Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 380(6651): 1275-1281, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37347863

RESUMO

Growth coordination between cell layers is essential for development of most multicellular organisms. Coordination may be mediated by molecular signaling and/or mechanical connectivity between cells, but how genes modify mechanical interactions between layers is unknown. Here we show that genes driving brassinosteroid synthesis promote growth of internal tissue, at least in part, by reducing mechanical epidermal constraint. We identified a brassinosteroid-deficient dwarf mutant in the aquatic plant Utricularia gibba with twisted internal tissue, likely caused by mechanical constraint from a slow-growing epidermis. We tested this hypothesis by showing that a brassinosteroid mutant in Arabidopsis enhances epidermal crack formation, indicative of increased tissue stress. We propose that by remodeling cell walls, brassinosteroids reduce epidermal constraint, showing how genes can control growth coordination between layers by means of mechanics.


Assuntos
Brassinosteroides , Lamiales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/biossíntese , Comunicação Celular , Parede Celular/metabolismo , Lamiales/citologia , Lamiales/genética , Lamiales/metabolismo , Epiderme Vegetal/metabolismo
2.
Molecules ; 27(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35164250

RESUMO

It is not easy to find data in the scientific literature on the quantitative content of individual phytochemicals. It is possible to find groups of compounds and even individual compounds rather easily, but it is not known what their concentration is in cultivated or wild plants. Therefore, the subject of this study was to determine the content of individual compounds in the new Paulownia species, Oxytree, developed in a biotechnology laboratory in 2008 at La Mancha University in Spain. Six secondary metabolites were isolated, and their chemical structure was confirmed by spectral methods. An analytical method was developed, which was then used to determine the content of individual compounds in leaves, twigs, flowers and fruits of Paulownia Clon in Vitro 112®. No flavonoids were found in twigs and fruits of Oxytree, while the highest phenylethanoid glycosides were found in twigs. In this study, we also focused on biological properties (anticoagulant or procoagulant) of extract and four fractions (A-D) of different chemical composition from Paulownia Clon in Vitro 112 leaves using whole human blood. These properties were determined based on the thrombus-formation analysis system (T-TAS), which imitates in vivo conditions to assess whole blood thrombogenecity. We observed that three fractions (A, C and D) from leaves decrease AUC10 measured by T-TAS. In addition, fraction D rich in triterpenoids showed the strongest anticoagulant activity. However, in order to clarify the exact mechanism of action of the active substances present in this plant, studies closer to physiological conditions, i.e., in vivo studies, should be performed, which will also allow to determine the effects of their long-term effects.


Assuntos
Anticoagulantes/farmacologia , Sangue , Lamiales/química , Extratos Vegetais/farmacologia , Anticoagulantes/farmacocinética , Área Sob a Curva , Plaquetas/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Lamiales/metabolismo , Espectrometria de Massas/métodos , Extratos Vegetais/farmacocinética , Folhas de Planta/química
3.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35216188

RESUMO

The establishment of dorsal-ventral (DV) petal asymmetry is accompanied by differential growth of DV petal size, shape, and color differences, which enhance ornamental values. Genes involved in flower symmetry in Sinningia speciosa have been identified as CYCLOIDEA (SsCYC), but which gene regulatory network (GRN) is associated with SsCYC to establish DV petal asymmetry is still unknown. To uncover the GRN of DV petal asymmetry, we identified 630 DV differentially expressed genes (DV-DEGs) from the RNA-Seq of dorsal and ventral petals in the wild progenitor, S. speciosa 'ES'. Validated by qRT-PCR, genes in the auxin signaling transduction pathway, SsCYC, and a major regulator of anthocyanin biosynthesis were upregulated in dorsal petals. These genes correlated with a higher endogenous auxin level in dorsal petals, with longer tube length growth through cell expansion and a purple dorsal color. Over-expression of SsCYC in Nicotiana reduced petal size by regulating cell growth, suggesting that SsCYC also controls cell expansion. This suggests that auxin and SsCYC both regulate DV petal asymmetry. Transiently over-expressed SsCYC, however, could not activate most major auxin signaling genes, suggesting that SsCYC may not trigger auxin regulation. Whether auxin can activate SsCYC or whether they act independently to regulate DV petal asymmetry remains to be explored in the future.


