to the remaining members of the Pacific clade. Dating analyses and ancestral area estimation indicates that the Pacific clade of Cyrtandra originated in Fiji during the Miocene ca. 9mya. All major crown lineages within the Pacific clade appeared < 5mya, coincident with the emergence of numerous Pacific islands and a subsequent increase in available habitat. The biogeographic history of Cyrtandra in the Pacific has been shaped by extinction, dispersal distance, and founder events. Biogeographic stochastic mapping analyses suggest that cladogenesis within Pacific Cyrtandra involved a combination of narrow (within-area) sympatry and founder events. A mean of 24 founder events was recovered between Pacific archipelagos, while a mean of 10 founder events was recovered within the Hawaiian archipelago.


Assuntos
Lamiales/classificação , Teorema de Bayes , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Ecossistema , Fiji , Efeito Fundador , Loci Gênicos , Especiação Genética , Ilhas , Lamiales/genética , Filogenia
12.
Ann Bot ; 120(5): 709-723, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28673037

RESUMO

Background and Aims: The 'orchid-like' bladderworts ( Utricularia ) comprise 15 species separated into two sections: Orchidioides and Iperua . These robust and mostly epiphytic species were originally grouped within the section Orchidioides by the first taxonomical systems. These species were later split into two sections when sect. Iperua was proposed. Due to the lack of strong evidence based on a robust phylogenetic perspective, this study presents a phylogenetic proposal based on four different DNA sequences (plastid and nuclear) and morphology to test the monophyly of the two sections. Methods: In comparison with all previous phylogenetic studies, the largest number of species across the sections was covered: 11 species from sections Orchidioides and Iperua with 14 species as an external group. Maximum likelihood and Bayesian inferences were applied to DNA sequences of rps16 , trnL-F , matK , the internal transcribed spacer (ITS) and three morphological characters: (1) the crest of the corolla; (2) the primary organs in the embryo; and (3) tubers. Additionally, a histochemical analysis of the stolons and tubers is presented from an evolutionary perspective. Key Results: The analyses showed the paraphyly of sect. Iperua , since Utricularia humboldtii is more related to the clade of sect. Orchidioides . Utricularia cornigera is grouped in the sect. Iperua clade based on chloroplast DNA sequences, but it is nested to sect. Orchidioides according to ITS dataset. Morphological characters do not support the breaking up of the 'orchid-like' species into two sections, either. Moreover, the stolon-tuber systems of both sections serve exclusively for water storage, according to histological analyses. Conclusions: This study provides strong evidence, based on DNA sequences from two genomic compartments (plastid and nucleus) and morphology to group the Utricularia sect. Orchidioides into the sect. Iperua . The tubers are important adaptations for water storage and have been derived from stolons at least twice in the phylogenetic history of 'orchid-like' bladderworts.


Assuntos
Evolução Biológica , Lamiales/classificação , Núcleo Celular/genética , DNA de Cloroplastos/genética , Lamiales/anatomia & histologia , Lamiales/genética , Filogenia , Proteínas de Plantas/genética , Tubérculos/anatomia & histologia , Análise de Sequência de DNA
13.
PLoS One ; 12(6): e0178459, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28575081

RESUMO

The Macaronesian Scrophularia lowei is hypothesized to have arisen from the widespread S. arguta on the basis of several phylogenetic studies of the genus, but sampling has been limited. Although these two annual species are morphologically distinct, the origin of S. lowei is unclear because genetic studies focused on this Macaronesian species are lacking. We studied 5 S. lowei and 25 S. arguta populations to determine the relationship of both species and to infer the geographical origin of S. lowei. The timing of S. lowei divergence and differentiation was inferred by dating analysis of the ITS region. A phylogenetic analysis of two nuclear (ITS and ETS) and two chloroplast (psbJ-petA and psbA-trnH) DNA regions was performed to study the relationship between the two species, and genetic differentiation was analysed by AMOVA. Haplotype network construction and Bayesian phylogeographic analysis were conducted using chloroplast DNA regions and a spatial clustering analysis was carried out on a combined dataset of all studied regions. Our results indicate that both species constitute a well-supported clade that diverged in the Miocene and differentiated in the Late Miocene-Pleistocene. Although S. lowei constitutes a well-supported clade according to nDNA, cpDNA revealed a close relationship between S. lowei and western Canarian S. arguta, a finding supported by the spatial clustering analysis. Both species have strong population structure, with most genetic variability explained by inter-population differences. Our study therefore supports a recent peripatric speciation of S. lowei-a taxon that differs morphologically and genetically at the nDNA level from its closest relative, S. arguta, but not according to cpDNA, from the closest Macaronesian populations of that species. In addition, a recent dispersal of S. arguta to Madeira from Canary Islands or Selvagens Islands and a rapid morphological differentiation after the colonization to generate S. lowei is the most likely hypothesis to explain the origin of the last taxon.


