Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
1.
PLoS Pathog ; 20(4): e1012181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656959

RESUMO

Addressing the challenges of quiescence and post-treatment relapse is of utmost importance in the microbiology field. This study shows that Leishmania infantum and L. donovani parasites rapidly enter into quiescence after an estimated 2-3 divisions in both human and mouse bone marrow stem cells. Interestingly, this behavior is not observed in macrophages, which are the primary host cells of the Leishmania parasite. Transcriptional comparison of the quiescent and non-quiescent metabolic states confirmed the overall decrease of gene expression as a hallmark of quiescence. Quiescent amastigotes display a reduced size and signs of a rapid evolutionary adaptation response with genetic alterations. Our study provides further evidence that this quiescent state significantly enhances resistance to treatment. Moreover, transitioning through quiescence is highly compatible with sand fly transmission and increases the potential of parasites to infect cells. Collectively, this work identified stem cells in the bone marrow as a niche where Leishmania quiescence occurs, with important implications for antiparasitic treatment and acquisition of virulence traits.


Assuntos
Células-Tronco Hematopoéticas , Leishmania infantum , Animais , Células-Tronco Hematopoéticas/parasitologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Humanos , Leishmania donovani/fisiologia , Macrófagos/parasitologia , Macrófagos/metabolismo , Leishmaniose Visceral/parasitologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C
2.
Dev Comp Immunol ; 156: 105173, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548000

RESUMO

Little is known about the immune response of lizards to Leishmania parasties. In this study, we conducted the first liver transcriptome analysis of two lizards (Phrynocephalus przewalskii and Eremias multiocellata) challenged with L. donovani, endemic to the steppe desert region of northwestern China. Our results revealed that multiple biological processes and immune-related signaling pathways are closely associated with the immune response to experimental L. donovani infection in the two lizards, and that both lizards show similar changes to mammals in terms of immunity to Leishmania. However, the interspecific divergence of the two lizards leads to different transcriptomic changes. In particular, in contrast to P. przewalskii, the challenged E. mutltiocellata was characterized by the induction of down-regulation of most DEGs. These findings will contribute to the scarce resources on lizard immunity and provide a reference for further research on immune mechanisms in reptiles.


Assuntos
Perfilação da Expressão Gênica , Leishmania donovani , Leishmaniose Visceral , Lagartos , Transdução de Sinais , Transcriptoma , Animais , Lagartos/imunologia , Lagartos/parasitologia , Lagartos/genética , Leishmania donovani/imunologia , Leishmania donovani/fisiologia , China , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/veterinária , Fígado/imunologia , Fígado/parasitologia , Clima Desértico
3.
Front Immunol ; 14: 1287539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098491

RESUMO

Leishmania donovani, an intracellular protozoan parasite, is the causative agent of visceral leishmaniasis, the most severe form of leishmaniasis in humans. It is becoming increasingly clear that several intracellular pathogens target host cell RNA interference (RNAi) pathways to promote their survival. Complexes of Argonaute proteins with small RNAs are core components of the RNAi. In this study, we investigated the potential role of host macrophage Argonautes in Leishmania pathogenesis. Using Western blot analysis of Leishmania donovani-infected macrophages, we show here that Leishmania infection selectively increased the abundance of host Argonaute 1 (Ago1). This increased abundance of Ago1 in infected cells also resulted in higher levels of Ago1 in active Ago-complexes, suggesting the preferred use of Ago1 in RNAi in Leishmania-infected cells. This analysis used a short trinucleotide repeat containing 6 (TNRC6)/glycine-tryptophan repeat protein (GW182) protein-derived peptide fused to Glutathione S-transferase as an affinity matrix to capture mature Ago-small RNAs complexes from the cytosol of non-infected and Leishmania-infected cells. Furthermore, Ago1 silencing significantly reduced intracellular survival of Leishmania, demonstrating that Ago1 is essential for Leishmania pathogenesis. To investigate the role of host Ago1 in Leishmania pathogenesis, a quantitative whole proteome approach was employed, which showed that expression of several previously reported Leishmania pathogenesis-related proteins was dependent on the level of macrophage Ago1. Together, these findings identify Ago1 as the preferred Argonaute of RNAi machinery in infected cells and a novel and essential virulence factor by proxy that promotes Leishmania survival.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Leishmaniose , Humanos , Proteômica/métodos , Leishmaniose/metabolismo , Macrófagos/metabolismo , Leishmaniose Visceral/parasitologia , Leishmania donovani/fisiologia
4.
Microbiol Spectr ; 11(4): e0509622, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37404188