Assuntos
Flores/genética , Ácidos Indolacéticos/metabolismo , Lamiales/genética , Transcriptoma/genética , Flores/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Lamiales/metabolismo , Transdução de Sinais/genética , Nicotiana/genética , Nicotiana/metabolismo
4.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070693

RESUMO

In most angiosperms, the female gametophyte is hidden in the mother tissues and the pollen tube enters the ovule via a micropylar canal. The mother tissues play an essential role in the pollen tube guidance. However, in Utricularia, the female gametophyte surpasses the entire micropylar canal and extends beyond the limit of the integument. The female gametophyte then invades the placenta and a part of the central cell has direct contact with the ovary chamber. To date, information about the role of the placenta and integument in pollen tube guidance in Utricularia, which have extra-ovular female gametophytes, has been lacking. The aim of this study was to evaluate the role of the placenta, central cell and integument in pollen tube pollen tube guidance in Utricularia nelumbifolia Gardner and Utricularia humboldtii R.H. Schomb. by studying the production of arabinogalactan proteins. It was also determined whether the production of the arabinogalactan proteins is dependent on pollination in Utricularia. In both of the examined species, arabinogalactan proteins (AGPs) were observed in the placenta (epidermis and nutritive tissue), ovule (integument, chalaza), and female gametophyte of both pollinated and unpollinated flowers, which means that the production of AGPs is independent of pollination; however, the production of some AGPs was lower after fertilization. There were some differences in the production of AGPs between the examined species. The occurrence of AGPs in the placental epidermis and nutritive tissue suggests that they function as an obturator. The production of some AGPs in the ovular tissues (nucellus, integument) was independent of the presence of a mature embryo sac.


Assuntos
Parede Celular/metabolismo , Lamiales/metabolismo , Óvulo Vegetal/metabolismo , Tubo Polínico/metabolismo , Polinização
5.
Acta Biochim Pol ; 68(2): 277-286, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33979512

RESUMO

Haberlea rhodopensis is a paleolithic tertiary relict species that belongs to the unique group of resurrection plants sharing remarkable tolerance to desiccation. When exposed to severe drought stress, this species shows an ability to maintain structural integrity of its deactivated photosynthetic apparatus, which easily reactivates upon rehydration. In addition to its homoiochlorophyllous nature, the resurrection capability of H. rhodopensis is of particular importance to the global climate change mitigation. In this study, we sequenced, assembled, and analyzed the mitochondrial (mt) genome of H. rhodopensis for the first time. The master circle has a typical circular structure of 484 138 bp in length with a 44.1% GC content in total. The mt genome of H. rhodopensis contains 59 genes in total, including 35 protein-coding, 21 tRNAs, and 3 rRNAs genes. 7 tandem repeats and 85 simple sequence repeats (SSRs) are distributed throughout the mt genome. The alignment of 20 plant mt genomes confirms the phylogenetic position of H. rhodopensis in the Lamiales order. Our comprehensive analysis of the complete mt genome of H. rhodopensis is a significant addition to the limited database of organelle genomes of resurrection species. Comparative and phylogenetic analysis provides valuable information for a better understanding of mitochondrial molecular evolution in plants.


Assuntos
Craterostigma/genética , Genoma Mitocondrial , Craterostigma/metabolismo , Desidratação/metabolismo , Secas , Genes de Plantas , Lamiales/genética , Lamiales/metabolismo , Fotossíntese , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Sequências de Repetição em Tandem , Água
6.
Biomed Pharmacother ; 137: 111301, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33561640