Assuntos
Lamiales/classificação , Oceano Atlântico , Teorema de Bayes , Haplótipos , Ilhas , Lamiales/genética , Filogenia
14.
Mol Phylogenet Evol ; 106: 228-240, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27720784

RESUMO

Speciation by hybridization has long been recognized among plants and includes both homoploid and allopolyploid speciation. The numbers of presumed hybrid species averages close to 11% and tends to be concentrated in a subset of angiosperm families. Recent advances in molecular methods have verified species of hybrid origin that had been presumed on the basis of morphology and have identified species that were not initially considered hybrids. Identifying species of hybrid origin is often a challenge and typically based on intermediate morphology, or discrepancies between molecular datasets. Discrepancies between data partitions may result from several factors including poor support, incomplete lineage sorting, or hybridization. A phylogenetic analysis of species in Columnea (Gesneriaceae) indicated significant incongruencies between the cpDNA and nrDNA datasets. Tests that examined whether one or both of the datasets had the phylogenetic signal to reject the topology of the alternate dataset (Shimodaira and Hasegawa [SH] and approximately unbiased [AU] tests) indicated significant differences between the topologies. Splitstree analyses also showed that there was support for the placement of the discrepant taxa in both datasets and that the combined data placed the putative hybrid species in an intermediate position between the two datasets. The genealogical sorting index (GSI) implied that coalescence in nrDNA had occurred in all species where more than a single individual had been sampled, but the GSI value was lower for the cpDNA of most of the putative hybrids, implying that these regions have not yet coalesced in these lineages despite being haploid. The JML test that evaluates simulated species pairwise distances against observed distances also implies that observed nrDNA data generate shorter distances than simulated data, implying hybridization. It is most likely that C. gigantifolia, C. rubriacuta, and C. sp. nov. represent a lineage from a hybrid ancestor, but C. moorei may be a more recent hybrid and may still be undergoing hybridization with sympatric species.


Assuntos
Hibridização Genética , Lamiales/classificação , Teorema de Bayes , Cloroplastos/genética , DNA de Plantas/química , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Lamiales/genética , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Simpatria
15.
PLoS One ; 11(12): e0167610, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28030566

RESUMO

The genus Pinguicula (Lentibulariaceae) consists of about 100 carnivorous species, also known as butterworts. Eleven taxa are endemic to Italy, which represents a biodiversity hotspot for butterworts in Europe. The aim of our study was to provide a phylogenetic framework for the Italian endemics, in order to: a) investigate the relationships between species in this group; b) evaluate their actual taxonomic value. To achieve this, we analysed all the taxa endemic to Italy, along with several other species, by means of ITS nrDNA analysis. Our results clarify the relationships between Italian endemics and other Pinguicula taxa identifying a basal polytomy defined by five clades. All of the Italian endemics (with the exception of P. lavalvae) fall within a single large clade, which includes P. vulgaris and allied species. Among them, P. poldinii represents the most isolated lineage. Other taxa show strong molecular similarities and form a single subclade, although their taxonomic ranks can be retained. Pinguicula lattanziae sp. nov., seemingly endemic to Liguria (NW Italy), is also described.