RESUMO

Polyclonal B cell activation and the resulting hypergammaglobulinemia are a detrimental consequence of visceral leishmaniasis (VL); however, the mechanisms underlying this excessive production of nonprotective antibodies are still poorly understood. Here, we show that a causative agent of VL, Leishmania donovani, induces CD21-dependent formation of tunneling nanotubule (TNT)-like protrusions in B cells. These intercellular connections are used by the parasite to disseminate among cells and propagate B cell activation, and close contact both among the cells and between B cells and parasites is required to achieve this activation. Direct contact between cells and parasites is also observed in vivo, as L. donovani can be detected in the splenic B cell area as early as 14 days postinfection. Interestingly, Leishmania parasites can also glide from macrophages to B cells via TNT-like protrusions. Taken together, our results suggest that, during in vivo infection, B cells may acquire L. donovani from macrophages via TNT-like protrusions, and these connections are subsequently exploited by the parasite to disseminate among B cells, thus propagating B cell activation and ultimately leading to polyclonal B cell activation. IMPORTANCE Leishmania donovani is a causative agent of visceral leishmaniasis, a potentially lethal disease characterized by strong B cell activation and the subsequent excessive production of nonprotective antibodies, which are known to worsen the disease. How Leishmania activates B cells is still unknown, particularly because this parasite mostly resides inside macrophages and would not have access to B cells during infection. In this study, we describe for the first time how the protozoan parasite Leishmania donovani induces and exploits the formation of protrusions that connect B lymphocytes with each other or with macrophages and glides on these structures from one cell to another. In this way, B cells can acquire Leishmania from macrophages and become activated upon contact with the parasites. This activation will then lead to antibody production. These findings provide an explanation for how the parasite may propagate B cell activation during infection.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , Leishmania donovani/fisiologia , Leishmaniose Visceral/parasitologia , Macrófagos
5.
PLoS One ; 18(4): e0284026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37027358

RESUMO

Recently, autophagy has been implicated as a host defense mechanism against intracellular pathogens. On the other hand, certain intracellular pathogens such as Leishmania can manipulate the host's autophagy to promote their survival. Our recent findings regarding the regulation of autophagy by Leishmania donovani indicate that this pathogen induces non-classical autophagy in infected macrophages, independent of regulation by the mammalian target of rapamycin complex 1. This suggests the fine-tuning of autophagy to optimally promote parasite survival, possibly by the sequestration or modulation of specific autophagosome-associated proteins. To investigate how Leishmania potentially manipulates the composition of host-cell autophagosomes, we undertook a quantitative proteomic study of the human monocytic cell line THP-1 following infection with L. donovani. We used stable isotope labeling by amino acid in cell culture and liquid chromatography-tandem mass spectrometry to compare expression profiles between autophagosomes isolated from THP-1 cells infected with L. donovani or treated with known autophagy inducers. Selected proteomic results were validated by Western blotting. In this study, we showed that L. donovani modulates the composition of macrophage autophagosomes during infection when compared to autophagosomes induced by either rapamycin (selective autophagy) or starvation (non-selective autophagy). Among 1787 proteins detected in Leishmania-induced autophagosomes, 146 were significantly modulated compared to the proteome of rapamycin-induced autophagosomes, while 57 were significantly modulated compared to starvation-induced autophagosomes. Strikingly, 23 Leishmania proteins were also detected in the proteome of Leishmania-induced autophagosomes. Together, our data provide the first comprehensive insight into the proteome dynamics of host autophagosomes in response to Leishmania infection and demonstrate the complex relations between the host and pathogen at the molecular level. A comprehensive analysis of the Leishmania-induced autophagosome proteome will be instrumental in the advancement of understanding leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose , Humanos , Autofagossomos , Proteoma/metabolismo , Proteômica/métodos , Macrófagos/metabolismo , Leishmania donovani/fisiologia , Sirolimo
6.
Microb Pathog ; 178: 106082, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958644

RESUMO

The hexose monophosphate shunt is a crucial pathway in a variety of microorganisms owing to its vital metabolic products and intermediates such as NADPH, ribose 5-phosphate etc. The enzyme 6-phosphogluconolactonase catalyses the second step of this pathway, converting 6-phosphogluconolactone to 6-phosphogluconic acid. This enzyme has been known to have a significant involvement in growth, pathogenesis and sensitivity to oxidative stress in bacterial and protozoal pathogens. However, the functional role of kinetoplastid Leishmania donovani 6-phospohogluconolactonase (Ld6PGL) remains unexplored. L. donovani is the second largest parasitic killer and causative organism of life threatening visceral leishmaniasis. To understand its possible functional role in the parasite, the alleles of Ld6PGL were sequentially knocked-out followed by gene complementation. The Ld6PGL mutant cell lines showed decrease in transcriptional and translational expression as well as in the enzyme activity. In case of Ld6PGL null mutants, approximately 2-fold reduction was observed in growth. The null mutants also showed ∼38% decrease in infectivity, which recovered to ∼15% on complementation. Scanning electron microscopy showed a marked decrease in flagellar length in the knockout parasites. When treated with the standard drug miltefosine, the mutant strains had no significant change in the drug sensitivity. However, the Ld6PGL mutants were more susceptible to oxidative stress. Our findings suggest that 6PGL is required for parasite growth and infection, but it is not essential.