RESUMO

BACKGROUND: Paulownia Clone in Vitro 112, also known as Oxytree is a hybrid of Paulownia elongata and Paulownia fortunei, developed under laboratory conditions. Its seeds are sterile, making it a noninvasive variety that can only be propagated in the laboratory. In China, species from the Paulownia genus (Paulowniaceae) are widely used in traditional medicine for the treatment of infectious diseases, such as gonorrhea and erysipelas. It has a broad spectrum of bioactivity, including neuroprotective, antioxidant, antibacterial, antiphlogistic, antiviral, and cytotoxic actions. However, the antiplatelet potential of Paulownia Clone in Vitro 112 has not yet been described. STUDY DESIGN: The aim of our study was thus to examine the effect of an extract and four fractions from leaves of Paulownia Clone in Vitro 112 on various parameters of platelet activation in an in vitro model. METHODS: Composition of the investigated extract and fractions was determined by UHPLC-UV-MS. The following parameters of platelet activation were investigated: nonenzymatic lipid peroxidation in resting platelets; enzymatic lipid peroxidation (AA metabolism) in platelets activated by thrombin; superoxide anion (O2-.) generation in the resting and activated platelets; platelet adhesion to collagen type I and fibrinogen; platelet aggregation stimulated by various physiological agonists, such as ADP, collagen, and thrombin. The effect of the extract and fractions on extracellular LDH activity, a marker of cell damage, was also determined. RESULTS: Verbascoside a phenylethnanoid glycoside, was the main secondary metabolite of the extract from leaves of oxytree (constituting approximately 45 % of all compounds). There were also iridoids, such as catalpol, aucubin, and 7-hydroxytomentoside, as well as flavonoids, such as luteolin and apigenin glycosides. Moreover, the extract had stronger antiplatelet properties than the fractions. For example, the extract at 10 µg/mL inhibited five parameters of platelet activation. CONCLUSIONS: Our results show that Paulownia Clone in Vitro 112 leaves are a new valuable source of compounds with antiplatelet potential.


Assuntos
Plaquetas/efeitos dos fármacos , Lamiales , Extratos Vegetais/farmacologia , Plantas Geneticamente Modificadas , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Plaquetas/metabolismo , Clonagem Molecular , Feminino , Glucosídeos/farmacologia , Humanos , Lamiales/genética , Lamiales/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Fenóis/farmacologia , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/isolamento & purificação , Metabolismo Secundário
7.
Plant Physiol ; 185(1): 137-145, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631800

RESUMO

The progression of the cell cycle is continuous in most cells, but gametes (sperm and egg cells) exhibit an arrest of the cell cycle to await fertilization to form a zygote, which then continues through the subsequent phases to complete cell division. The phase in which gametes of flowering plants arrest has been a matter of debate, since different phases have been reported for the gametes of different species. In this study, we reassessed the phase of cell-cycle arrest in the gametes of two species, Arabidopsis (Arabidopsis thaliana) and Torenia fournieri. We first showed that 4', 6-diamidino-2-phenylindole staining was not feasible to detect changes in gametic nuclear DNA in T. fournieri. Next, using 5-ethynyl-2'-deoxyuridine (EdU) staining that detects DNA replication by labeling the EdU absorbed by deoxyribonucleic acid, we found that the replication of nuclear DNA did not occur during gamete development but during zygote development, revealing that the gametes of these species have a haploid nuclear DNA content before fertilization. We thus propose that gametes in the G1 phase participate in the fertilization event in Arabidopsis and T. fournieri.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Replicação do DNA , Lamiales/crescimento & desenvolvimento , Lamiales/genética , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo , Arabidopsis/metabolismo , Variação Genética , Genótipo , Lamiales/metabolismo , Magnoliopsida/genética , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
8.
Ecotoxicol Environ Saf ; 196: 110538, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32244118

RESUMO

The use of phytoremediation was an efficient strategy for the restoration of mine slag and the addition of modifier was favorable for improving the phytoremediation efficiency. Herein, spent mushroom compost (SMC) was added in manganese (Mn) slag to reveal the phytoremediation potential of Paulownia fortunei seedlings. The transportation, subcellular distribution and chemical forms of Mn in P. fortunei, the diurnal variation of photosynthesis and antioxidant enzyme activities in P. fortunei leaves were measured to reveal the effect of SMC (mass ratios of 10%, M+) on the phytoremediation of Mn slag. Results showed that the addition of SMC increased the accumulation content of Mn by 408.54% due to the increased biomass of P. fortunei seedlings. After SMC amendment, the maximum net photosynthetic rate (Pn) increased and the superoxide dismutase (SOD) activities decreased significantly (p < 0.05), which was beneficial to the tolerance of leaves to Mn stress. SMC amendment maintained the cell structural integrity of P. fortunei seedlings observed by transmission electron microscope (TEM). Additionally, SMC amendment decreased the damage level of Mn to the cell of P. fortunei seedlings by using function groups (-CH3 and -COOH) to bond Mn in the cell walls and vacuoles. SMC amendment reduced the Mn toxicity to P. fortunei seedlings and improved the phytoremediation capacity.


