Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.492
Filtrar
1.
Medicine (Baltimore) ; 103(18): e38039, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701291

RESUMO

As a result of increasing drug resistance, crossover resistance development, prolonged therapy, and the absence of different agents with innovative methods for implementation, the efficacy of recent antileishmanial medications is severely declining. So, it is vital to look for other medications from botanical remedies that have antileishmanial activity. The latex of Euphorbia abyssinica (E abyssinica) and the leaves of Clematis simensis fresen (C simensis) were macerated in methanol (80%). In vitro antileishmanial activity of the preparation was tried on promastigotes of Leishmania aethiopica (L aethiopica) and Leishmania donovani (L donovani) using resazurin assay, and fluorescence intensity was measured. One percent of dimethyl sulfoxide (DMSO) and media as negative control and amphotericin B as positive control were used. Additionally, hemolytic & phytochemical tests of the preparation were done. The mean and standard errors of each extract were evaluated and interpreted for statistical significance using one-way analysis of variance. From sigmoidal dose-response curves of % inhibition, half maximal inhibitory concentration (IC50) values were determined by GraphPad Prism and Microsoft Excel; outcomes were presented as mean ±â€…standard error of mean of triplicate trials. P < .05 was statistical significance. The phytochemical screening of C simensis and E abyssinica confirmed the existence of steroids, phenols, tannins, saponins, alkaloids, terpenoids, flavonoids and glycosides. C simensis possesses antileishmanial activity with IC50 outcomes of 46.12 ±â€…0.03 and 8.18 ±â€…0.10 µg/mL on the promastigotes of L aethiopica and L donovani, respectively. However, E abyssinica showed stronger activity with IC50 outcomes of 16.07 ±â€…0.05 µg/mL and 4.82 ±â€…0.07 µg/mL on L aethiopica and L donovani, respectively. C simensis and E abyssinica have a less hemolytic effect on human red blood cells at low concentrations. The outcomes from this investigation demonstrated that the preparation of C simensis and E abyssinica indicated significant antileishmanial activity. Therefore, further in vivo assessment of antileishmanial, cytotoxicity activity and quantitative identification of secondary metabolites are highly recommended.


Assuntos
Antiprotozoários , Euphorbia , Látex , Extratos Vegetais , Folhas de Planta , Extratos Vegetais/farmacologia , Euphorbia/química , Látex/farmacologia , Látex/química , Antiprotozoários/farmacologia , Folhas de Planta/química , Humanos , Leishmania donovani/efeitos dos fármacos , Concentração Inibidora 50 , Leishmania/efeitos dos fármacos , Metanol , Solventes , Hemólise/efeitos dos fármacos
2.
mSphere ; 9(4): e0000724, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38567972

RESUMO

Bruno Martorelli Di Genova works in parasitology, focusing on Toxoplasma gondii metabolism. In this mSphere of Influence article, he reflects on how the articles "Metabolic Reprogramming during Purine Stress in the Protozoan Pathogen Leishmania donovani" and "Yeast-Based High-Throughput Screen Identifies Plasmodium falciparum Equilibrative Nucleoside Transporter 1 Inhibitors That Kill Malaria Parasites" impacted him, informing his research strategies and understanding of metabolic flexibility in Toxoplasma gondii.


Assuntos
Leishmania donovani , Plasmodium falciparum , Purinas , Toxoplasma , Purinas/metabolismo , Toxoplasma/metabolismo , Leishmania donovani/metabolismo , Leishmania donovani/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Humanos
3.
Mikrobiyol Bul ; 58(2): 182-195, 2024 Apr.
Artigo em Turco | MEDLINE | ID: mdl-38676585