Assuntos
Hidrolases de Éster Carboxílico , Leishmania donovani , Animais , Leishmania donovani/fisiologia , Leishmaniose Visceral/parasitologia , Estresse Oxidativo , Hidrolases de Éster Carboxílico/metabolismo
7.
Med Microbiol Immunol ; 212(1): 35-51, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36399160

RESUMO

Parasite of genus Leishmania viz. L. donovani and L. infantum cause visceral leishmaniasis (VL) or Kala-azar, systemic disease with significant enlargement of the liver and spleen, weight loss, anemia, fever and immunosuppression. The silent expansion of vectors, reservoir hosts and resistant strains is also of great concern in VL control. Considering all these issues, the present study focused on in vitro and in vivo antileishmanial screening of ellagic acid (EA) against L. donovani. The in vitro study was performed against the protozoan parasite L. donovani and a 50% inhibitory concentration was calculated. The DNA arrest in the sub-G0/G1 phase of the cell cycle was studied. In vivo studies included the assessment of parasite burden and immunomodulation in response to treatment of ellagic acid in BALB/c mice. The levels of Th1 and Th2 cytokines and isotype antibodies were assessed in different groups of mice. EA showed in vitro parasiticidal activity with IC50 18.55 µg/mL and thwarted cell-cycle progression at the sub-G0/G1 phase. Administration of ellagic acid to the BALB/c mice reported diminution of splenic and hepatic parasite burden coupled with an expansion of CD4+ and CD8+ T lymphocytes. EA further potentiated a protective immune response with augmentation of Th1 type immune response evidenced by elevation of serum IgG2a levels and DTH response. EA was reported to be safe and non-toxic to the THP-1 cell line as well as to the liver and kidneys of mice. These findings endorse the therapeutic potential of EA with significant immunomodulation and can serve as a promising agent against this debilitating parasitic disease.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Animais , Camundongos , Leishmania donovani/fisiologia , Ácido Elágico/farmacologia , Ácido Elágico/uso terapêutico , Modelos Animais de Doenças , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Camundongos Endogâmicos BALB C
8.
Front Immunol ; 13: 862104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003389

RESUMO

Introduction: Spatial analysis of lipids in inflammatory microenvironments is key to understand the pathogenesis of infectious disease. Granulomatous inflammation is a hallmark of leishmaniasis and changes in host and parasite lipid metabolism have been observed at the bulk tissue level in various infection models. Here, mass spectrometry imaging (MSI) is applied to spatially map hepatic lipid composition following infection with Leishmania donovani, an experimental mouse model of visceral leishmaniasis. Methods: Livers from naïve and L. donovani-infected C57BL/6 mice were harvested at 14- and 20-days post-infection (n=5 per time point). 12 µm transverse sections were cut and covered with norhamane, prior to lipid analysis using MALDI-MSI. MALDI-MSI was performed in negative mode on a Rapiflex (Bruker Daltonics) at 5 and 50 µm spatial resolution and data-dependent analysis (DDA) on an Orbitrap-Elite (Thermo-Scientific) at 50 µm spatial resolution for structural identification analysis of lipids. Results: Aberrant lipid abundances were observed in a heterogeneous distribution across infected mouse livers compared to naïve mouse liver. Distinctive localized correlated lipid masses were found in granulomas and surrounding parenchymal tissue. Structural identification revealed 40 different lipids common to naïve and d14/d20 infected mouse livers, whereas 15 identified lipids were only detected in infected mouse livers. For pathology-guided MSI imaging, we deduced lipids from manually annotated granulomatous and parenchyma regions of interests (ROIs), identifying 34 lipids that showed significantly different intensities between parenchyma and granulomas across all infected livers. Discussion: Our results identify specific lipids that spatially correlate to the major histopathological feature of Leishmania donovani infection in the liver, viz. hepatic granulomas. In addition, we identified a three-fold increase in the number of unique phosphatidylglycerols (PGs) in infected liver tissue and provide direct evidence that arachidonic acid-containing phospholipids are localized with hepatic granulomas. These phospholipids may serve as important precursors for downstream oxylipin generation with consequences for the regulation of the inflammatory cascade. This study provides the first description of the use of MSI to define spatial-temporal lipid changes at local sites of infection induced by Leishmania donovani in mice.