Assuntos
Agaricales/metabolismo , Compostagem , Lamiales/metabolismo , Manganês/metabolismo , Poluentes do Solo/metabolismo , Antioxidantes/metabolismo , Biodegradação Ambiental , Biomassa , Fotossíntese , Plântula/metabolismo
9.
Environ Sci Pollut Res Int ; 27(1): 424-437, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31797270

RESUMO

The purpose of this study was to monitor and model indicators of soil contamination, organic matter evolution and biochemical processes involved in a long-term phytoremediation process. Populus nigra L., Paulownia tomentosa Steud., Cytisus scoparius L. and natural vegetation were used in differently contaminated areas (high, medium and low levels of contamination). Parameters indicating contamination (total petroleum hydrocarbons (TPH) and heavy metals) and agronomic (C, N and P) and functional (enzyme activities) soil recovery were monitored for 3.5 years. Three subareas with different levels of contamination (high, medium and low) were identified according to the Nemerow Index. A considerable decrease in TPH (52% on average) over time in the whole site was measured, while the metal reduction was only of about 22% at surface level. A stimulation in metabolic soil processes and improvement in the chemical quality of the soil was also observed throughout the experimental site. Statistical analysis modelling showed that the contaminant content decreased following a one-phase decay model, while the dramatic increase in enzyme activities could be represented by an exponential growth equation. On the basis of our data, it is possible to conclude that the initial contamination level affected neither the decontamination process nor the improvement in soil quality, which occurred similarly in the three different contaminated areas.


Assuntos
Biodegradação Ambiental , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Hidrocarbonetos/análise , Lamiales/metabolismo , Metais Pesados/análise , Petróleo/análise , Populus/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
10.
Int J Mol Sci ; 20(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146369

RESUMO

Clinopodium chinense (Benth.) O. Kuntze (C. chinense) is an important herb in traditional Chinese medicine. Triterpenoid saponins are a major class of active compounds in C. chinense with broad pharmacological activities and hemostatic, antitumor, and anti-hyperglycemic effects. To identify genes involved in triterpenoid saponin biosynthesis, transcriptomic analyses of leaves, stems, and roots from C. chinense were performed. A total of 135,968 unigenes were obtained by assembling the leaf, stem, and root transcripts, of which 102,154 were annotated in public databases. Differentially expressed genes were determined based on expression profile analysis and analyzed for differential expression of unique genes related to triterpenoid saponin biosynthesis. Multiple unigenes encoding crucial enzymes or transcription factors involved in triterpenoid saponin synthesis were identified and analyzed. The expression levels of unigenes encoding enzymes were experimentally validated using quantitative real-time PCR. This study greatly broadens the public transcriptome database for this species and provides a valuable resource for identifying candidate genes involved in the biosynthesis of triterpenoid saponins and other secondary metabolites.


Assuntos
Genes de Plantas , Lamiales/genética , Saponinas/biossíntese , Transcriptoma , Lamiales/metabolismo , Saponinas/genética
11.
Plant Biol (Stuttg) ; 21(4): 723-731, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30734450