RESUMO

In recent years, isolation of resistant Leishmania species to drugs in use has made it necessary to search alternative molecules that may be drug candidates. In this study, it was aimed to investigate the cytotoxic and in vitro antileishmanial activity of hybrid silver nanoparticle (AgNP) complexes. In this study, three types of nanoparticles (NPs), oxidized amylose-silver (OA-Ag) NPs, oxidized amylose-curcumin (OA-Cur) NPs and oxidized amylose-curcumin-silver (OA-CurAgNP) nanoparticles were synthesized. The cytotoxic activity of the synthesized nanoparticles was determined against L929 mouse fibroblasts and the in vitro antileishmanial activity was determined against Leishmania tropica, Leishmania infantum and Leishmania donovani isolates by the broth microdilution method. It was observed that the hybrid OA-CurAgNP complex obtained by combining curcumin and silver nanoparticles showed cytotoxic effects against L929 mouse fibroblasts at concentrations of 1074 µg/mL and above. IC50 values expressing the antileishmanial activity of the hybrid OA-CurAgNP complex against L.tropica, L.infantum and L.donovani isolates, were found to vary between 95-121 µg/mL, 202-330 µg/mL and 210-254 µg/mL, respectively. Resistance development has emerged as a major challenge in the treatment of leishmaniasis in recent times. Metallic nanoparticles are considered excellent candidates for medical applications due to their chemical and physical properties, as well as their prolonged circulation in the body. The current drugs used for leishmaniasis treatment are highly toxic, while nanoparticles offer advantages such as low toxicity and easy cellular uptake due to their nanoscale dimensions. The identification of strong efficacy in these particles may contribute scientific evidence for their potential use in leishmaniasis treatment. Therefore, the therapeutical value of OA-CurAgNP complex alone in combination with existing drugs should be examined.


Assuntos
Antiprotozoários , Curcumina , Fibroblastos , Leishmania infantum , Leishmania tropica , Nanopartículas Metálicas , Prata , Animais , Camundongos , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Curcumina/farmacologia , Curcumina/química , Leishmania tropica/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/toxicidade , Leishmania donovani/efeitos dos fármacos , Concentração Inibidora 50 , Linhagem Celular
4.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675640

RESUMO

Chalcones are polyphenols that belong to the flavonoids family, known for their broad pharmacological properties. They have thus attracted the attention of chemists for their obtention and potential activities. In our study, a library of compounds from 2'-hydroxychalcone's family was first synthesized. A one-step mechanochemical synthesis via Claisen-Schmidt condensation reaction under ball mill conditions was studied, first in a model reaction between a 5'-fluoro-2'-hydroxyacetophenone and 3,4-dimethoxybenzaldehyde. The reaction was optimized in terms of catalysts, ratio of reagents, reaction time, and influence of additives. Among all assays, we retained the best one, which gave the highest yield of 96% when operating in the presence of 1 + 1 eq. of substituted benzaldehyde and 2 eq. of KOH under two grinding cycles of 30 min. Thus, this protocol was adopted for the synthesis of the selected library of 2'-hydroxychalcones derivatives. The biological activities of 17 compounds were then assessed against Plasmodium falciparum, Leishmania donovani parasite development, as well as IGR-39 melanoma cell lines by inhibiting their viability and proliferation. Compounds 6 and 11 are the most potent against L. donovani, exhibiting IC50 values of 2.33 µM and 2.82 µM, respectively, better than the reference drug Miltefosine (3.66 µM). Compound 15 presented the most interesting antimalarial activity against the 3D7 strain, with IC50 = 3.21 µM. Finally, chalcone 12 gave the best result against IGR-39 melanoma cell lines, with an IC50 value of 12 µM better than the reference drug Dacarbazine (IC50 = 25 µM).


Assuntos
Chalconas , Plasmodium falciparum , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Humanos , Linhagem Celular Tumoral , Plasmodium falciparum/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Antimaláricos/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular
5.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675653