Assuntos
Leishmania donovani , Animais , Ácido Araquidônico/metabolismo , Granuloma/patologia , Leishmania donovani/fisiologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Front Immunol ; 13: 818266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197983

RESUMO

Visceral leishmaniasis, caused by L. donovani infection is fatal if left untreated. The intrinsic complexity of visceral leishmaniasis complicated further by the increasing emergence of drug resistant L. donovani strains warrants fresh investigations into host defense schemes that counter infections. Accordingly, in a mouse model of experimental visceral leishmaniasis we explored the utility of host Wnt5A in restraining L. donovani infection, using both antimony sensitive and antimony resistant L. donovani strains. We found that Wnt5A heterozygous (Wnt5A +/-) mice are more susceptible to L. donovani infection than their wild type (Wnt5A +/+) counterparts as depicted by the respective Leishman Donovan Units (LDU) enumerated from the liver and spleen harvested from infected mice. Higher LDU in Wnt5A +/- mice correlated with increased plasma gammaglobulin level, incidence of liver granuloma, and disorganization of splenic white pulp. Progression of infection in mice by both antimony sensitive and antimony resistant strains of L. donovani could be prevented by activation of Wnt5A signaling through intravenous administration of rWnt5A prior to L. donovani infection. Wnt5A mediated blockade of L. donovani infection correlated with the preservation of splenic macrophages and activated T cells, and a proinflammatory cytokine bias. Taken together our results indicate that while depletion of Wnt5A promotes susceptibility to visceral leishmaniasis, revamping Wnt5A signaling in the host is able to curb L. donovani infection irrespective of antimony sensitivity or resistance and mitigate the progression of disease.


Assuntos
Leishmaniose Visceral/prevenção & controle , Animais , Antimônio/uso terapêutico , Citocinas/uso terapêutico , Leishmania donovani/fisiologia , Ativação Linfocitária , Macrófagos/imunologia , Camundongos , Transdução de Sinais , Baço/imunologia , Proteína Wnt-5a
10.
PLoS Negl Trop Dis ; 16(2): e0010224, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35192633

RESUMO

BACKGROUND: Neutrophils are involved in the initial host responses to pathogens. Neutrophils can activate T cell responses either independently or through indirect involvement of Dendritic cells (DCs). Recently we have demonstrated direct neutrophil-T cell interactions that initiate adaptive immune responses following immunization with live attenuated Leishmania donovani centrin deleted parasite vaccine (LdCen-/-). However, neutrophil-DC interactions in T cell priming in vaccine immunity in general are not known. In this study we evaluated the interaction between neutrophils and DCs during LdCen-/- infection and compared with wild type parasite (LdWT) both in vitro and in vivo. METHODOLOGY/FINDINGS: LdCen-/- parasite induced increased expression of CCL3 in neutrophils caused higher recruitment of DCs capable of inducing a strong proinflammatory response and elevated co-stimulatory molecule expression compared to LdWT infection. To further illustrate neutrophil-DCs interactions in vivo, we infected LYS-eGFP mice with red fluorescent LdWT/LdCen-/- parasites and sort selected DCs that engulfed the neutrophil containing parasites or DCs that acquired the parasites directly in the ear draining lymph nodes (dLN) 5d post infection. The DCs predominantly acquired the parasites by phagocytosing infected neutrophils. Specifically, DCs containing LdCen-/- parasitized neutrophils exhibited a proinflammatory phenotype, increased expression of costimulatory molecules and initiated higher CD4+T cell priming ex-vivo. Notably, potent DC activation occurred when LdCen-/- parasites were acquired indirectly via engulfment of parasitized neutrophils compared to direct engulfment of LdCen-/- parasites by DCs. Neutrophil depletion in LdCen-/- infected mice significantly abrogated expression of CCL3 resulting in decreased DC recruitment in ear dLN. This event led to poor CD4+Th1 cell priming ex vivo that correlated with attenuated Tbet expression in ear dLN derived CD4+ T cells in vivo. CONCLUSIONS: Collectively, LdCen-/- containing neutrophils phagocytized by DC markedly influence the phenotype and antigen presenting capacity of DCs early on and thus play an immune-regulatory role in shaping vaccine induced host protective response.