RESUMO

Although common among orchids, pollination by perfume-gathering male euglossine bees is quite rare in other Neotropical families. In Gesneriaceae, for example, it is reported in two genera only, Drymonia and Gloxinia. Flowers of G. perennis are known to emit perfume, thereby attracting male euglossine bees as pollinators. However, detailed reports on the pollination ecology, as well as on chemistry of floral perfume of individuals in natural populations, are still missing. In this study, we report on the pollination ecology of G. perennis, focusing on the ecological significance of its floral perfume. In natural populations in Peru, we documented the floral biology and breeding system of G. perennis, as well as its interaction with flower visitors. We also characterised the chemical composition of floral perfume, as well as its timing of emission. Gloxinia perennis is self-compatible and natural pollination success is high. Spontaneous self-pollination occurs as a 'just in case strategy' when pollinators are scarce. Perfume-collecting males of Eulaema cingulata and El. meriana were identified as pollinators. The perfume bouquet of G. perennis consists of 16 compounds. (E)-Carvone epoxide (41%) and limonene (23%) are the major constituents. Perfume emission is higher at 09:00 h, matching the activity peak of Eulaema pollinators. Flowers of G. perennis have evolved a mixed strategy to ensure pollination (i.e. self- and cross-pollination), but cross-pollination is favoured. The size and behaviour of Eulaema males enables only these bees to successfully cross-pollinate G. perennis. Furthermore, G. perennis floral perfume traits (i.e. chemistry and timing of emission) have evolved to optimise the attraction of these bees.


Assuntos
Flores/fisiologia , Lamiales/fisiologia , Feromônios/metabolismo , Polinização , Animais , Abelhas , Ecologia , Flores/anatomia & histologia , Flores/metabolismo , Lamiales/anatomia & histologia , Lamiales/metabolismo , Peru , Polinização/fisiologia , Fatores de Tempo
12.
BMC Plant Biol ; 18(1): 351, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30541446

RESUMO

BACKGROUND: Water shortage is a major factor that harms agriculture and ecosystems worldwide. Plants display various levels of tolerance to water deficit, but only resurrection plants can survive full desiccation of their vegetative tissues. Haberlea rhodopensis, an endemic plant of the Balkans, is one of the few resurrection plants found in Europe. We performed transcriptomic analyses of this species under slight, severe and full dehydration and recovery to investigate the dynamics of gene expression and associate them with existing physiological and metabolomics data. RESULTS: De novo assembly yielded a total of 142,479 unigenes with an average sequence length of 1034 nt. Among them, 18,110 unigenes were differentially expressed. Hierarchical clustering of all differentially expressed genes resulted in seven clusters of dynamic expression patterns. The most significant expression changes, involving more than 15,000 genes, started at severe dehydration (~ 20% relative water content) and were partially maintained at full desiccation (< 10% relative water content). More than a hundred pathways were enriched and functionally organized in a GO/pathway network at the severe dehydration stage. Transcriptomic changes in key pathways were analyzed and discussed in relation to metabolic processes, signal transduction, quality control of protein and DNA repair in this plant during dehydration and rehydration. CONCLUSION: Reprograming of the transcriptome occurs during severe dehydration, resulting in a profound alteration of metabolism toward alternative energy supply, hormone signal transduction, and prevention of DNA/protein damage under very low cellular water content, underlying the observed physiological and metabolic responses and the resurrection behavior of H. rhodopensis.


Assuntos
Lamiales/genética , Desidratação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Lamiales/metabolismo , Lamiales/fisiologia , Transcriptoma
13.
Plant Physiol Biochem ; 125: 185-192, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29459287

RESUMO

Haberlea rhodopensis is a chlorophyll-retaining resurrection plant, which can survive desiccation to air dry state under both low light and sunny environments. Maintaining the integrity of the membrane during dehydration of resurrection plants is extremely important. In the present study, the diffusion model was improved and used for a first time to evaluate the changes in ion leakage through different cellular compartments upon desiccation of H. rhodopensis and to clarify the reasons for significant increase of electrolyte leakage from dry leaves. The applied diffusion approach allowed us to distinguish the performance of plants subjected to dehydration and subsequent rehydration under different light intensities. Well-hydrated (control) shade plants had lower and slower electrolyte leakage compared to control sun plants as revealed by lower values of phase amplitudes, lower rate constants and ion concentration. In well-hydrated and moderately dehydrated plants (50% relative water content, RWC) ion efflux was mainly due to leakage from apoplast. The electrolyte leakage sharply increased in severely desiccated leaves (8% RWC) from both sun and shade plants mainly due to ion efflux from symplast. After 1 day of rehydration the electrolyte leakage was close to control values, indicating fast recovery of plants. We suggest that the enhanced leakage in air-dried leaves should not be considered as damage but rather as a survival mechanism based on a reversible modification in the structure of cell wall, plasma membrane and alterations in vacuolar system of the cells. However, further studies should be conducted to investigate the changes in cell wall/plasma membrane to support this conclusion.


Assuntos
Íons/metabolismo , Lamiales/metabolismo , Modelos Biológicos , Folhas de Planta/metabolismo , Desidratação/metabolismo
14.
Plant J ; 94(2): 372-392, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29421843

RESUMO

Flavonoid metabolons (weakly-bound multi-enzyme complexes of flavonoid enzymes) are believed to occur in diverse plant species. However, how flavonoid enzymes are organized to form a metabolon is unknown for most plant species. We analyzed the physical interaction partnerships of the flavonoid enzymes from two lamiales plants (snapdragon and torenia) that produce flavones and anthocyanins. In snapdragon, protein-protein interaction assays using yeast and plant systems revealed the following binary interactions: flavone synthase II (FNSII)/chalcone synthase (CHS); FNSII/chalcone isomerase (CHI); FNSII/dihydroflavonol 4-reductase (DFR); CHS/CHI; CHI/DFR; and flavonoid 3'-hydroxylase/CHI. These results along with the subcellular localizations and membrane associations of snapdragon flavonoid enzymes suggested that FNSII serves as a component of the flavonoid metabolon tethered to the endoplasmic reticulum (ER). The observed interaction partnerships and temporal gene expression patterns of flavonoid enzymes in red snapdragon petal cells suggested the flower stage-dependent formation of the flavonoid metabolon, which accounted for the sequential flavone and anthocyanin accumulation patterns therein. We also identified interactions between FNSII and other flavonoid enzymes in torenia, in which the co-suppression of FNSII expression was previously reported to diminish petal anthocyanin contents. The observed physical interactions among flavonoid enzymes of these plant species provided further evidence supporting the long-suspected organization of flavonoid metabolons as enzyme complexes tethered to the ER via cytochrome P450, and illustrated how flavonoid metabolons mediate flower coloration. Moreover, the observed interaction partnerships were distinct from those previously identified in other plant species (Arabidopsis thaliana and soybean), suggesting that the organization of flavonoid metabolons may differ among plant species.


Assuntos
Antirrhinum/metabolismo , Flavonoides/metabolismo , Lamiales/metabolismo , Aciltransferases/metabolismo , Oxirredutases do Álcool/metabolismo , Antocianinas/metabolismo , Antirrhinum/enzimologia , Antirrhinum/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Liases Intramoleculares/metabolismo , Lamiales/enzimologia , Lamiales/crescimento & desenvolvimento , Redes e Vias Metabólicas , Mapas de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
15.
Arch Environ Contam Toxicol ; 75(2): 273-277, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29299657

RESUMO

Plants are an important mode of transfer of contaminants from sediments into food webs. In aquatic ecosystems, contaminant uptake by macrophytes can vary by path of nutrient uptake (roots vs. absorption from water column). Carnivorous plants likely have additional exposure through consumption of small aquatic organisms. This study expanded on previous research suggesting that bladderworts (Genus Utricularia) accumulate radiocesium (137Cs) and examined for (1) a potential association between sediment and plant concentrations and (2) differences in 137Cs accumulation among rooted and free floating Utricularia species. A strong correlation was found between average 137Cs concentrations in all Utricularia species (combined) and sediments (rs = 0.9, p = 0.0374). Among three bladderwort species at common sites, Utricularia floridana, the only rooted species, had higher mean 137Cs concentrations than Utricularia purpurea, and U. purpurea had a greater mean 137Cs concentration than Utricularia inflata.


