Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Small ; 20(19): e2307045, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100142

RESUMO

Since WHO has declared the COVID-19 outbreak a global pandemic, nearly seven million deaths have been reported. This efficient spread of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is facilitated by the ability of the spike glycoprotein to bind multiple cell membrane receptors. Although ACE2 is identified as the main receptor for SARS-CoV-2, other receptors could play a role in viral entry. Among others, C-type lectins such as DC-SIGN are identified as efficient trans-receptor for SARS-CoV-2 infection, so the use of glycomimetics to inhibit the infection through the DC-SIGN blockade is an encouraging approach. In this regard, multivalent nanostructures based on glycosylated [60]fullerenes linked to a central porphyrin scaffold have been designed and tested against DC-SIGN-mediated SARS-CoV-2 infection. First results show an outstanding inhibition of the trans-infection up to 90%. In addition, a deeper understanding of nanostructure-receptor binding is achieved through microscopy techniques, high-resolution NMR experiments, Quartz Crystal Microbalance experiments, and molecular dynamic simulations.


Assuntos
Moléculas de Adesão Celular , Fulerenos , Lectinas Tipo C , Porfirinas , Receptores de Superfície Celular , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , Lectinas Tipo C/metabolismo , Lectinas Tipo C/antagonistas & inibidores , Humanos , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Fulerenos/química , Fulerenos/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , COVID-19/virologia , Ligação Proteica , Simulação de Dinâmica Molecular , Tratamento Farmacológico da COVID-19
2.
N Engl J Med ; 387(4): 321-331, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35939578

RESUMO

BACKGROUND: Blood dendritic cell antigen 2 (BDCA2) is a receptor that is exclusively expressed on plasmacytoid dendritic cells, which are implicated in the pathogenesis of lupus erythematosus. Whether treatment with litifilimab, a humanized monoclonal antibody against BDCA2, would be efficacious in reducing disease activity in patients with cutaneous lupus erythematosus has not been extensively studied. METHODS: In this phase 2 trial, we randomly assigned adults with histologically confirmed cutaneous lupus erythematosus with or without systemic manifestations in a 1:1:1:1 ratio to receive subcutaneous litifilimab (at a dose of 50, 150, or 450 mg) or placebo at weeks 0, 2, 4, 8, and 12. We used a dose-response model to assess whether there was a response across the four groups on the basis of the primary end point, which was the percent change from baseline to 16 weeks in the Cutaneous Lupus Erythematosus Disease Area and Severity Index-Activity score (CLASI-A; scores range from 0 to 70, with higher scores indicating more widespread or severe skin involvement). Safety was also assessed. RESULTS: A total of 132 participants were enrolled; 26 were assigned to the 50-mg litifilimab group, 25 to the 150-mg litifilimab group, 48 to the 450-mg litifilimab group, and 33 to the placebo group. Mean CLASI-A scores for the groups at baseline were 15.2, 18.4, 16.5, and 16.5, respectively. The difference from placebo in the change from baseline in CLASI-A score at week 16 was -24.3 percentage points (95% confidence interval [CI] -43.7 to -4.9) in the 50-mg litifilimab group, -33.4 percentage points (95% CI, -52.7 to -14.1) in the 150-mg group, and -28.0 percentage points (95% CI, -44.6 to -11.4) in the 450-mg group. The least squares mean changes were used in the primary analysis of a best-fitting dose-response model across the three drug-dose levels and placebo, which showed a significant effect. Most of the secondary end points did not support the results of the primary analysis. Litifilimab was associated with three cases each of hypersensitivity and oral herpes infection and one case of herpes zoster infection. One case of herpes zoster meningitis occurred 4 months after the participant received the last dose of litifilimab. CONCLUSIONS: In a phase 2 trial involving participants with cutaneous lupus erythematosus, treatment with litifilimab was superior to placebo with regard to a measure of skin disease activity over a period of 16 weeks. Larger and longer trials are needed to determine the effect and safety of litifilimab for the treatment of cutaneous lupus erythematosus. (Funded by Biogen; LILAC ClinicalTrials.gov number, NCT02847598.).