Assuntos
Leishmania donovani , Vacinas contra Leishmaniose , Leishmaniose Visceral , Animais , Comunicação Celular , Células Dendríticas , Leishmania donovani/fisiologia , Leishmaniose Visceral/parasitologia , Camundongos , Neutrófilos , Vacinas Atenuadas
11.
Elife ; 112022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34994687

RESUMO

Leishmania are protozoan parasites transmitted by the bite of sand fly vectors producing a wide spectrum of diseases in their mammalian hosts. These diverse clinical outcomes are directly associated with parasite strain and species diversity. Although Leishmania reproduction is mainly clonal, a cryptic sexual cycle capable of producing hybrid genotypes has been inferred from population genetic studies and directly demonstrated by laboratory crosses. Experimentally, mating competence has been largely confined to promastigotes developing in the sand fly midgut. The ability to hybridize culture promastigotes in vitro has been limited so far to low-efficiency crosses between two Leishmania tropica strains, L747 and MA37, that mate with high efficiency in flies. Here, we show that exposure of promastigote cultures to DNA damage stress produces a remarkably enhanced efficiency of in vitro hybridization of the L. tropica strains and extends to other species, including Leishmania donovani, Leishmania infantum, and Leishmania braziliensis, a capacity to generate intra- and interspecific hybrids. Whole-genome sequencing and total DNA content analyses indicate that the hybrids are in each case full genome, mostly tetraploid hybrids. Single-cell RNA sequencing of the L747 and MA37 parental lines highlights the transcriptome heterogeneity of culture promastigotes and reveals discrete clusters that emerge post-irradiation in which genes potentially involved in genetic exchange are expressed, including the ancestral gamete fusogen HAP2. By generating reporter constructs for HAP2, we could select for promastigotes that could either hybridize or not in vitro. Overall, this work reveals that there are specific populations involved in Leishmania hybridization associated with a discernible transcriptomic signature, and that stress facilitated in vitro hybridization can be a transformative approach to generate large numbers of hybrid genotypes between diverse species and strains.


Assuntos
Expressão Gênica , Genes de Protozoários , Hibridização Genética , Leishmania donovani/fisiologia , Leishmania infantum/fisiologia , Leishmania major/fisiologia , Estresse Fisiológico , Técnicas In Vitro , Leishmania donovani/genética , Leishmania infantum/genética , Leishmania major/genética , RNA-Seq , Análise de Célula Única
12.
PLoS Negl Trop Dis ; 15(11): e0009906, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34758028

RESUMO

BACKGROUND: The assessment of chemotherapeutic responses in Post Kala-azar Dermal Leishmaniasis (PKDL), especially its macular form is challenging, emphasizing the necessity for 'test of cure' tools. This study explored the diagnostic and prognostic potential of IgG subclasses and associated cytokines for monitoring the effectiveness of chemotherapy in PKDL. METHODS: Participants included PKDL cases at (a) disease presentation, (b) immediately at the end of treatment (12 weeks for Miltefosine or 3 weeks for Liposomal Amphotericin B, LAmB and (c) at any time point 6 months later, for estimating anti-leishmanial immunoglobulin (Ig, IgG, IgM, IgG1, IgG2 and IgG3) and cytokines (IL-10, IL-6). RESULTS: In PKDL, Ig levels were elevated, with IgG3 and IL-10 being the major contributors. Miltefosine decreased both markers substantially and this decrease was sustained for at least six months. In contrast, LAmB failed to decrease IgG3 and IL-10, as even after six months, their levels remained unchanged or even increased. CONCLUSIONS: In PKDL, IgG3 and IL-10 proved to be effective predictors of responsiveness to chemotherapy and may be considered as a non invasive alternative for longitudinal monitoring.


Assuntos
Anticorpos Antiprotozoários/sangue , Monitoramento de Medicamentos , Imunoglobulina G/sangue , Interleucina-10/sangue , Leishmania donovani/fisiologia , Leishmaniose Visceral/sangue , Leishmaniose Visceral/tratamento farmacológico , Adolescente , Adulto , Anfotericina B/administração & dosagem , Biomarcadores/sangue , Feminino , Humanos , Leishmania donovani/genética , Leishmaniose Visceral/parasitologia , Masculino , Fosforilcolina/administração & dosagem , Fosforilcolina/análogos & derivados , Adulto Jovem
13.
Pathog Dis ; 79(8)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34677584

RESUMO

Interactions of Leishmania donovani secretory virulence factors with the host proteins and their interplay during the infection process in humans is poorly studied in Visceral Leishmaniasis. Lack of a holistic study of pathway level de-regulations caused due to these virulence factors leads to a poor understanding of the parasite strategies to subvert the host immune responses, secure its survival inside the host and further the spread of infection to the visceral organs. In this study, we propose a computational workflow to predict host-pathogen protein interactome of L.donovani secretory virulence factors with human proteins combining sequence-based Interolog mapping and structure-based Domain Interaction mapping techniques. We further employ graph theoretical approaches and shortest path methods to analyze the interactome. Our study deciphers the infection paths involving some unique and understudied disease-associated signaling pathways influencing the cellular phenotypic responses in the host. Our statistical analysis based in silico knockout study unveils for the first time UBC, 1433Z and HS90A mediator proteins as potential immunomodulatory candidates through which the virulence factors employ the infection paths. These identified pathways and novel mediator proteins can be effectively used as possible targets to control and modulate the infection process further aiding in the treatment of Visceral Leishmaniasis.