RESUMO

Leishmaniasis, an infectious disease caused by pathogenic Leishmania parasites, affects millions of people in developing countries, and its re-emergence in developed countries, particularly in Europe, poses a growing public health concern. The limitations of current treatments and the absence of effective vaccines necessitate the development of novel therapeutics. In this study, we focused on identifying small molecule inhibitors which prevents the interaction between peroxin 5 (PEX5) and peroxisomal targeting signal 1 (PTS1), pivotal for kinetoplastid parasite survival. The Leishmania donovani PEX5, containing a C-terminal tetratricopeptide repeat (TPR) domain, was expressed and purified, followed by the quantification of kinetic parameters of PEX5-PTS1 interactions. A fluorescence polarization-based high-throughput screening assay was developed and small molecules inhibiting the LdPEX5-PTS1 interaction were discovered through the screening of a library of 51,406 compounds. Based on the confirmatory assay, nine compounds showed half maximal inhibitory concentration (IC50) values ranging from 3.89 to 24.50 µM. In silico docking using a homology model of LdPEX5 elucidated that the molecular interactions between LdPEX5 and the inhibitors share amino acids critical for PTS1 binding. Notably, compound P20 showed potent activity against the growth of L. donovani promastigotes, L. major promastigotes, and Trypanosoma brucei blood stream form, with IC50 values of 12.16, 19.21, and 3.06 µM, respectively. The findings underscore the potential of targeting LdPEX5-PTS1 interactions with small molecule inhibitors as a promising strategy for the discovery of new anti-parasitic compounds.


Assuntos
Ensaios de Triagem em Larga Escala , Leishmania donovani , Simulação de Acoplamento Molecular , Receptor 1 de Sinal de Orientação para Peroxissomos , Proteínas de Protozoários , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/química , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Polarização de Fluorescência/métodos , Ligação Proteica , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Antiprotozoários/farmacologia , Antiprotozoários/química , Humanos
6.
Biol Trace Elem Res ; 202(1): 210-220, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37088826

RESUMO

In leishmaniasis, the protective immunity is largely mediated by proinflammatory cytokine producing abilities of T cells and an efficient parasite killing by phagocytic cells. Notwithstanding a substantial progress that has been made during last decades, the mechanisms or factors involved in establishing protective immunity against Leishmania are not identified. In ancient Indian literature, metallic "bhasma," particularly that of "swarna" or gold (fine gold particles), is indicated as one of the most prominent metal-based therapeutic medicine, which is known to impart protective and curative properties in various health issues. In this work, we elucidated the potential of swarna bhasma (SB) on the effector properties of phagocytes and antigen-activated CD4+ T cells in augmenting the immunogenicity of L. donovani antigens. The characterization of SB revealing its shape, size, composition, and measurement of cytotoxicity established the physiochemical potential for its utilization as an immunomodulator. The activation of macrophages with SB enhanced their capacity to produce nitric oxide and proinflammatory cytokines, which eventually resulted in reduced uptake of parasites and their proliferation in infected cells. Further, in Leishmania-infected animals, SB administration reduced the generation of IL-10, an anti-inflammatory cytokine, and enhanced pro-inflammatory cytokine generation by antigen activated CD4+ T cells with increased frequency of double (IFNγ+/TNFα+) and triple (IFNγ+TNFα+IL-2+) positive cells and abrogated disease pathogeneses at the early days of infection. Our results also suggested that cow-ghee (A2) emulsified preparation of SB, either alone or with yashtimadhu, a known natural immune modulator which enhances the SB's potential in enhancing the immunogenicity of parasitic antigens. These findings suggested a definite potential of SB in enhancing the effector functions of phagocytes and CD4+ T cells against L. donovani antigens. Therefore, more studies are needed to elucidate the mechanistic details of SB and its potential in enhancing vaccine-induced immunity.


Assuntos
Apresentação de Antígeno , Antígenos de Protozoários , Linfócitos T CD4-Positivos , Calotropis , Ouro , Látex , Leishmania donovani , Macrófagos , Ayurveda , Células Th1 , Arsênio , Combinação de Medicamentos , Ouro/administração & dosagem , Ouro/farmacologia , Látex/administração & dosagem , Látex/farmacologia , Chumbo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Linfócitos T CD4-Positivos/imunologia , Fagócitos/efeitos dos fármacos , Fagócitos/imunologia , Leishmaniose/imunologia , Leishmaniose/parasitologia , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/imunologia , Antígenos de Protozoários/imunologia , Células Th1/imunologia , Animais , Camundongos , Células RAW 264.7 , Feminino , Camundongos Endogâmicos BALB C
7.
Chem Biol Drug Des ; 99(6): 816-827, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35147279