Assuntos
Anticorpos Monoclonais Humanizados , Lectinas Tipo C , Lúpus Eritematoso Cutâneo , Glicoproteínas de Membrana , Receptores Imunológicos , Adulto , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Relação Dose-Resposta a Droga , Método Duplo-Cego , Herpes Zoster/etiologia , Humanos , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/imunologia , Lúpus Eritematoso Cutâneo/tratamento farmacológico , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/imunologia , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/imunologia , Índice de Gravidade de Doença , Resultado do Tratamento
3.
Biomolecules ; 11(11)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34827585

RESUMO

Glycosylation is an important post-translational modification that affects a wide variety of physiological functions. DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin) is a protein expressed in antigen-presenting cells that recognizes a variety of glycan epitopes. Until now, the binding of DC-SIGN to SARS-CoV-2 Spike glycoprotein has been reported in various articles and is regarded to be a factor in systemic infection and cytokine storm. The mechanism of DC-SIGN recognition offers an alternative method for discovering new medication for COVID-19 treatment. Here, we discovered three potential pockets that hold different glycan epitopes by performing molecular dynamics simulations of previously reported oligosaccharides. The "EPN" motif, "NDD" motif, and Glu354 form the most critical pocket, which is known as the Core site. We proposed that the type of glycan epitopes, rather than the precise amino acid sequence, determines the recognition. Furthermore, we deduced that oligosaccharides could occupy an additional site, which adds to their higher affinity than monosaccharides. Based on our findings and previously described glycoforms on the SARS-CoV-2 Spike, we predicted the potential glycan epitopes for DC-SIGN. It suggested that glycan epitopes could be recognized at multiple sites, not just Asn234, Asn149 and Asn343. Subsequently, we found that Saikosaponin A and Liquiritin, two plant glycosides, were promising DC-SIGN antagonists in silico.


Assuntos
COVID-19/imunologia , Moléculas de Adesão Celular/antagonistas & inibidores , Epitopos/química , Glicosídeos/química , Lectinas Tipo C/antagonistas & inibidores , Polissacarídeos/química , Receptores de Superfície Celular/antagonistas & inibidores , Motivos de Aminoácidos , Sítios de Ligação , COVID-19/metabolismo , Simulação por Computador , Citocinas/metabolismo , Flavanonas/química , Glucosídeos/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Monossacarídeos/química , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Saponinas/química , Glicoproteína da Espícula de Coronavírus/química
4.
J Med Chem ; 64(19): 14332-14343, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34524803

RESUMO

In addition to a variety of viral-glycoprotein receptors (e.g., heparan sulfate, Niemann-Pick C1, etc.), dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), from the C-type lectin receptor family, plays one of the most important pathogenic functions for a wide range of viruses (e.g., Ebola, human cytomegalovirus (HCMV), HIV-1, severe acute respiratory syndrome coronavirus 2, etc.) that invade host cells before replication; thus, its inhibition represents a relevant extracellular antiviral therapy. We report two novel p-tBu-calixarene glycoclusters 1 and 2, bearing tetrahydroxamic acid groups, which exhibit micromolar inhibition of soluble DC-SIGN binding and provide nanomolar IC50 inhibition of both DC-SIGN-dependent Jurkat cis-cell infection by viral particle pseudotyped with Ebola virus glycoprotein and the HCMV-gB-recombinant glycoprotein interaction with monocyte-derived dendritic cells expressing DC-SIGN. A unique cooperative involvement of sugar, linker, and calixarene core is likely behind the strong avidity of DC-SIGN for these low-valent systems. We claim herein new promising candidates for the rational development of a large spectrum of antiviral therapeutics.


Assuntos
Calixarenos/química , Moléculas de Adesão Celular/antagonistas & inibidores , Glicoconjugados/metabolismo , Glicoproteínas/antagonistas & inibidores , Ácidos Hidroxâmicos/química , Lectinas Tipo C/antagonistas & inibidores , Fenóis/química , Receptores de Superfície Celular/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Citomegalovirus/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Ebolavirus/fisiologia , Glicoconjugados/química , Glicoconjugados/farmacologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Células Jurkat , Lectinas Tipo C/metabolismo , Modelos Biológicos , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Sci Rep ; 11(1): 19151, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580321