Assuntos
Biologia Computacional/métodos , Interações Hospedeiro-Parasita , Leishmania donovani/fisiologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Mapeamento de Interação de Proteínas/métodos , Proteínas de Protozoários/metabolismo , Suscetibilidade a Doenças , Ontologia Genética , Humanos , Redes Neurais de Computação , Fenótipo , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Fatores de Virulência/metabolismo
14.
J Immunol ; 207(5): 1322-1332, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34341171

RESUMO

MicroRNA-21 (miR-21) inhibits IL-12 expression and impairs the Th1 response necessary for control of Leishmania infection. Recent studies have shown that Leishmania infection induces miR-21 expression in dendritic cells and macrophages, and inhibition of miR-21 restores IL-12 expression. Because miR-21 is known to be expressed due to inflammatory stimuli in a wide range of hematopoietic cells, we investigated the role of miR-21 in regulating immune responses during visceral leishmaniasis (VL) caused by Leishmania donovani infection. We found that miR-21 expression was significantly elevated in dendritic cells, macrophages, inflammatory monocytes, polymorphonuclear neutrophils, and in the spleen and liver tissues after L. donovani infection, concomitant with an increased expression of disease exacerbating IL-6 and STAT3. Bone marrow dendritic cells from miR-21 knockout (miR-21KO) mice showed increased IL-12 production and decreased production of IL-10. On L. donovani infection, miR-21KO mice exhibited significantly greater numbers of IFN-γ- and TNF-α-producing CD4+ and CD8+ T cells in their organs that was associated with increased production of Th1-associated IFN-γ, TNF-α, and NO from the splenocytes. Finally, miR-21KO mice displayed significantly more developing and mature hepatic granulomas leading to reduction in organ parasitic loads compared with wild type counterparts. Similar results were noted in L. donovani-infected wild type mice after transient miR-21 depletion. These observations indicate that miR-21 plays a critical role in pathogenesis of VL by suppressing IL-12- and Th1-associated IFN-γ and also inducing disease-promoting induction of the IL-6 and STAT-3 signaling pathway. miR-21 could therefore be used as a potential target for developing host-directed treatment for VL.


Assuntos
Células Dendríticas/imunologia , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , MicroRNAs/genética , Monócitos/imunologia , Neutrófilos/imunologia , Células Th1/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Resistência à Doença , Imunidade Celular , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT3/metabolismo , Regulação para Cima
15.
Innate Immun ; 27(6): 493-500, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33910419

RESUMO

Genetic variations in the host TLRs genes play an important role in susceptibility and/or resistance to visceral leishmaniasis by altering the host-pathogen interaction. In this study, we investigated the association between polymorphisms of TLR4 (Asp299Gly, Thr399Ile) and TLR-9 (T-1237C), with susceptibility to visceral leishmaniasis. A bi-directional PCR amplification of specific alleles technique was used to characterize the distribution of TLR4 (Asp299Gly and Thr399Ile) and TLR9 (T-1237C) polymorphisms. A total of 60 samples were randomly selected from confirmed visceral leishmaniasis patients and 24 endemic healthy volunteers. The samples were genotyped and allele frequencies were determined. We observed that TLR4 Asp299Gly and Thr399Ile genotypes were more frequent in visceral leishmaniasis patients (10% and 15% respectively) compared to controls (4.2% and 8.3% respectively). However, the differences were not significant in TLR4 Asp299Gly and Thr399Ile alleles and genotypes. In the case of TLR9, we observed the frequency of T1237C genotype was higher in visceral leishmaniasis patients (43.3%) than in healthy controls (33.3%). Statistically significant differences were observed in TLR9 T1237C alleles and genotypes. We concluded that TLR9 T1237C, but not TLR4, gene polymorphisms can be regarded as contributors to visceral leishmaniasis susceptibility among the Indian population of Bihar state.


Assuntos
Genótipo , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Grupos Populacionais , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Índia , Leishmaniose Visceral/genética , Doenças Negligenciadas , Polimorfismo Genético , Receptor 4 Toll-Like/genética , Receptor Toll-Like 9/genética
16.
Front Immunol ; 12: 632512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815385