Assuntos
Radioisótopos de Césio/análise , Lamiales/efeitos dos fármacos , Poluentes Radioativos da Água/análise , Animais , Carnívoros , Radioisótopos de Césio/farmacocinética , Ecossistema , Biomarcadores Ambientais , Sedimentos Geológicos/análise , Lamiales/metabolismo , Rios , South Carolina , Poluentes Radioativos da Água/farmacocinética
16.
PLoS One ; 12(3): e0172633, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28273106

RESUMO

Polyploidy events are believed to be responsible for increasing the size of plant organs and enhancing tolerance to environmental stresses. Autotetraploid Paulownia australis plants exhibit superior traits compared with their diploid progenitors. Although some transcriptomics studies have been performed and some relevant genes have been revealed, the molecular and biological mechanisms regulating the predominant characteristics and the effects of polyploidy events on P. australis remain unknown. In this study, we compared the phenotypes, microstructures, and proteomes of autotetraploid and diploid P. australis plants. Compared with the diploid plant, the leaves of the autotetraploid plant were longer and wider, and the upper epidermis, lower epidermis, and palisade layer of the leaves were thicker, the leaf spongy parenchyma layer was thinner, the leaf cell size was bigger, and cell number was lower. In the proteome analysis, 3,010 proteins were identified and quantified, including 773 differentially abundant proteins. These results may help to characterize the P. australis proteome profile. Differentially abundant proteins related to cell division, glutathione metabolism, and the synthesis of cellulose, chlorophyll, and lignin were more abundant in the autotetraploid plants. These results will help to enhance the understanding of variations caused by polyploidy events in P. australis. The quantitative real-time PCR results provided details regarding the expression patterns of the proteins at mRNA level. We observed a limited correlation between transcript and protein levels. These observations may help to clarify the molecular basis for the predominant autotetraploid characteristics and be useful for plant breeding in the future.


Assuntos
Lamiales/genética , Lamiales/metabolismo , Fenótipo , Poliploidia , Proteoma , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genoma de Planta , Folhas de Planta , Característica Quantitativa Herdável
17.
Sci Rep ; 6: 24662, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27090564

RESUMO

An efficient protocol providing a dual regeneration pathway via direct shoot organogenesis and somatic embryogenesis for an endangered species, Metabriggsia ovalifolia W. T. Wang, was established from leaf explants. When applied at 2.5 µM, the cytokinins 6-benzyladenine (BA) or thidiazuron (TDZ) and the auxins indole-3-butyric acid (IBA), α-naphthaleneacetic acid (NAA) and indole-3-acetic acid (IAA) could induce shoots when on basal Murashige and Skoog (MS) medium. BA and TDZ could induce more adventitious shoots (19.1 and 31.2/explant, respectively) than NAA (4.6/explant), IBA (5.7/explant) or IAA (6.4/explant). BA and TDZ at 5-10 µM could induce both shoots and somatic embryos. A higher concentration of TDZ (25 µM) induced only somatic embryos (39.8/explant). The same concentration of BA induced both adventitious shoots (23.6/explant) and somatic embryos (9.7/explant). Thus, somatic embryogenesis in this plant needs a high cytokinin concentration (BA; TDZ), as evidenced by histology. Somatic embryos germinated easily when left on the same media, but formed adventitious roots in two weeks on MS supplemented with 0.5 µM NAA, 0.5 µM IBA and 0.1% activated charcoal. Over 93% of plantlets survived following acclimatization and transfer to a mixture of sand and vermiculite (1:1, v/v) in trays.


Assuntos
Espécies em Perigo de Extinção , Lamiales/citologia , Brotos de Planta/crescimento & desenvolvimento , Técnicas de Embriogênese Somática de Plantas/métodos , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Lamiales/metabolismo , Lamiales/fisiologia , Brotos de Planta/citologia , Brotos de Planta/metabolismo
18.
Int J Phytoremediation ; 18(4): 378-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26555402

RESUMO

A phytoremediation process with horse manure, plants (Populus alba, Cytisus scoparius, Paulownia tomentosa) and naturally growing vegetation was carried out at a real-scale in order to phytoremediate and functionally recover a soil contaminated by metals (Zn, Pb, Cd, Ni, Cu, Cr), hydrocarbons (TPH) and polychlorobiphenyls (PCB). All the plants were effective in two years in the reclamation of the polluted soil, showing an average reduction of about 35%, 40%, and 70% in metals, TPH and PCB content, respectively. As regards the plants, the poplar contributed the most to organic removal. In fact, its ability to take up and detoxify organic pollutants is well known. Paulownia tomentosa, instead, showed high metal removal. The Cytisus scoparius was the least effective plant in soil decontamination. The recovery of soil functionality was followed by enzyme activities, expressing the biochemical processes underway, and nutrient content useful for plant growth and development. Throughout the area, an enhancement of metabolic processes and soil chemical quality was observed. All the enzymatic activities showed a general increase over time (until 3-4 fold than the initial value for urease and ß-glucosidase). Moreover, Cytisus scoparius, even though it showed a lower decontamination capability, was the most effective in soil metabolic stimulation.