RESUMO

Due to the wide scale of inflammatory processes in different types of disease, more sensitive and specific biomarkers are required to improve prevention and treatment. Cluster of differentiation 69 (CD69) is one of the earliest cell surface proteins expressed by activated leukocytes. Here we characterize and optimize potential new imaging probes, Affibody molecules targeting CD69 for imaging of activated immune cells. Analysis of candidates isolated in a previously performed selection from a Z variant E. coli library to the recombinant extracellular domain of human CD69, identified one cross-reactive Z variant with affinity to murine and human CD69. Affinity maturation was performed by randomization of the primary Z variant, followed by selections from the library. The resulting Z variants were evaluated for affinity towards human and murine CD69 and thermal stability. The in vivo biodistribution was assessed by SPECT/CT in rats following conjugation of the Z variants by a DOTA chelator and radiolabeling with Indium-111. A primary Z variant with a Kd of approximately 50 nM affinity to human and murine CD69 was identified. Affinity maturation generated 5 additional Z variants with improved or similar affinity. All clones exhibited suitable stability. Radiolabeling and in vivo biodistribution in rat demonstrated rapid renal clearance for all variants, while the background uptake and washout varied. The variant ZCD69:4 had the highest affinity for human and murine CD69 (34 nM) as well as the lowest in vivo background binding. In summary, we describe the discovery, optimization and evaluation of novel Affibody molecules with affinity for CD69. Affibody molecule ZCD69:4 is suitable for further development for imaging of activated immune cells.


Assuntos
Imunoconjugados/farmacocinética , Lectinas Tipo C/antagonistas & inibidores , Imagem Molecular/métodos , Compostos Radiofarmacêuticos/farmacocinética , Proteínas Recombinantes de Fusão/farmacocinética , Animais , Afinidade de Anticorpos , Antígenos CD , Antígenos de Diferenciação de Linfócitos T , Reações Cruzadas , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Radioisótopos de Índio , Injeções Intravenosas , Masculino , Camundongos , Estabilidade Proteica , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Ratos , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Distribuição Tecidual
6.
ChemMedChem ; 16(15): 2345-2353, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34061468

RESUMO

The C-type lectin receptor DC-SIGN mediates interactions with envelope glycoproteins of many viruses such as SARS-CoV-2, ebola, and HIV and contributes to virus internalization and dissemination. In the context of the recent SARS-CoV-2 pandemic, involvement of DC-SIGN has been linked to severe cases of COVID-19. Inhibition of the interaction between DC-SIGN and viral glycoproteins has the potential to generate broad spectrum antiviral agents. Here, we demonstrate that mannose-functionalized poly-l-lysine glycoconjugates efficiently inhibit the attachment of viral glycoproteins to DC-SIGN-presenting cells with picomolar affinity. Treatment of these cells leads to prolonged receptor internalization and inhibition of virus binding for up to 6 h. Furthermore, the polymers are fully bio-compatible and readily cleared by target cells. The thermodynamic analysis of the multivalent interactions reveals enhanced enthalpy-driven affinities and promising perspectives for the future development of multivalent therapeutics.


Assuntos
Antivirais/farmacologia , Moléculas de Adesão Celular/antagonistas & inibidores , Glicoconjugados/farmacologia , Lectinas Tipo C/antagonistas & inibidores , Receptores de Superfície Celular/antagonistas & inibidores , Ligação Viral/efeitos dos fármacos , Antivirais/síntese química , Antivirais/metabolismo , Moléculas de Adesão Celular/metabolismo , Glicoconjugados/síntese química , Glicoconjugados/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Manose/análogos & derivados , Manose/metabolismo , Manose/farmacologia , Testes de Sensibilidade Microbiana , Polilisina/análogos & derivados , Polilisina/metabolismo , Polilisina/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , SARS-CoV-2/efeitos dos fármacos , Células THP-1 , Termodinâmica , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/metabolismo
7.
Oncoimmunology ; 10(1): 1933808, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34188973