RESUMO

Visceral leishmaniasis (VL) is a fatal parasitic disease if untreated. Treatment options of VL diminish due to emerging drug resistance. Although the principal host cells for the multiplication of Leishmania are macrophages, neutrophils are the first cells infected with the parasites rapidly after parasite inoculation. Leishmania can survive in neutrophils despite the potent antimicrobial effector functions of neutrophils that can eliminate the parasites. Recently, the growing field of immunometabolism provided strong evidence for the therapeutic potential in targeting metabolic processes as a means of controlling immune effector functions. Therefore, the understanding of the immunometabolic profile of neutrophils during Leishmania infection could provide new promising targets for host-directed therapies against VL. To our knowledge, this is the first study addressing the bioenergetics profile of L. donovani-infected primary human neutrophils. Transcriptome analysis of L. donovani-infected neutrophils revealed an early significant upregulation of several glycolytic enzymes. Extracellular flux analysis showed that glycolysis and glycolytic capacity were upregulated in L. donovani-infected neutrophils at 6 h post infection. An increased glucose uptake and accumulation of glycolytic end products were further signs for an elevated glycolytic metabolism in L. donovani-infected neutrophils. At the same time point, oxidative phosphorylation provided NADPH for the oxidative burst but did not contribute to ATP production. Inhibition of glycolysis with 2-DG significantly reduced the survival of L. donovani promastigotes in neutrophils and in culture. However, this reduction was due to a direct antileishmanial effect of 2-DG and not a consequence of enhanced antileishmanial activity of neutrophils. To further address the impact of glucose metabolism during the first days of infection in vivo, we treated C57BL/6 mice with 2-DG prior to infection with L. donovani and assessed the parasite load one day and seven days post infection. Our results show, that seven days post-infection the parasite load of 2-DG treated animals was significantly higher than in mock treated animals. This data indicates that glycolysis serves as major energy source for antimicrobial effector functions against L. donovani. Inhibition of glycolysis abrogates important neutrophil effector functions that are necessary the initial control of Leishmania infection.


Assuntos
Glucose/metabolismo , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Neutrófilos/imunologia , Animais , Células Cultivadas , Desoxiglucose/efeitos adversos , Desoxiglucose/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Fosforilação Oxidativa , Carga Parasitária , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória
17.
Infect Immun ; 89(7): e0076420, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33820818

RESUMO

We showed previously that antioxidant enzyme heme oxygenase 1 (HO-1) is critical for Leishmania survival in visceral leishmaniasis. HO-1 inhibits host oxidative burst and inflammatory cytokine production, leading to parasite persistence. In the present study, screening of reported HO-1 transcription factors revealed that infection upregulated (4.1-fold compared to control [P < 0.001]) nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2). Silencing of NRF2 reduced both HO-1 expression and parasite survival. Investigation revealed that infection-induced transient reactive oxygen species (ROS) production dissociated NRF2 from its inhibitor KEAP1 and enabled phosphorylation-dependent nuclear translocation. Both NRF2 and HO-1 silencing in infection increased production of proinflammatory cytokines. But the level was greater in NRF2-silenced cells than in HO-1-silenced ones, suggesting the presence of other targets of NRF2. Another stress responsive transcription factor ATF3 is also induced (4.6-fold compared to control [P < 0.001]) by NRF2 during infection. Silencing of ATF3 reduced parasite survival (59.3% decrease compared to control [P < 0.001]) and increased proinflammatory cytokines. Infection-induced ATF3 recruited HDAC1 into the promoter sites of tumor necrosis factor alpha (TNF-α) and interleukin 12b (IL-12b) genes. Resulting deacetylated histones prevented NF-κB promoter binding, thereby reducing transcription of inflammatory cytokines. Administering the NRF2 inhibitor trigonelline hydrochloride to infected BALB/c mice resulted in reduced HO-1 and ATF3 expression, decreased spleen and liver parasite burdens, and increased proinflammatory cytokine levels. These results suggest that Leishmania upregulates NRF2 to activate both HO-1 and ATF3 for disease progression.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Heme Oxigenase-1/metabolismo , Interações Hospedeiro-Patógeno , Leishmania donovani/fisiologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/microbiologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Mediadores da Inflamação/metabolismo , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
18.
PLoS Pathog ; 17(2): e1009343, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33630975