Assuntos
Biodiversidade , Lamiales/classificação , Filogenia , Itália , Lamiales/crescimento & desenvolvimento
16.
PLoS One ; 11(10): e0165176, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27764252

RESUMO

Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(P)H-dehydrogenase (ndh) gene complex were observed. Comparisons among aquatic and terrestrial forms of Pinguicula, Genlisea, and Utricularia indicate that, whereas the aquatic forms retained functional copies of the eleven ndh genes, these have been lost or truncated in terrestrial forms, suggesting that the ndh function may be dispensable in terrestrial Lentibulariaceae. Phylogenetic scenarios of the ndh gene loss and recovery among Pinguicula, Genlisea, and Utricularia to the ancestral Lentibulariaceae cladeare proposed. Interestingly, RNAseq analysis evidenced that U. reniformis cp genes are transcribed, including the truncated ndh genes, suggesting that these are not completely inactivated. In addition, potential novel RNA-editing sites were identified in at least six U. reniformis cp genes, while none were identified in the truncated ndh genes. Moreover, phylogenomic analyses support that Lentibulariaceae is monophyletic, belonging to the higher core Lamiales clade, corroborating the hypothesis that the first Utricularia lineage emerged in terrestrial habitats and then evolved to epiphytic and aquatic forms. Furthermore, several truncated cp genes were found interspersed with U. reniformis mitochondrial and nuclear genome scaffolds, indicating that as observed in other smaller plant genomes, such as Arabidopsis thaliana, and the related and carnivorous Genlisea nigrocaulis and G. hispidula, the endosymbiotic gene transfer may also shape the U. reniformis genome in a similar fashion. Overall the comparative analysis of the U. reniformis cp genome provides new insight into the ndh genes and cp genome evolution of carnivorous plants from Lentibulariaceae family.


Assuntos
Genoma de Cloroplastos , Lamiales/classificação , Lamiales/genética , NADH Desidrogenase/genética , Proteínas de Plantas/genética , Teorema de Bayes , Códon , Evolução Molecular , Funções Verossimilhança , Repetições de Microssatélites/genética , NADH Desidrogenase/classificação , NADH Desidrogenase/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Edição de RNA , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Transcriptoma
17.
Zhongguo Zhong Yao Za Zhi ; 41(9): 1658-1669, 2016 May.
Artigo em Chinês | MEDLINE | ID: mdl-28891616

RESUMO

The Ultra-high Performance Liquid Chromatography Quadrupole Time-of-flight Mass Spectrometry(UPLC-Q-TOF-MS)was applied to analyze the chemical components in Lysinotus wilsonii. A Waters ACQUITY UPLC-BEH-C18 S column(2.1 mm×100 mm,1.7 µm)was used with a gradient elution of acetonitrile-water containing 0.1% formic acid. The mass spectrometry equipped with ionization source was used and the data was collected in negative ion mode. Results showed that 57 components were identified as 42 phenylethanoid glycosides, 5 benzyl alcohol glycosides, 6 flavonoids and 4 other components. Among them, 43 compounds were firstly identified in Gensneriaceae and one benzyl alcohol glycoside may be a new compound. We have quite completely identified the components in L. wilsonii for the first time, which may lay the foundation for further study and utilization of the medicinal plant.


Assuntos
Medicamentos de Ervas Chinesas/química , Flavonoides/isolamento & purificação , Glicosídeos/isolamento & purificação , Lamiales/classificação , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Compostos Fitoquímicos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
18.
Am J Bot ; 102(8): 1260-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26290549

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: CYCLOIDEA2 (CYC2)-like and RADIALIS (RAD)-like genes are needed for the normal development of corolla bilateral symmetry in Antirrhinum majus L. (snapdragon, Plantaginaceae, Lamiales). However, if and how changes in expression of CYC2-like and RAD-like genes correlate with the origin of corolla bilateral symmetry early in Lamiales remains largely unknown. The asymmetrical expression of CYC2-like and/or RAD-like genes during floral meristem development could be ancestral or derived in Plantaginaceae.• METHODS: We used in situ RNA localization to examine the expression of CYC2-like and RAD-like genes in two early-diverging Lamiales.• KEY RESULTS: CYC2-like and RAD-like genes are expressed broadly in the floral meristems in early-diverging Lamiales with radially symmetrical corollas, in contrast to their restricted expression in adaxial/lateral regions in core Lamiales. The expression pattern of CYC2-like genes has evolved in stepwise fashion, in that CYC2-like genes are likely expressed briefly in the floral meristem during flower development in sampled Oleaceae; prolonged expression of CYC2-like genes in petals originated in the common ancestor of Tetrachondraceae and core Lamiales, and asymmetrical expression in adaxial/lateral petals appeared later, in the common ancestor of the core Lamiales. Likewise, expression of RAD-like genes in petals appeared in early-diverging Lamiales or earlier; asymmetrical expression in adaxial/lateral petals then appeared in core Lamiales.• CONCLUSIONS: These data plus published reports of CYC2-like and RAD-like genes show that asymmetrical expression of these two genes is likely derived and correlates with the origins of corolla bilateral symmetry.