RESUMO

Leishmaniasis is considered a tropical neglected disease, which is caused by an intramacrophagic parasite, Leishmania. It is endemic in 89 different countries. Autophagy-related protein 8 (Ldatg8) is responsible for the transformation of parasites from promastigote to amastigote differentiation. Ldatg8 is one of the key drug targets of Leishmania donovani (L. donovani) responsible for the defense of parasites during stress conditions. Virtual screening of natural ligand library had been performed against Ldatg8 to identify novel and potent inhibitors. Molecular docking and molecular dynamics simulation studies showed that urolithin A stably blocked Ldatg8. Urolithins are combinations of coumarin and isocoumarin. Further, we evaluated the antileishmanial effects of urolithin A by antileishmanial assays. Urolithin A inhibited the growth and proliferation of L. donovani promastigotes with an IC50  value of 90.3 ± 6.014 µM. It also inhibited the intramacrophagic parasite significantly with an IC50  value of 78.67 ± 4.62 µM. It showed limited cytotoxicity to the human THP-1 differentiated macrophages with a CC50  value of 190.80 ± 16.89 µM. Further, we assayed reactive oxygen species (ROS) generation and annexin V/PI staining upon urolithin A treatment of parasites to have an insight into the mechanism of its action. It induced ROS significantly in a dose-dependent manner, which caused apoptosis partially in parasites. The potential inhibitors for Ldatg8, identified in this study, would provide the platform for the development of an effective and affordable antileishmanial drug.


Assuntos
Antiprotozoários , Família da Proteína 8 Relacionada à Autofagia , Leishmania donovani , Antiprotozoários/química , Antiprotozoários/farmacologia , Família da Proteína 8 Relacionada à Autofagia/antagonistas & inibidores , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Cumarínicos/química , Cumarínicos/farmacologia , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/metabolismo , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo
8.
Chem Biol Interact ; 351: 109758, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34826397

RESUMO

We report the synthesis and in vitro evaluation of 1,3-disubstituted-4-hydroxy-6-methylpyridin-2(1H)-one derivatives against Leishmania donovani. Amongst the compound library synthesized, molecules 3d, 3f, 3h, 3i, 3l, and 3m demonstrated substantial dose-dependent killing of the promastigotes. Their IC50 values range from 55.0 to 77.0 µg/ml, with 3m (IC50 55.75 µg/ml) being equipotent with amphotericin B (IC50 50.0 µg/ml, used as standard). The most active compound 3m, is metabolically stable in rat liver microsomes. Furthermore, the molecules are highly specific against leishmania as shown by their weak antibacterial and antifungal activity. In vitro cytotoxicity studies show the compounds lack any cytotoxicity. Furthermore, molecular modeling studies show plausibility of binding to Leishmania donovani topoisomerase 1 (LdTop1). Structure activity relationships reveal bulky substitutions on the pyridone nitrogen are well-tolerated, and such compounds have better binding affinity. Intramolecular hydrogen bonds confer some rigidity to the molecules, rendering a degree of planarity akin to topotecan. Taken together, we emphasis the merits of molecules possessing the 1,3-disubstituted-4-hydroxy-6-methylpyridin-2(1H)-one skeleton as potential antileishmanial agents warranting further investigation.


Assuntos
Piridonas/farmacologia , Tripanossomicidas/farmacologia , Animais , DNA Topoisomerases Tipo I/metabolismo , Estabilidade de Medicamentos , Células HEK293 , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/enzimologia , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Ligação Proteica , Piridonas/síntese química , Piridonas/metabolismo , Ratos , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/metabolismo , Inibidores da Topoisomerase I/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/metabolismo
9.
PLoS One ; 16(11): e0258996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807936

RESUMO

In the midst of numerous setbacks that beclouds the fight against leishmaniasis; a neglected tropical disease, the search for new chemotherapeutics against this disease is of utmost importance. Leishmaniasis is a disease closely associated with poverty and endemic in Africa, Asia, southern Europe and the Americas. It is caused by parasites of the genus Leishmania and transmitted by a sandfly vector. In this study, we evaluated the antileishmanial potency of eighteen pathogen box compounds and elucidated their biosafety and possible mechanisms of action against Leishmania donovani promastigotes and amastigotes in vitro. IC50s range of 0.12±0.15 to >6.25 µg/ml and 0.13±0.004 to >6.25µg/ml were observed for the promastigotes and amastigotes, respectively. We demonstrated the ability of some of the compounds to cause cytocidal effect on the parasites, induce increased production of reactive oxygen species (ROS), disrupt the normal parasite morphology and cause the accumulation of parasites at the DNA synthesis phase of the cell cycle. We recommend a further in vivo study on these compounds to validate the findings.


