Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Water Res ; 259: 121794, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824796

RESUMO

Legionella is an opportunistic waterborne pathogen that causes Legionnaires' disease. It poses a significant public health risk, especially to vulnerable populations in health care facilities. It is ubiquitous in manufactured water systems and is transmitted via inhalation or aspiration of aerosols/water droplets generated from water fixtures (e.g., showers and hand basins). As such, the effective management of premise plumbing systems (building water systems) in health care facilities is essential for reducing the risk of Legionnaires' disease. Chemical disinfection is a commonly used control method and chlorine-based disinfectants, including chlorine, chloramine, and chlorine dioxide, have been used for over a century. However, the effectiveness of these disinfectants in premise plumbing systems is affected by various interconnected factors that can make it challenging to maintain effective disinfection. This systematic literature review identifies all studies that have examined the factors impacting the efficacy and decay of chlorine-based disinfectant within premise plumbing systems. A total of 117 field and laboratory-based studies were identified and included in this review. A total of 20 studies directly compared the effectiveness of the different chlorine-based disinfectants. The findings from these studies ranked the typical effectiveness as follows: chloramine > chlorine dioxide > chlorine. A total of 26 factors were identified across 117 studies as influencing the efficacy and decay of disinfectants in premise plumbing systems. These factors were sorted into categories of operational factors that are changed by the operation of water devices and fixtures (such as stagnation, temperature, water velocity), evolving factors which are changed in-directly (such as disinfectant concentration, Legionella disinfectant resistance, Legionella growth, season, biofilm and microbe, protozoa, nitrification, total organic carbon(TOC), pH, dissolved oxygen(DO), hardness, ammonia, and sediment and pipe deposit) and stable factors that are not often changed(such as disinfectant type, pipe material, pipe size, pipe age, water recirculating, softener, corrosion inhibitor, automatic sensor tap, building floor, and construction activity). A factor-effect map of each of these factors and whether they have a positive or negative association with disinfection efficacy against Legionella in premise plumbing systems is presented. It was also found that evaluating the effectiveness of chlorine disinfection as a water risk management strategy is further complicated by varying disinfection resistance of Legionella species and the form of Legionella (culturable/viable but non culturable, free living/biofilm associated, intracellular replication within amoeba hosts). Future research is needed that utilises sensors and other approaches to measure these key factors (such as pH, temperature, stagnation, water age and disinfection residual) in real time throughout premise plumbing systems. This information will support the development of improved models to predict disinfection within premise plumbing systems. The findings from this study will inform the use of chlorine-based disinfection within premise plumbing systems to reduce the risk of Legionnaires disease.


Assuntos
Cloro , Desinfetantes , Legionella , Purificação da Água , Cloraminas/farmacologia , Cloro/farmacologia , Compostos Clorados/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Legionella/efeitos dos fármacos , Óxidos/farmacologia , Microbiologia da Água , Purificação da Água/métodos , Abastecimento de Água
2.
mSphere ; 9(7): e0012024, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38888300

RESUMO

The majority of antibiotics are natural products, with microorganism-generated molecules and their derivatives being the most prevalent source of drugs to treat infections. Thus, identifying natural products remains the most valuable resource for novel therapeutics. Here, we report the discovery of a series of dormant bacteria in honey that have bactericidal activity toward Legionella, a bacterial pathogen that causes respiratory disease in humans. We show that, in response to bacterial products secreted by Legionella, the honey bacteria release diffusible antimicrobial molecules. Remarkably, the honey bacteria only produce these molecules in response to Legionella spp., when compared to a panel of 24 bacterial pathogens from different genera. However, the molecules induced by Legionella have broad activity against several clinically important pathogens, including many high-priority pathogens. Thus, Legionella spp. are potent drivers of antimicrobial molecule production by uncharacterized bacteria isolated from honey, providing access to new antimicrobial products and an unprecedented strategy for discovering novel antibiotics. IMPORTANCE: Natural products generated by microorganisms remain the most viable and abundant source of new antibiotics. However, their discovery depends on the ability to isolate and culture the producing organisms and to identify conditions that promote antibiotic production. Here, we identify a series of previously undescribed bacteria isolated from raw honey and specific culture conditions that induce the production of antimicrobial molecules that are active against a wide variety of pathogenic bacteria.


Assuntos
Antibacterianos , Mel , Legionella , Legionella/efeitos dos fármacos , Antibacterianos/farmacologia , Humanos , Produtos Biológicos/farmacologia , Testes de Sensibilidade Microbiana , Bactérias/efeitos dos fármacos
3.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-121790

RESUMO

BACKGROUND: Antimicrobial susceptibility of Legionella spp. has rarely been studied in Korea. Therefore, we aimed to determine the susceptibility of Legionella spp. to various antibiotics. METHODS: We assessed the antimicrobial susceptibility of 66 environmental and clinical Legionella isolates collected between January 2001 and December 2008 from Korea and Japan. The minimum inhibitory concentrations (MICs) of 6 antibiotics, namely, azithromycin, ciprofloxacin, clarithromycin, clindamycin, gatifloxacin, and gemifloxacin were determined by the broth microdilution method using buffered starch yeast extract broth. RESULTS: The MIC ranges of the 6 antibiotics used against the Legionella isolates were as follows: 0.004-0.062 microgram/mL (azithromycin), 0.002-0.5 microgram/mL (ciprofloxacin), 0.004-0.5 microgram/mL (clarithromycin), 0.12-4 microgram/mL (clindamycin), 0.002-0.12 microgram/mL (gatifloxacin), and 0.008-1 microgram/mL (gemifloxacin). CONCLUSIONS: Legionella spp. isolates from Korea and Japan were most susceptible to gatifloxacin. Azithromycin, clarithromycin, ciprofloxacin, and gemifloxacin were also effective for treating legionellosis.


Assuntos
Humanos , Antibacterianos/farmacologia , Azitromicina/farmacologia , Ciprofloxacina/farmacologia , Claritromicina/farmacologia , Clindamicina/farmacologia , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacologia , Legionella/efeitos dos fármacos , Legionelose/diagnóstico , Testes de Sensibilidade Microbiana , Naftiridinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA