Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(4): e0191922, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36951572

RESUMO

The bacterium Leptothrix cholodnii generates cell chains encased in sheaths that are composed of woven nanofibrils. The nanofibrils are mainly composed of glycoconjugate repeats, and several glycosyltransferases (GTs) are required for its biosynthesis. However, only one GT (LthA) has been identified to date. In this study, we screened spontaneous variants of L. cholodnii SP6 to find those that form smooth colonies, which is one of the characteristics of sheathless variants. Genomic DNA sequencing of an isolated variant revealed an insertion in the locus Lcho_0972, which encodes a putative GT family 8 protein. We thus designated this protein LthB and characterized it using deletion mutants and antibodies. LthB localized adjacent to the cell envelope. ΔlthB cell chains were nanofibril free and thus sheathless, indicating that LthB is involved in nanofibril biosynthesis. Unlike the ΔlthA mutant and the wild-type strain, which often generate planktonic cells, most ΔlthB organisms presented as long cell chains under static conditions, resulting in deficient pellicle formation, which requires motile planktonic cells. These results imply that sheaths are not required for elongation of cell chains. Finally, calcium depletion, which induces cell chain breakage due to sheath loss, abrogated the expression of LthA, but not LthB, suggesting that these GTs cooperatively participate in glycoconjugate biosynthesis under different signaling controls. IMPORTANCE In recent years, the regulation of cell chain elongation of filamentous bacteria via extracellular signals has attracted attention as a potential strategy to prevent clogging of water distribution systems and filamentous bulking of activated sludge in industrial settings. However, a fundamental understanding of the ecology of filamentous bacteria remains elusive. Since sheath formation is associated with cell chain elongation in most of these bacteria, the molecular mechanisms underlying nanofibril sheath formation, including the intracellular signaling cascade in response to extracellular stimuli, must be elucidated. Here, we isolated a sheathless variant of L. cholodnii SP6 and thus identified a novel glycosyltransferase, LthB. Although mutants with deletions of lthA, encoding another GT, and lthB were both defective for nanofibril formation, they exhibited different phenotypes of cell chain elongation and pellicle formation. Moreover, LthA expression, but not LthB expression, was influenced by extracellular calcium, which is known to affect nanofibril formation, indicating the functional diversities of LthA and LthB. Such molecular insights are critical for a better understanding of ecology of filamentous bacteria, which, in turn, can be used to improve strategies to control filamentous bacteria in industrial facilities.


Assuntos
Glicosiltransferases , Leptothrix , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Leptothrix/fisiologia , Cálcio/metabolismo , Análise de Sequência de DNA , Glicoconjugados/metabolismo
2.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453262

RESUMO

Leptothrix ochracea is known for producing large volumes of iron oxyhydroxide sheaths that alter wetland biogeochemistry. For over a century, these delicate structures have fascinated microbiologists and geoscientists. Because L. ochracea still resists long-term in vitro culture, the debate regarding its metabolic classification dates back to 1885. We developed a novel culturing technique for L. ochracea using in situ natural waters and coupled this with single-cell genomics and nanoscale secondary-ion mass spectrophotometry (nanoSIMS) to probe L. ochracea's physiology. In microslide cultures L. ochracea doubled every 5.7 h and had an absolute growth requirement for ferrous iron, the genomic capacity for iron oxidation, and a branched electron transport chain with cytochromes putatively involved in lithotrophic iron oxidation. Additionally, its genome encoded several electron transport chain proteins, including a molybdopterin alternative complex III (ACIII), a cytochrome bd oxidase reductase, and several terminal oxidase genes. L. ochracea contained two key autotrophic proteins in the Calvin-Benson-Bassham cycle, a form II ribulose bisphosphate carboxylase, and a phosphoribulose kinase. L. ochracea also assimilated bicarbonate, although calculations suggest that bicarbonate assimilation is a small fraction of its total carbon assimilation. Finally, L. ochracea's fundamental physiology is a hybrid of those of the chemolithotrophic Gallionella-type iron-oxidizing bacteria and the sheathed, heterotrophic filamentous metal-oxidizing bacteria of the Leptothrix-Sphaerotilus genera. This allows L. ochracea to inhabit a unique niche within the neutrophilic iron seeps.IMPORTANCELeptothrix ochracea was one of three groups of organisms that Sergei Winogradsky used in the 1880s to develop his hypothesis on chemolithotrophy. L. ochracea continues to resist cultivation and appears to have an absolute requirement for organic-rich waters, suggesting that its true physiology remains unknown. Further, L. ochracea is an ecological engineer; a few L. ochracea cells can generate prodigious volumes of iron oxyhydroxides, changing the ecosystem's geochemistry and ecology. Therefore, to determine L. ochracea's basic physiology, we employed new single-cell techniques to demonstrate that L. ochracea oxidizes iron to generate energy and, despite having predicted genes for autotrophic growth, assimilates a fraction of the total CO2 that autotrophs do. Although not a true chemolithoautotroph, L. ochracea's physiological strategy allows it to be flexible and to extensively colonize iron-rich wetlands.


Assuntos
Técnicas Bacteriológicas/métodos , Ferro/metabolismo , Leptothrix/fisiologia , Compostos Férricos/metabolismo , Oxirredução
3.
Environ Sci Pollut Res Int ; 23(9): 9019-35, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26825521

RESUMO

Pump and treat systems are widely used for hydrocarbon-contaminated groundwater remediation. Although biofouling (formation of clogging biofilms on pump surfaces) is a common problem in these systems, scarce information is available regarding the phylogenetic and functional complexity of such biofilms. Extensive information about the taxa and species as well as metabolic potential of a bacterial biofilm developed on the stainless steel surface of a pump submerged in a gasoline-contaminated hypoxic groundwater is presented. Results shed light on a complex network of interconnected hydrocarbon-degrading chemoorganotrophic and chemolitotrophic bacteria. It was found that besides the well-known hydrocarbon-degrading aerobic/facultative anaerobic biofilm-forming organisms (e.g., Azoarcus, Leptothrix, Acidovorax, Thauera, Pseudomonas, etc.), representatives of Fe(2+)-and Mn(2+)-oxidizing (Thiobacillus, Sideroxydans, Gallionella, Rhodopseudomonas, etc.) as well as of Fe(3+)- and Mn(4+)-respiring (Rhodoferax, Geobacter, Magnetospirillum, Sulfurimonas, etc.) bacteria were present in the biofilm. The predominance of ß-Proteobacteria within the biofilm bacterial community in phylogenetic and functional point of view was revealed. Investigation of meta-cleavage dioxygenase and benzylsuccinate synthase (bssA) genes indicated that within the biofilm, Azoarcus, Leptothrix, Zoogloea, and Thauera species are most probably involved in intrinsic biodegradation of aromatic hydrocarbons. Polyphasic analysis of the biofilm shed light on the fact that subsurface microbial accretions might be reservoirs of novel putatively hydrocarbon-degrading bacterial species. Moreover, clogging biofilms besides their detrimental effects might supplement the efficiency of pump and treat systems.


Assuntos
Azoarcus/fisiologia , Gasolina/análise , Água Subterrânea/química , Leptothrix/fisiologia , Aço Inoxidável/química , Poluentes Químicos da Água/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Biofilmes , Carbono-Carbono Liases , Gasolina/microbiologia , Hidrocarbonetos/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Filogenia
4.
ChemSusChem ; 6(7): 1252-61, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23766295

RESUMO

Cathodic reactions in biofilms employed in sediment microbial fuel cells is generally studied in the bulk phase. However, the cathodic biofilms affected by these reactions exist in microscale conditions in the biofilm and near the electrode surface that differ from the bulk phase. Understanding these microscale conditions and relating them to cathodic biofilm performance is critical for better-performing cathodes. The goal of this research was to quantify the variation in oxygen, hydrogen peroxide, and the pH value near polarized surfaces in river water to simulate cathodic biofilms. We used laboratory river-water biofilms and pure culture biofilms of Leptothrix discophora SP-6 as two types of cathodic biofilms. Microelectrodes were used to quantify oxygen concentration, hydrogen peroxide concentration, and the pH value near the cathodes. We observed the correlation between cathodic current generation, oxygen consumption, and hydrogen peroxide accumulation. We found that the 2 e(-) pathway for oxygen reduction is the dominant pathway as opposed to the previously accepted 4 e(-) pathway quantified from bulk-phase data. Biofouling of initially non-polarized cathodes by oxygen scavengers reduced cathode performance. Continuously polarized cathodes could sustain a higher cathodic current longer despite contamination. The surface pH reached a value of 8.8 when a current of only -30 µA was passed through a polarized cathode, demonstrating that the pH value could also contribute to preventing biofouling. Over time, oxygen-producing cathodic biofilms (Leptothrix discophora SP-6) colonized on polarized cathodes, which decreased the overpotential for oxygen reduction and resulted in a large cathodic current attributed to manganese reduction. However, the cathodic current was not sustainable.


Assuntos
Biofilmes/crescimento & desenvolvimento , Peróxido de Hidrogênio/química , Oxigênio/química , Rios/química , Rios/microbiologia , Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Concentração de Íons de Hidrogênio , Leptothrix/fisiologia , Propriedades de Superfície , Fatores de Tempo
5.
Arch Microbiol ; 194(8): 667-73, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22392226

RESUMO

Leptothrix cholodnii is a Mn(II)-oxidizing and sheath-forming member of the class ß-Proteobacteria. Its sheath is a microtube-like filament that contains a chain of cells. From a chemical perspective, the sheath can be described as a supermolecule composed of a cysteine-rich polymeric glycoconjugate, called thiopeptidoglycan. However, the mechanism that controls the increase in sheath length is unknown. In this study, we attempted to detect sheath elongation through microscopic examination by using conventional reagents. Selective fluorescent labeling of preexisting or newly formed regions of the sheath was accomplished using combinations of biotin-conjugated maleimide, propionate-conjugated maleimide, and a fluorescent antibiotin antibody. Epifluorescence microscopy indicated that the sheath elongates at the terminal regions. On the bases of this observation, we assumed that the newly secreted thiopeptidoglycan molecules are integrated into the preexisting sheath at its terminal ends. Successive phase-contrast microscopy revealed that all cells proliferate at nearly the same rate regardless of their positions within the sheath. Mn(II) oxidation in microcultures was also examined with respect to cultivation time. Results suggested that the deposition of Mn oxides is notable in the aged regions. The combined data reveal the spatiotemporal relationships among sheath elongation, cell proliferation, and Mn oxide deposition in L. cholodnii.


Assuntos
Leptothrix/fisiologia , Manganês/química , Proliferação de Células , Glicoconjugados/metabolismo , Leptothrix/citologia , Leptothrix/metabolismo , Leptothrix/ultraestrutura , Microscopia Eletrônica de Varredura , Oxirredução
6.
Curr Microbiol ; 63(2): 173-80, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21643851

RESUMO

Leptothrix species in aquatic environments produce uniquely shaped hollow microtubules composed of aquatic inorganic and bacterium-derived organic hybrids. Our group termed this biologically derived iron oxide as "biogenous iron oxide (BIOX)". The artificial synthesis of most industrial iron oxides requires massive energy and is costly while BIOX from natural environments is energy and cost effective. The BIOX microtubules could potentially be used as novel industrial functional resources for catalysts, adsorbents and pigments, among others if effective and efficient applications are developed. For these purposes, a reproducible system to regulate bacteria and their BIOX productivity must be established to supply a sufficient amount of BIOX upon industrial demand. However, the bacterial species and the mechanism of BIOX microtubule formation are currently poorly understood. In this study, a novel Leptothrix sp. strain designated OUMS1 was successfully isolated from ocherous deposits in groundwater by testing various culture media and conditions. Morphological and physiological characters and elemental composition were compared with those of the known strain L. cholodnii SP-6 and the differences between these two strains were shown. The successful isolation of OUMS1 led us to establish a basic system to accumulate biological knowledge of Leptothrix and to promote the understanding of the mechanism of microtubule formation. Additional geochemical studies of the OUMS1-related microstructures are expected provide an attractive approach to study the broad industrial application of bacteria-derived iron oxides.


Assuntos
Compostos Férricos/metabolismo , Leptothrix/classificação , Leptothrix/isolamento & purificação , Microbiologia do Solo , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Análise por Conglomerados , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Leptothrix/genética , Leptothrix/fisiologia , Dados de Sequência Molecular , Tipagem Molecular , Filogenia , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA
7.
Water Res ; 38(7): 1922-32, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15026247

RESUMO

In the present article, the treatment of groundwater containing Mn(II) and Fe(II) has been investigated. The biological oxidation of Mn(II) and Fe(II) in upflow filtration units comprised the applied experimental technique. The oxidation processes were mediated by specific bacteria, namely the Leptothrix ochracea and Gallionella ferruginea, which belong to the general category of manganese and iron oxidizing bacteria. This work was focused on the characterization of the products of biological oxidation and to the examination of the kinetics of Mn(II) removal as compared with Fe(II) removal from groundwaters. The products of biological oxidation were characterized using the spectroscopic techniques XRD, XPS and SEM-EDS and comprised a mixture of biogenic hydrous manganese and iron oxides. The oxidation state of manganese in the precipitates was found to be between 3 and 4. Iron oxides were mainly in the form of amorphous ferrihydrite. The kinetic results indicated that the rates of manganese and iron oxidation were several orders of magnitude greater than the respective for abiotic oxidation. The bacterially mediated oxidation of iron was faster than manganese oxidation, presenting half-lives of reaction 0.9 and 3.98 min, respectively.


Assuntos
Gallionellaceae/fisiologia , Ferro/química , Ferro/isolamento & purificação , Leptothrix/fisiologia , Manganês/química , Manganês/isolamento & purificação , Precipitação Química , Filtração , Gallionellaceae/química , Meia-Vida , Cinética , Leptothrix/química , Oxirredução , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...