Assuntos
Antiprotozoários/farmacologia , Ciclo Celular , Leishmania donovani/citologia , Ciclo Celular/efeitos dos fármacos , DNA de Cinetoplasto/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Fosfatidilserinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Am J Trop Med Hyg ; 106(2): 639-642, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34781255

RESUMO

The management of visceral leishmaniasis (VL) in HIV-infected patients is complex because of high mortality rates, toxic drug-related side effects, and a high risk of treatment failure and relapse. We report a case of active chronic VL in an HIV-1-infected woman presenting multiple secondary VL episodes over 7 years leading to massive splenomegaly and blood transfusion-dependent anemia despite several treatment courses and secondary prophylaxis. The patient was finally successfully treated with rescue treatment based on intravenous pentamidine. Twenty months after discontinuation of pentamidine the patient presented complete clinical and parasitological response. In patients with active chronic VL, treatment with intravenous pentamidine can be effective and should be considered as rescue treatment.


Assuntos
Antiprotozoários/administração & dosagem , Antiprotozoários/uso terapêutico , Infecções por HIV/complicações , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Pentamidina/administração & dosagem , Pentamidina/uso terapêutico , Infecções Oportunistas Relacionadas com a AIDS/complicações , Infecções Oportunistas Relacionadas com a AIDS/tratamento farmacológico , Infecções Oportunistas Relacionadas com a AIDS/parasitologia , Administração Intravenosa , Coinfecção/complicações , Coinfecção/tratamento farmacológico , Coinfecção/parasitologia , Coinfecção/virologia , Feminino , Humanos , Leishmania donovani/genética , Leishmaniose Visceral/etiologia , Pessoa de Meia-Idade , Recidiva , Prevenção Secundária , Resultado do Tratamento
11.
Biomed Pharmacother ; 143: 112156, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649333

RESUMO

Visceral leishmaniasis (VL) is caused by a protozoan parasite, Leishmania donovani (L. donovani). It affects around 1-2 million people around the world annually. There is an urgent need to investigate new medicament of it due to difficult method of drug administration, long period of treatment, high cost of the drug, adverse side-effects, low efficacy and development of parasite resistance to the available drugs. Medicinal plants have also been used for the treatment of different diseases in traditional system of medicines due to their holistic effects. The Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland has already started the program for identification of potential medicinal plant and plant products having antileishmanial potential. Keeping all these in consideration, we planned to study the antileishmanial activity of one of the medicinal plant, Embilica officinalis L. (EO) fruit extract. EO fruit extract inhibited the growth and proliferation of promastigotes as well as intra-macrophagic amastigotes in dose-dependent manner. EO fruit extract induced morphological and ultrastructural changes in parasites as observed under Electron Microscope. It also induced the oxidative stress, mitochondrial dysfunction, DNA laddering and apotosis-like cell death in parasites. Here, we for the first time reported such a detailed mechanism of action of antileishmanial activity of EO fruit extract. Our results suggested that EO fruit extract could be used for the development of new phytomedicine against leishmaniasis.


Assuntos
Apoptose/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Phyllanthus emblica , Extratos Vegetais/farmacologia , Tripanossomicidas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Frutas , Humanos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/metabolismo , Leishmania donovani/ultraestrutura , Leishmaniose Visceral/parasitologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Phyllanthus emblica/química , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Tripanossomicidas/isolamento & purificação
12.
ChemMedChem ; 16(23): 3600-3614, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34665510

RESUMO

Leishmaniasis and Chagas diseases are two of the most important parasitic diseases in the world. Both belong to the category of Neglected Tropical Diseases, and they cannot be prevented by vaccination. Their treatments are founded in outdated drugs that possess many pernicious side-effects and they're not easy to administer. With the aim of discovering new compounds that could serve as anti-trypanosomal drugs, an antiparasitic study of a synthetic compound family has been conducted. A series of new 1,4-bis(alkylamino)- and 1-alkylamino-4-chloroazine and benzoazine derivatives 1-4 containing imidazole rings have been synthesized and identified. Their structures showed a possible interest based on previous work. Their in vitro anti-Leishmania infantum, anti-L. braziliensis, anti-L. donovani and anti-T. cruzi activity were tested, as well as the inhibition of Fe-SOD enzymes. It was found that some of them exhibited quite relevant values indicative of being worthy of future more detailed studies, as most of them showed activity to more than only one parasite species, especially compound 3 c was active for the three studied Leishmania species and also for T. cruzi, which is a very interesting trait as it covers a wide spectrum.


Assuntos
Imidazóis/farmacologia , Ftalazinas/farmacologia , Piridazinas/farmacologia , Tripanossomicidas/farmacologia , Animais , Chlorocebus aethiops , Imidazóis/síntese química , Imidazóis/toxicidade , Leishmania braziliensis/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Ftalazinas/síntese química , Ftalazinas/toxicidade , Piridazinas/síntese química , Piridazinas/toxicidade , Tripanossomicidas/síntese química , Tripanossomicidas/toxicidade , Trypanosoma cruzi/efeitos dos fármacos , Células Vero
13.
Molecules ; 26(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34641387

RESUMO

Natural products from plants contain many interesting biomolecules. Among them, quercetin (Q), gallic acid (GA), and rutin (R) all have well-reported antileishmanial activity; however, their exact mechanisms of action are still not known. The current study is a step forward towards unveil the possible modes of action of these compounds against Leishmania donovani (the causative agent of visceral leishmaniasis). The selected compounds were checked for their mechanisms of action against L. donovani using different biological assays including apoptosis and necrosis evaluation, effects on genetic material (DNA), quantitative testing of nitric oxide production, ultrastructural modification via transmission electron microscopy, and real-time PCR analysis. The results confirmed that these compounds are active against L. donovani, with IC50 values of 84.65 µg/mL, 86 µg/mL, and 98 µg/mL for Q, GA, and R, respectively. These compounds increased nitric oxide production and caused apoptosis and DNA damage, which led to changes in the treated cells' ultrastructural behavior and finally to the death of L. donovani. These compounds also suppressed essential enzymes like trypanothione reductase and trypanothione synthetase, which are critical for leishmanial survival. The selected compounds have high antileishmanial potentials, and thus in-vivo testing and further screening are highly recommended.


Assuntos
Antiprotozoários/farmacologia , Apoptose , Dano ao DNA , Flavonoides/farmacologia , Leishmania donovani/crescimento & desenvolvimento , Leishmaniose Visceral/patologia , Macrófagos/patologia , Animais , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/genética , Leishmaniose Visceral/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Necrose
14.
Mar Drugs ; 19(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34564185

RESUMO

Two undescribed rearranged cadinane-type sesquiterpenoids (1-2), named sinulaketol A-B, together with one new chlorinated steroid (3), one new gorgosterol (4), one known sesquiterpene (5), one known dibromoditerpene (6) and two known polyhydroxylated steroids (7-8) were isolated from the soft coral Sinularia brassica. The structures of these compounds were established by extensive spectroscopic analysis, including HRESIMS, 1D, and 2D NMR spectroscopy. Their absolute configurations were also determined by the ECD calculations and DP4+ probability analysis. Antileishmanial activity of compounds 1-8 was evaluated in vitro against the amastigote forms of Leishmania donovani, in which compounds 3, 6, and 7 inhibited the growth of L. donovani by 58.7, 74.3, 54.7%, respectively, at a concentration of 50 µM. Antimicrobial effect of the isolated compounds were also evaluated against Candida albicans, Staphylococcus aureus, and Escherichia coli. Compound 6, a brominated diterpene, exhibited antimicrobial effect against S. aureus.