RESUMO

Checkpoint blockade therapy is effective against many cancers; however, new targets need to be identified to treat patients who do not respond to current treatment or demonstrate immune escape. Here, we showed that blocking the inhibitory receptor Killer cell lectin-like receptor G1 (KLRG1) enhances anti-tumor immunity mediated by NK cells and CD8+ T cells. We found that loss of KLRG1 signaling alone significantly decreased melanoma and breast cancer tumor growth in the lungs of mice. In addition, we demonstrated that KLRG1 blockade can synergize with PD-1 checkpoint therapy to increase the therapeutic efficacy compared to either treatment alone. This effect was even observed with tumors that do not respond to PD-1 checkpoint therapy. Double blockade therapy led to significantly decreased tumor size, increased frequency and activation of CD8+ T cells, and increased NK cell frequency and maturation in the tumor microenvironment. These findings demonstrate that KLRG1 is a novel checkpoint inhibitor target that affects NK and T cell anti-tumor immunity, both alone and in conjunction with established immunotherapies.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias , Receptor de Morte Celular Programada 1 , Animais , Linfócitos T CD8-Positivos , Humanos , Imunoterapia , Células Matadoras Naturais , Lectinas Tipo C/antagonistas & inibidores , Camundongos , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores Imunológicos/antagonistas & inibidores , Microambiente Tumoral
8.
Front Immunol ; 12: 688643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177942

RESUMO

C-type lectin-like receptor 2 (CLEC-2, also known as CLEC-1b) is expressed on platelets, Kupffer cells and other immune cells, and binds to various ligands including the mucin-like protein podoplanin (PDPN). The role of CLEC-2 in infection and immunity has become increasingly evident in recent years. CLEC-2 is involved in platelet activation, tumor cell metastasis, separation of blood/lymphatic vessels, and cerebrovascular patterning during embryonic development. In this review, we have discussed the role of CLEC-2 in thromboinflammation, and focused on the recent research.


Assuntos
Coagulação Sanguínea , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Trombose/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Fibrinolíticos/uso terapêutico , Humanos , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/imunologia , Lectinas Tipo C/antagonistas & inibidores , Ligantes , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais , Trombose/sangue , Trombose/tratamento farmacológico , Trombose/imunologia
9.
Biol Pharm Bull ; 44(5): 714-723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33952827

RESUMO

Ischemia-reperfusion injury (IRI) is the major cause of acute kidney injury (AKI). The previous studies demonstrated that Oridonin can protect kidney against IRI-induced AKI, but the underlying molecular mechanism is unclear. In this study, it showed that Oridonin significantly improved kidney damage, and inhibited the expression of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α and MCP-1, as well as macrophage marker F4/80 in kidney and the secretion of inflammatory cytokins in serum of AKI mice in vivo. In addition, Oridonin also effectively reduced the expression and secretion of lipopolysaccharide (LPS)-induced inflammatory factors in macrophage cell line RAW264.7 in vitro. Notably, Oridonin strongly downregulated Mincle and AKT/nuclear factor-kappaB (NF-κB) signaling both in vivo and in vitro, and the results of cellular recovery experiments of overexpression of Mincle in macrophage suggested that Oridonin suppressed inflammatory response of macrophage through inhibiting Mincle, which may be the underlying mechanism of Oridonin improving injury in kidney of AKI mice. In summary, the above results indicated that Oridonin can protect kidney from IRI-induced inflammation and injury by inhibiting the expression of Mincle in macrophage.


Assuntos
Injúria Renal Aguda/prevenção & controle , Diterpenos do Tipo Caurano/farmacologia , Macrófagos/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Diterpenos do Tipo Caurano/uso terapêutico , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/imunologia , Rim/patologia , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Células RAW 264.7 , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/imunologia
10.
Monoclon Antib Immunodiagn Immunother ; 40(2): 76-80, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33900816

RESUMO

Killer cell lectin-like receptor subfamily G member 1 (KLRG1), a type II transmembrane protein, was identified as an inhibitory receptor expressed on natural killer (NK) cells and certain T cells. The protein regulates effector functions and developmental processes in these cells. In this study, we established a specific and sensitive monoclonal antibody (mAb) for human KLRG1 (hKLRG1), which is useful for flow cytometry, using a Cell-Based Immunization and Screening (CBIS) method. The established anti-hKLRG1 mAb, KLMab-1 (mouse IgG1, kappa), reacted with overexpressed hKLRG1 in Chinese hamster ovary-K1 (CHO/hKLRG1) and human NK cells, which also expressed endogenous hKLRG1 as confirmed by flow cytometry. KLMab-1, which was established by the CBIS method, could be useful for elucidating the hKLRG1-related biological response by flow cytometry.