Assuntos
Cytisus/metabolismo , Recuperação e Remediação Ambiental/métodos , Lamiales/metabolismo , Populus/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Cytisus/química , Recuperação e Remediação Ambiental/instrumentação , Hidrocarbonetos/análise , Hidrocarbonetos/metabolismo , Lamiales/química , Esterco/análise , Metais Pesados/análise , Metais Pesados/metabolismo , Populus/química , Poluentes do Solo/análise
19.
Am J Bot ; 102(8): 1260-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26290549

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: CYCLOIDEA2 (CYC2)-like and RADIALIS (RAD)-like genes are needed for the normal development of corolla bilateral symmetry in Antirrhinum majus L. (snapdragon, Plantaginaceae, Lamiales). However, if and how changes in expression of CYC2-like and RAD-like genes correlate with the origin of corolla bilateral symmetry early in Lamiales remains largely unknown. The asymmetrical expression of CYC2-like and/or RAD-like genes during floral meristem development could be ancestral or derived in Plantaginaceae.• METHODS: We used in situ RNA localization to examine the expression of CYC2-like and RAD-like genes in two early-diverging Lamiales.• KEY RESULTS: CYC2-like and RAD-like genes are expressed broadly in the floral meristems in early-diverging Lamiales with radially symmetrical corollas, in contrast to their restricted expression in adaxial/lateral regions in core Lamiales. The expression pattern of CYC2-like genes has evolved in stepwise fashion, in that CYC2-like genes are likely expressed briefly in the floral meristem during flower development in sampled Oleaceae; prolonged expression of CYC2-like genes in petals originated in the common ancestor of Tetrachondraceae and core Lamiales, and asymmetrical expression in adaxial/lateral petals appeared later, in the common ancestor of the core Lamiales. Likewise, expression of RAD-like genes in petals appeared in early-diverging Lamiales or earlier; asymmetrical expression in adaxial/lateral petals then appeared in core Lamiales.• CONCLUSIONS: These data plus published reports of CYC2-like and RAD-like genes show that asymmetrical expression of these two genes is likely derived and correlates with the origins of corolla bilateral symmetry.


Assuntos
Evolução Biológica , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Lamiales/classificação , Lamiales/genética , Proteínas de Plantas/genética , Flores/genética , Lamiales/crescimento & desenvolvimento , Lamiales/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
20.
Sci Rep ; 5: 11636, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26109237

RESUMO

Genome size is of fundamental biological importance with significance in predicting structural and functional attributes of organisms. Although abundant evidence has shown that the genome size can be largely explained by differential proliferation and removal of non-coding DNA of the genome, the evolutionary and ecological basis of genome size variation remains poorly understood. Nitrogen (N) and phosphorus (P) are essential elements of DNA and protein building blocks, yet often subject to environmental limitation in natural ecosystems. Using phylogenetic comparative methods, we test this hypothesis by determining whether leaf N and P availability affects genome sizes in 99 species of Primulina (Gesneriaceae), a group of soil specialists adapted to limestone karst environment in south China. We find that genome sizes in Primulina are strongly positively correlated with plant N content, but the correlation with plant P content is not significant when phylogeny history was taken into account. This study shows for the first time that N limitation might have been a plausible driver of genome size variation in a group of plants. We propose that competition for nitrogen nutrient between DNA synthesis and cellular functions is a possible mechanism for genome size evolution in Primulina under N-limitation.


Assuntos
Evolução Molecular , Tamanho do Genoma/genética , Lamiales/genética , Lamiales/metabolismo , Nitrogênio/metabolismo , Adaptação Fisiológica/genética , Carbonato de Cálcio/química , Carbono/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Ecossistema , Genoma de Planta/genética , Lamiales/classificação , Fósforo/metabolismo , Filogenia , Solo/química , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...