Assuntos
Antozoários , Antibacterianos/química , Antiprotozoários/química , Sesquiterpenos/química , Esteroides/química , Animais , Antibacterianos/farmacologia , Antiprotozoários/farmacologia , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Sesquiterpenos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Esteroides/farmacologia , Relação Estrutura-Atividade
15.
STAR Protoc ; 2(3): 100704, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467225

RESUMO

Here, we detail our optimized protocol for the identification of drug targets in Leishmania donovani using thermal proteome profiling. This approach is based on the principle that binding of a drug to its protein target can significantly alter the thermal stability of that protein. By monitoring changes in the thermal stability of proteins within drug-treated and untreated cell lysates, using mass spectrometry combined with tandem mass tag labeling, putative targets of the drug can be identified in an unbiased manner. For further details on the use and application of this protocol, please refer to Paradela et al. (2021).


Assuntos
Desenvolvimento de Medicamentos/métodos , Estabilidade Proteica/efeitos dos fármacos , Proteômica/métodos , Cromatografia Líquida/métodos , Leishmania/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Ligação Proteica , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Temperatura
16.
J Enzyme Inhib Med Chem ; 36(1): 1922-1930, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34425714

RESUMO

A rational-based process was adopted for repurposing pyrrolidine-based 3-deoxysphingosylphosphorylcholine analogs bearing variable acyl chains, different stereochemical configuration and/or positional relationships. Structural features were highly influential on activity. Amongst, enantiomer 1e having 1,2-vicinal relationship for the -CH2O- and the N-acyl moieties, a saturated palmitoyl chain and an opposite stereochemical configuration to natural sphingolipids was the most potent hit compound against promastigotes showing IC50 value of 28.32 µM. The corresponding enantiomer 1a was 2-fold less potent showing a eudismic ratio of 0.54 in promastigotes. Compounds 1a and 1e inhibited the growth of amastigotes more potently relative to promastigotes. Amongst, enantiomer 1a as the more selective and safer. In silico docking study using a homology model of Leishmania donovani inositol phosphoceramide synthase (IPCS) provided plausible reasoning for the molecular factors underlying the found activity. Collectively, this study suggests compounds 1a and 1e as potential hit compounds for further development of new antileishmanial agents.


Assuntos
Antiprotozoários/química , Leishmania donovani/efeitos dos fármacos , Fosforilcolina/química , Pirrolidinas/química , Amida Sintases/metabolismo , Antiprotozoários/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Palmitatos/química , Pirrolidinas/farmacologia , Esfingomielinas/química , Relação Estrutura-Atividade
17.
Molecules ; 26(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203815

RESUMO

In continuation of our search for leads from medicinal plants against protozoal pathogens, we detected antileishmanial activity in polar fractions of a dichloromethane extract from Boswellia serrata resin. 11-keto-ß-boswellic acid (KBA) could be isolated from these fractions and was tested in vitro against Leishmania donovani axenic amastigotes along with five further boswellic acid derivatives. 3-O-acetyl-11-keto-ß-boswellic acid (AKBA) showed the strongest activity with an IC50 value of 0.88 µM against axenic amastigotes but was inactive against intracellular amastigotes in murine macrophages.


Assuntos
Leishmania donovani/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Animais , Linhagem Celular , Humanos , Concentração Inibidora 50 , Leishmania donovani/metabolismo , Macrófagos , Camundongos , Extratos Vegetais/química , Ratos , Resinas Vegetais/química , Triterpenos/análise , Triterpenos/metabolismo
18.
Biochem Biophys Res Commun ; 569: 193-198, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256188