Assuntos
Anticorpos Monoclonais/farmacologia , Células Matadoras Naturais/imunologia , Lectinas Tipo C/imunologia , Receptores Imunológicos/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/imunologia , Células CHO , Cricetulus , Humanos , Imunoglobulina G/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/isolamento & purificação , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/isolamento & purificação , Linfócitos T/efeitos dos fármacos
11.
Front Immunol ; 12: 641819, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692811

RESUMO

Nanobodies that are derived from single-chain antibodies of camelids have served as powerful tools in diagnostics, therapeutics and investigation of membrane receptors' structure and function. In this study, we developed a series of nanobodies by a phage display screening building from lymphocytes isolated from an alpaca immunized with recombinant mouse Kupffer cell receptor Clec4F, which is involved in pathogen recognition by binding to galactose and N-acetylgalactosamine. Bio-panning selections retrieved 14 different nanobodies against Clec4F with an affinity ranging from 0.2 to 2 nM as determined by SPR. Those nanobodies mainly recognize 4 different epitopes as analyzed via competitive epitope binning. By analysis of the radioactivity in each organ after injection of 99mTc labeled Clec4F nanobodies in naïve mice, we found that these nanobodies are targeting the liver. Furthermore, we performed a structural characterization at atomic resolution of two of the Clec4F nanobodies from different epitope groups, which revealed distinct features within the CDR2 and CDR3 regions. Taken together, we developed a series of nanobodies targeting multiple distinct recognition epitopes of the Kupffer cell-specific receptor Clec4F which may be useful for its structural and functional investigation as well as for use as molecular imaging and therapeutic agents.


Assuntos
Afinidade de Anticorpos , Células de Kupffer/imunologia , Lectinas Tipo C/imunologia , Fígado/imunologia , Anticorpos de Domínio Único/imunologia , Animais , Lectinas Tipo C/antagonistas & inibidores , Camundongos , Anticorpos de Domínio Único/química
12.
Biochem Soc Trans ; 49(1): 441-453, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33616615

RESUMO

Glycosylation represents one of the most abundant posttranslational modification of proteins. Glycosylation products are diverse and are regulated by the cooperative action of various glycosyltransferases, glycosidases, substrates thereof: nucleoside sugars and their transporters, and chaperons. In this article, we focus on a glycosyltransferase, α1,6-fucosyltransferase (Fut8) and its product, the core fucose structure on N-glycans, and summarize the potential protective functions of this structure against emphysema and chronic obstructive pulmonary disease (COPD). Studies of FUT8 and its enzymatic product, core fucose, are becoming an emerging area of interest in various fields of research including inflammation, cancer and therapeutics. This article discusses what we can learn from studies of Fut8 and core fucose by using knockout mice or in vitro studies that were conducted by our group as well as other groups. We also include a discussion of the potential protective functions of the keratan sulfate (KS) disaccharide, namely L4, against emphysema and COPD as a glycomimetic. Glycomimetics using glycan analogs is one of the more promising therapeutics that compensate for the usual therapeutic strategy that involves targeting the genome and the proteome. These typical glycans using KS derivatives as glycomimetics, will likely become a clue to the development of novel and effective therapeutic strategies.


Assuntos
Materiais Biomiméticos/uso terapêutico , Sulfato de Queratano/química , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Antígenos de Superfície/fisiologia , Materiais Biomiméticos/química , Fucose/metabolismo , Fucosiltransferases/fisiologia , Glicosilação , Humanos , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/fisiologia , Lectinas de Ligação a Manose/antagonistas & inibidores , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose/fisiologia , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular/métodos , Polissacarídeos/química , Polissacarídeos/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo
13.
Am J Hematol ; 96(5): E175-E179, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33617672
14.
Bioorg Chem ; 107: 104566, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387733