Assuntos
Evolução Biológica , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Lamiales/classificação , Lamiales/genética , Proteínas de Plantas/genética , Flores/genética , Lamiales/crescimento & desenvolvimento , Lamiales/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
19.
Sci Rep ; 5: 11636, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26109237

RESUMO

Genome size is of fundamental biological importance with significance in predicting structural and functional attributes of organisms. Although abundant evidence has shown that the genome size can be largely explained by differential proliferation and removal of non-coding DNA of the genome, the evolutionary and ecological basis of genome size variation remains poorly understood. Nitrogen (N) and phosphorus (P) are essential elements of DNA and protein building blocks, yet often subject to environmental limitation in natural ecosystems. Using phylogenetic comparative methods, we test this hypothesis by determining whether leaf N and P availability affects genome sizes in 99 species of Primulina (Gesneriaceae), a group of soil specialists adapted to limestone karst environment in south China. We find that genome sizes in Primulina are strongly positively correlated with plant N content, but the correlation with plant P content is not significant when phylogeny history was taken into account. This study shows for the first time that N limitation might have been a plausible driver of genome size variation in a group of plants. We propose that competition for nitrogen nutrient between DNA synthesis and cellular functions is a possible mechanism for genome size evolution in Primulina under N-limitation.


Assuntos
Evolução Molecular , Tamanho do Genoma/genética , Lamiales/genética , Lamiales/metabolismo , Nitrogênio/metabolismo , Adaptação Fisiológica/genética , Carbonato de Cálcio/química , Carbono/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Ecossistema , Genoma de Planta/genética , Lamiales/classificação , Fósforo/metabolismo , Filogenia , Solo/química , Especificidade da Espécie
20.
Mol Ecol Resour ; 15(3): 619-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25243665

RESUMO

The genus Primulina is an emerging model system in studying the drivers and mechanisms of species diversification, for its high species richness and endemism, together with high degree of habitat specialization. In this study, we sequenced transcriptomes for eleven Primulina species across the phylogeny of the genus using the Illumina HiSeq 2000 platform. A total of 336 million clean reads were processed into 355 573 unigenes with a mean length of 1336 bp and an N50 value of 2191 bp after pooling and reassembling twelve individual pre-assembled unigene sets. Of these unigenes, 249 973 (70%) were successfully annotated and 256 601 (72%) were identified as coding sequences (CDSs). We identified a total of 38 279 simple sequence repeats (SSRs) and 367 123 single nucleotide polymorphisms (SNPs). Marker validation assay revealed that 354 (27.3%) of the 1296 SSR and 795 (39.6%) of the 2008 SNP loci showed successful genotyping performance and exhibited expected polymorphism profiles. We screened 834 putative single-copy nuclear genes and proved their high effectiveness in phylogeny construction and estimation of ancestral population parameters. We identified a total of 85 candidate orthologs under positive selection for 46 of the 66 species pairs. This study provided an efficient application of RNA-seq in development of genomic resources for a group of 'stone plants' from south China Karst regions, a biodiversity hot spot of the World. The assembled unigenes with annotations and the massive gene-associated molecular markers would help guide further molecular systematic, population genetic and ecological genomics studies in Primulina and its relatives.


Assuntos
Biodiversidade , Variação Genética , Lamiales/classificação , Lamiales/genética , Transcriptoma , China , Marcadores Genéticos , Técnicas de Genotipagem , Anotação de Sequência Molecular , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...