RESUMO

Visceral leishmaniasis (VL) is a fatal infectious disease caused by viscerotropic parasitic species of Leishmania. Current treatment options are often ineffective and toxic, and more importantly, there are no clinically validated drug targets available to develop next generation therapeutics against VL. Topoisomerase IB (TopIB) is an essential enzyme for Leishmania survival. The enzyme is organized as a bi-subunit that is distinct from the monomeric topoisomerase I of human. Based on this unique feature, we synthesized peptides composed of partial amino acid sequences of small subunit of Leishmania donovani (Ld) TopIB to confirm a decrease in catalytic activity by interfering the interaction between the two subunits. One of the synthetic peptides, covering essential amino acids for catalytic activity of LdTopIB, interrupted the enzymatic activity. Next, we examined 151 compounds selected from virtual screening in a functional assay and identified three LRL-TP compounds with a significant decrease in LdTopIB activity (IC50 of LRL-TP-85: 1.3 µM; LRL-TP-94: 2.9 µM; and LRL-TP-101: 35.3 µM) and no effects on Homo sapiens (Hs) TopIB activity. Based on molecular docking, the protonated tertiary amine of inhibitors formed key interactions with S415 of the large subunit. The EC50 values of LRL-TP-85, LRL-TP-94, and LRL-TP-101 were respectively 4.9, 1.4, and 27.8 µM in extracellular promastigote assay and 34.0, 53.7, and 11.4 µM in intracellular amastigote assay. Overall, we validated the protein-protein interaction site of LdTopIB as a potential drug target and identified small molecule inhibitors with anti-leishmanial activity.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Leishmania donovani/enzimologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Inibidores da Topoisomerase I/farmacologia , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Células Cultivadas , DNA/química , DNA/genética , DNA/metabolismo , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/genética , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/prevenção & controle , Camundongos , Modelos Moleculares , Estrutura Molecular , Conformação de Ácido Nucleico , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Células THP-1 , Inibidores da Topoisomerase I/química
19.
Future Microbiol ; 16: 871-877, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34318681

RESUMO

Aim: To investigate the antileishmanial activity of novel azole compounds against Leishmania donovani, which causes deadly visceral leishmaniasis disease. Materials & methods: A focused azole-based library was screened against both promastigotes and amastigotes forms of L. donovani strains in flat-bottomed 96-well tissue culture plates and J774A.1 macrophage cell-line infected with L. donovani. The comprehensive screening of azole-based library against L. donovani strains provided novel hits, which can serve as a good starting point to initiate hit to lead optimization campaign. Results: Hits identified from azole-based library exhibited potent in vitro activity against promastigotes and amastigotes of L. donovani. Conclusion: These potent novel azole hits could be a good starting point to carry out for further medicinal chemistry exploration for antileishmania program.


Assuntos
Azóis , Leishmania donovani , Animais , Azóis/farmacologia , Linhagem Celular , Leishmania donovani/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos
20.
Cytokine ; 146: 155623, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34144446

RESUMO

Conventional therapy of visceral leishmaniasis (VL) remains challenging with the pitfall of toxicity, drug resistance, and expensive. Hence, urgent need for an alternative approach is essential. In this study, we evaluated the potential of combination therapy with eugenol oleate and miltefosine in Leishmania donovani infected macrophages and in the BALB/c mouse model. The interactions between eugenol oleate and miltefosine were found to be additive against promastigotes and amastigotes with xΣFIC 1.13 and 0.68, respectively. Significantly (p < 0.001) decreased arginase activity, increased nitrite generation, improved pro-inflammatory cytokines, and phosphorylated p38MAPK were observed after combination therapy with eugenol oleate and miltefosine. >80% parasite clearance in splenic and hepatic tissue with concomitant nitrite generation, and anti-VL cytokines productions were observed after orally administered miltefosine (5 mg/kg body weight) and eugenol oleate (15 mg/kg body weight) in L. donovani-infected BALB/c mice. Altogether, this study suggested the possibility of an oral combination of miltefosine with eugenol oleate against visceral leishmaniasis.


Assuntos
Citocinas/metabolismo , Eugenol/uso terapêutico , Imunidade , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/imunologia , Óxido Nítrico/biossíntese , Fosforilcolina/análogos & derivados , Administração Oral , Animais , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/biossíntese , Interações Medicamentosas , Quimioterapia Combinada , Eugenol/administração & dosagem , Eugenol/farmacologia , Feminino , Imunidade/efeitos dos fármacos , Concentração Inibidora 50 , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/imunologia , Leishmania donovani/ultraestrutura , Leishmaniose Visceral/parasitologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/parasitologia , Macrófagos/ultraestrutura , Masculino , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Parasitos/efeitos dos fármacos , Parasitos/crescimento & desenvolvimento , Parasitos/imunologia , Parasitos/ultraestrutura , Fosforilação/efeitos dos fármacos , Fosforilcolina/administração & dosagem , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...