RESUMO

The design and synthesis of efficient ligands for DC-SIGN is a topic of high interest, because this C-type lectin has been implicated in the early stages of many infection processes. DC-SIGN membrane-protein presents four carbohydrate-binding domains (CRD) that specifically recognize mannose and fucose. Therefore, antagonists of minimal disaccharide epitope Manα(1,2)Man, represent potentially interesting antibacterial and antiviral agents. In the recent past, we were able to develop efficient antagonists, mimics of the natural moiety, characterized by the presence of a real d-carbamannose unit which confers greater stability to enzymatic breakdown than the corresponding natural disaccharide ligand. Herein, we present the challenging stereoselective synthesis of four new amino or azide glycomimetic DC-SIGN antagonists with attractive orthogonal lipophilic substituents in C(3), C(4) or C(6) positions of the real carba unit, which were expected to establish crucial interactions with lipophilic areas of DC-SIGN CRD. The activity of the new ligands was evaluated by SPR binding inhibition assays. The interesting results obtained, allow to acquire important information about the influence of the lipophilic substituents present in specific positions of the carba scaffold. Furthermore, C(6) benzyl C(4) tosylamide pseudodisaccharide displayed a good affinity for DC-SIGN with a more favorable IC50 value than those of the previously described real carba-analogues. This study provides valuable knowledge for the implementation of further structural modifications towards improved inhibitors.


Assuntos
Moléculas de Adesão Celular/antagonistas & inibidores , Lectinas Tipo C/antagonistas & inibidores , Ligantes , Receptores de Superfície Celular/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/metabolismo , Antivirais/síntese química , Antivirais/química , Antivirais/metabolismo , Bactérias/metabolismo , Moléculas de Adesão Celular/metabolismo , Dissacarídeos/síntese química , Dissacarídeos/química , Dissacarídeos/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Estereoisomerismo , Ressonância de Plasmônio de Superfície
15.
Platelets ; 32(6): 744-752, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-33406951

RESUMO

GPVI and CLEC-2 have emerged as promising targets for long-term prevention of both arterial thrombosis and thrombo-inflammation with a decreased bleeding risk relative to current drugs. However, while there are potent blocking antibodies of both receptors, their protein nature comes with decreased bioavailability, making formulation for oral medication challenging. Small molecules are able to overcome these limitations, but there are many challenges in developing antagonists of nanomolar potency, which is necessary when considering the structural features that underlie the interaction of CLEC-2 and GPVI with their protein ligands. In this review, we describe current small-molecule inhibitors for both receptors and strategies to overcome such limitations, including considerations when it comes to in silico drug design and the importance of complex compound library selection.


Assuntos
Plaquetas/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Lectinas Tipo C/antagonistas & inibidores , Ativação Plaquetária/genética , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Animais , Humanos , Modelos Moleculares
16.
Front Immunol ; 12: 807600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987523

RESUMO

Cancer tissues are not just simple masses of malignant cells, but rather complex and heterogeneous collections of cellular and even non-cellular components, such as endothelial cells, stromal cells, immune cells, and collagens, referred to as tumor microenvironment (TME). These multiple players in the TME develop dynamic interactions with each other, which determines the characteristics of the tumor. Platelets are the smallest cells in the bloodstream and primarily regulate blood coagulation and hemostasis. Notably, cancer patients often show thrombocytosis, a status of an increased platelet number in the bloodstream, as well as the platelet infiltration into the tumor stroma, which contributes to cancer promotion and progression. Thus, platelets function as one of the important stromal components in the TME, emerging as a promising chemotherapeutic target. However, the use of traditional antiplatelet agents, such as aspirin, has limitations mainly due to increased bleeding complications. This requires to implement new strategies to target platelets for anti-cancer effects. In oral squamous cell carcinoma (OSCC) patients, both high platelet counts and low tumor-stromal ratio (high stroma) are strongly correlated with increased metastasis and poor prognosis. OSCC tends to invade adjacent tissues and bones and spread to the lymph nodes for distant metastasis, which is a huge hurdle for OSCC treatment in spite of relatively easy access for visual examination of precancerous lesions in the oral cavity. Therefore, locoregional control of the primary tumor is crucial for OSCC treatment. Similar to thrombocytosis, higher expression of podoplanin (PDPN) has been suggested as a predictive marker for higher frequency of lymph node metastasis of OSCC. Cumulative evidence supports that platelets can directly interact with PDPN-expressing cancer cells via C-type lectin-like receptor 2 (CLEC2), contributing to cancer cell invasion and metastasis. Thus, the platelet CLEC2-PDPN axis could be a pinpoint target to inhibit interaction between platelets and OSCC, avoiding undesirable side effects. Here, we will review the role of platelets in cancer, particularly focusing on CLEC2-PDPN interaction, and will assess their potentials as therapeutic targets for OSCC treatment.


Assuntos
Antineoplásicos/uso terapêutico , Plaquetas/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Lectinas Tipo C/antagonistas & inibidores , Glicoproteínas de Membrana/antagonistas & inibidores , Neoplasias Bucais/tratamento farmacológico , Inibidores da Agregação Plaquetária/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Plaquetas/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Terapia de Alvo Molecular , Neoplasias Bucais/sangue , Neoplasias Bucais/patologia , Invasividade Neoplásica , Inibidores da Agregação Plaquetária/efeitos adversos , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/sangue , Carcinoma de Células Escamosas de Cabeça e Pescoço/secundário , Microambiente Tumoral
17.
Leukemia ; 35(6): 1586-1596, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33097838

RESUMO

The low 5-year survival rate for patients with acute myeloid leukemia (AML), primarily caused due to disease relapse, emphasizes the need for better therapeutic strategies. Disease relapse is facilitated by leukemic stem cells (LSCs) that are resistant to standard chemotherapy and promote tumor growth. To target AML blasts and LSCs using natural killer (NK) cells, we have developed a trispecific killer engager (TriKETM) molecule containing a humanized anti-CD16 heavy chain camelid single-domain antibody (sdAb) that activates NK cells, an IL-15 molecule that drives NK-cell priming, expansion and survival, and a single-chain variable fragment (scFv) against human CLEC12A (CLEC12A TriKE). CLEC12A is a myeloid lineage antigen that is highly expressed by AML cells and LSCs, but not expressed by normal hematopoietic stem cells (HSCs), thus minimizing off-target toxicity. The CLEC12A TriKE induced robust NK-cell specific proliferation, enhanced NK-cell activation, and killing of both AML cell lines and primary patient-derived AML blasts in vitro while sparing healthy HSCs. Additionally, the CLEC12A TriKE was able to reduce tumor burden in preclinical mouse models. These findings highlight the clinical potential of the CLEC12A TriKE for the effective treatment of AML.


Assuntos
Imunoterapia/métodos , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Lectinas Tipo C/imunologia , Leucemia Mieloide Aguda/terapia , Receptores de IgG/imunologia , Receptores Mitogênicos/imunologia , Anticorpos de Domínio Único/farmacologia , Animais , Apoptose , Proliferação de Células , Feminino , Proteínas Ligadas por GPI/imunologia , Humanos , Lectinas Tipo C/antagonistas & inibidores , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Receptores Mitogênicos/antagonistas & inibidores , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Monoclon Antib Immunodiagn Immunother ; 39(5): 167-174, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33085938

RESUMO

Podoplanin (PDPN), a 36-kDa type I transmembrane O-glycoprotein, is expressed in normal cells, including renal epithelial cells (podocytes), lymphatic endothelial cells, and pulmonary type I alveolar cells, and in cancer cells, including brain tumors and squamous cell lung carcinomas. PDPN activates platelet aggregation by binding to C-type lectin-like receptor-2 (CLEC-2) on platelets, and PDPN/CLEC-2 interaction facilitates blood/lymphatic vessel separation. We previously produced an anti-human PDPN monoclonal antibody (mAb), clone NZ-1 (rat IgG2a, lambda) and its rat-human chimeric mAbs (NZ-8/NZ-12), which neutralize PDPN/CLEC-2 interactions and inhibit platelet aggregation and cancer metastasis. In this study, we first developed a humanized anti-human PDPN mAb, named as NZ-27. We further produced a core-fucose-deficient version of NZ-27, named as P1027 and a core-fucose-deficient version of NZ-12, named as NZ-12f. We investigated the binding affinity, antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and antitumor activity of P1027 and NZ-12f. We demonstrated that the binding affinities of P1027 and NZ-12f against LN319 (a human glioblastoma cell line) are 1.1 × 10-8 and 3.9 × 10-9 M, respectively. ADCC reporter assays demonstrated that NZ-12f shows 1.5 times higher luminescence than P1027. Furthermore, NZ-12f showed 2.2 times higher ADCC than P1027, whereas both P1027 and NZ-12f showed high CDC activities against LN319 cells. Using LN319 xenograft models, P1027 and NZ-12f significantly reduced tumor development in an LN319 xenograft model compared with control human IgG. Treatment with P1027 and NZ-12f may be a useful therapy for patients with PDPN-expressing cancers.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Glioblastoma/tratamento farmacológico , Lectinas Tipo C/antagonistas & inibidores , Glicoproteínas de Membrana/antagonistas & inibidores , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Células CHO , Linhagem Celular Tumoral , Cricetulus , Fucose/genética , Fucose/imunologia , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Imunoglobulina G/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Metástase Neoplásica , Ativação Plaquetária/imunologia , Agregação Plaquetária/imunologia , Ligação Proteica/imunologia , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Front Immunol ; 11: 2043, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973811