RESUMO

The outcome of Leishmania donovani infection depends upon the dynamic interchanges between M1 and M2 macrophages. Information of the involvement of microRNAs (miRNAs) and epigenetic modifiers in regulating macrophage plasticity during L. donovani infection is still elusive. Differential expression analysis of polarization-regulating miRNAs, revealed significant enrichment of miR146a-5p during Leishmania donovani infection. A sustained enrichment of miR146a-5p was observed in both infected bone marrow derived macrophages (BMDMs) and BALB/c mice organs. We found involvement of miR146a-5p in phagocytosis and survivability of parasites. Moreover, miR146a-5pgot enriched in interleukin 4- stimulated BMDMs, indicating its possible involvement in M2 polarization. Upon transfecting BMDMs with miRVANA anti-146a oligos, M2 markers (CCR7, YM-1, FIZZ-1, arginase-1, IL10 and IL4) and transcription factors (p-STAT6 and c/EBPß) got depleted with concomitant augmentation of M1-polarizing transcription factors (p-STAT1, AP1 and IRF-1), miR146a target genes (TRAF6 and IRAK1), M1 cytokines (IL12 and TNFα), iNOS, nitric oxide, and nuclear translocation of phospho p-65 subunit. Neutralization of intracellular mature miR146a-5p pool in infected BALB/c mice lower organ parasite burden and expressions of M2 markers and IL10 with enrichment of M1 markers like iNOS and IL12. Additionally, we explored the novel role of super enhancer (SE), a cis-acting regulatory component, to enrich miR146a-5p expression during infection. Enhanced expression and nuclear retention of SE components like BET bromodomain 4 (BRD4) and p300 were found in infected BMDMs. Upon silencing BRD4, expressions of miR146a-5p and M2 markers were down regulated and TRAF6, IRAK1 and iNOS levels increased. STRING V.11 based predication and immune precipitation confirmed the strong interaction amongst BRD4, p300 and RNA pol II (RpbI). Chromatin immune precipitation studies suggested the recruitment of BRD4 at the enhancer loci of miR146a-5p gene during infection. Altogether, our findings revealed a novel role of BRD4/p300-depdendent super-enhancer in regulating miR146a expression during L. donovani infection which in turn mediates M2 polarization and immune-suppression.


Assuntos
Elementos Facilitadores Genéticos , Leishmania donovani/fisiologia , Leishmaniose/imunologia , Macrófagos/imunologia , MicroRNAs/genética , Fagocitose , Animais , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Leishmaniose/genética , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo
19.
Cytokine ; 137: 155319, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002744

RESUMO

Leishmania donovani, a protozoan parasite, inflicts the disease Visceral leishmaniasis (VL) Worldwide. The only orally bioavailable drug miltefosine is toxic, whereas liposomal amphotericin B (AmpB) is expensive. Lupeol, a triterpenoid from Sterculia villosa bark, was exhibited immunomodulatory and anti-leishmanial activity in experimental VL. Herein, we evaluated synergism between sub-optimum dose of AmpB and lupeol in anti-leishmanial and immunomodulatory effects in L. donovani-infected BALB/c mice. We observed that a combination of sub-optimum dose of lupeol and AmpB significantly reduced the hepatic and splenic parasitic burden accompanied by enhanced nitric oxide production, robust induction of Th1 cytokines (IL-12 and IFN-γ) but suppressed Th2 cytokine (IL-10 and TGF- ß) production. The treatment with the lupeol-AmpB combination enhanced p38mitogen-activated protein kinase (p38MAPK), but reduced extracellular signal-related kinase (ERK-1/2), phosphorylation and up-regulated pro-inflammatory response. The present work thus indicates a lupeol-AmpB-mediated immunotherapeutic approach for eliminating the parasite-induced immunosuppression.


Assuntos
Anfotericina B/farmacologia , Antiprotozoários/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Animais , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Sinergismo Farmacológico , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Immunoblotting , Imunomodulação/efeitos dos fármacos , Imunomodulação/imunologia , Leishmania donovani/imunologia , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Camundongos Endogâmicos BALB C , Nitritos/imunologia , Nitritos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/parasitologia
20.
J Med Chem ; 63(21): 13140-13158, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33091297

RESUMO

Leishmaniases are neglected diseases that can be treated with a limited drug arsenal; the development of new molecules is therefore a priority. Recent evidence indicates that endoperoxides, including artemisinin and its derivatives, possess antileishmanial activity. Here, 1,2-dioxanes were synthesized with their corresponding tetrahydropyrans lacking the peroxide bridge, to ascertain if this group is a key pharmacophoric requirement for the antileishmanial bioactivity. Newly synthesized compounds were examined in vitro, and their mechanism of action was preliminarily investigated. Three endoperoxides and their corresponding tetrahydropyrans effectively inhibited the growth of Leishmania donovani promastigotes and amastigotes, and iron did not play a significant role in their activation. Further, reactive oxygen species were produced in both endoperoxide- and tetrahydropyran-treated promastigotes. In conclusion, the peroxide group proved not to be crucial for the antileishmanial bioactivity of endoperoxides, under the tested conditions. Our findings reveal the potential of both 1,2-dioxanes and tetrahydropyrans as lead compounds for novel therapies against Leishmania.


Assuntos
Antiprotozoários/farmacologia , Dioxanos/química , Leishmania donovani/efeitos dos fármacos , Piranos/química , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cristalografia por Raios X , Dioxanos/síntese química , Dioxanos/farmacologia , Desenho de Fármacos , Humanos , Quelantes de Ferro/farmacologia , Leishmania donovani/fisiologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Conformação Molecular , Piranos/síntese química , Piranos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...