RESUMO

Active co-delivery of tumor antigens (Ag) and α-galactosylceramide (α-GalCer), a potent agonist for invariant Natural Killer T (iNKT) cells, to cross-priming CD8α+ dendritic cells (DCs) was previously shown to promote strong anti-tumor responses in mice. Here, we designed a nanoparticle-based vaccine able to target human CD141+ (BDCA3+) DCs - the equivalent of murine CD8α+ DCs - and deliver both tumor Ag (Melan A) and α-GalCer. This nanovaccine was inoculated into humanized mice that mimic the human immune system (HIS) and possess functional iNKT cells and CD8+ T cells, called HIS-CD8/NKT mice. We found that multiple immunizations of HIS-CD8/NKT mice with the nanovaccine resulted in the activation and/or expansion of human CD141+ DCs and iNKT cells and ultimately elicited a potent Melan-A-specific CD8+ T cell response, as determined by tetramer staining and ELISpot assay. Single-cell proteomics further detailed the highly polyfunctional CD8+ T cells induced by the nanovaccine and revealed their predictive potential for vaccine potency. This finding demonstrates for the first time the unique ability of human iNKT cells to license cross-priming DCs in vivo and adds a new dimension to the current strategy of cancer vaccine development.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Epitopos de Linfócito T/imunologia , Galactosilceramidas/administração & dosagem , Trombomodulina/metabolismo , Animais , Antígenos de Neoplasias/administração & dosagem , Biomarcadores , Vacinas Anticâncer/imunologia , Humanos , Imunofenotipagem , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Proteômica/métodos , Receptores Mitogênicos/antagonistas & inibidores , Receptores Mitogênicos/imunologia , Análise de Célula Única , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
20.
Immunobiology ; 225(5): 151985, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32962826

RESUMO

There is evidence that major components of the fungi cell wall not only define fungal properties and survival but also are responsible for their biological activities. Some data indicate that structural components of the fungal cell wall exert stimulatory/modulatory effects on immunocompetent cells acting as pathogen-associated molecular patterns (PAMPs). Fungal components can influence the activity of certain immune cell populations by affecting cell maturation and proliferation, promoting phagocytosis, cytotoxic activity, and cell migration, as well as production of various mediators. However, there is little information available concerning the impact of fungal-derived components on peripheral blood mononuclear cell (PBMC) activation. The aim of this study was to determine whether certain fungi-associated molecules, i.e., ß-(1,3)-glucans (zymosan and curdlan) and mannan activate in vitro human PBMCs to synthesize cytokines, including chemokines. We documented that PBMCs, in response to stimulation with zymosan, curdlan, and mannan, express cytokines IFN-γ and GM-CSF, and chemokine CCL3, both at protein and transcript levels, as well as cytokine IL-1ß and chemokine CXCL8, at mRNA level. Our observations support the idea that fungal-derived components can activate immune cells, including PBMCs, by stimulation of cytokine/chemokine production. A thorough understanding of this interaction is of prime importance since it influence both pathophysiological and immune processes as well as anti-fungal defense mechanisms.


Assuntos
Citocinas/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Mananas/farmacologia , Quinase Syk/metabolismo , Zimosan/farmacologia , beta-Glucanas/farmacologia , Células Cultivadas , Citocinas/genética , Fungos , Glucanos/farmacologia , Humanos , Lectinas Tipo C/antagonistas & inibidores , Leucócitos Mononucleares/metabolismo , Oxazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Quinase Syk/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...