Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L687-L697, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563965

RESUMO

Chronic cigarette smoke exposure decreases lung expression of WWOX which is known to protect the endothelial barrier during infectious models of acute respiratory distress syndrome (ARDS). Proteomic analysis of WWOX-silenced endothelial cells (ECs) was done using tandem mass tag mass spectrometry (TMT-MS). WWOX-silenced ECs as well as those isolated from endothelial cell Wwox knockout (EC Wwox KO) mice were subjected to cyclic stretch (18% elongation, 0.5 Hz, 4 h). Cellular lysates and media supernatant were harvested for assays of cellular signaling, protein expression, and cytokine release. These were repeated with dual silencing of WWOX and zyxin. Control and EC Wwox KO mice were subjected to high tidal volume ventilation. Bronchoalveolar lavage fluid and mouse lung tissue were harvested for cellular signaling, cytokine secretion, and histological assays. TMT-MS revealed upregulation of zyxin expression during WWOX knockdown which predicted a heightened inflammatory response to mechanical stretch. WWOX-silenced ECs and ECs isolated from EC Wwox mice displayed significantly increased cyclic stretch-mediated secretion of various cytokines (IL-6, KC/IL-8, IL-1ß, and MCP-1) relative to controls. This was associated with increased ERK and JNK phosphorylation but decreased p38 mitogen-activated kinases (MAPK) phosphorylation. EC Wwox KO mice subjected to VILI sustained a greater degree of injury than corresponding controls. Silencing of zyxin during WWOX knockdown abrogated stretch-induced increases in IL-8 secretion but not in IL-6. Loss of WWOX function in ECs is associated with a heightened inflammatory response during mechanical stretch that is associated with increased MAPK phosphorylation and appears, in part, to be dependent on the upregulation of zyxin.NEW & NOTEWORTHY Prior tobacco smoke exposure is associated with an increased risk of acute respiratory distress syndrome (ARDS) during critical illness. Our laboratory is investigating one of the gene expression changes that occurs in the lung following smoke exposure: WWOX downregulation. Here we describe changes in protein expression associated with WWOX knockdown and its influence on ventilator-induced ARDS in a mouse model.


Assuntos
Células Endoteliais , Inflamação , Camundongos Knockout , Lesão Pulmonar Induzida por Ventilação Mecânica , Oxidorredutase com Domínios WW , Animais , Oxidorredutase com Domínios WW/metabolismo , Oxidorredutase com Domínios WW/genética , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Inflamação/metabolismo , Inflamação/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Técnicas de Silenciamento de Genes , Masculino , Pulmão/metabolismo , Pulmão/patologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética
2.
BMC Med Genomics ; 17(1): 31, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254192

RESUMO

BACKGROUND: Mechanical ventilation, a critical support strategy for individuals enduring severe respiratory failure and general anesthesia, paradoxically engenders ventilator-induced lung injury (VILI). Ferrostatin-1 mitigates lung injury via ferroptosis inhibition, yet the specific ferroptosis genes contributing significantly to VILI remain obscure. METHODS: Leveraging the Gene Expression Omnibus database, we acquired VILI-associated datasets and identified differentially expressed genes (DEGs). To identify the hub genes, we constructed a protein-protein interaction network and used three parameters from CytoHubba. Consequently, we identified hub genes and ferroptosis genes as ferroptosis hub genes for VILI (VFHGs). We conducted enrichment analysis and established receiver operating characteristic (ROC) curves for VFHGs. Subsequently, to confirm the correctness of the VFHGs, control group mice and VILI mouse models, as well as external dataset validation, were established. For further research, a gene-miRNA network was established. Finally, the CIBERSORT algorithm was used to fill the gap in the immune infiltration changes in the lung during VILI. RESULTS: We identified 64 DEGs and 4 VFHGs (Il6,Ptgs2,Hmox1 and Atf3) closely related to ferroptosis. ROC curves demonstrated the excellent diagnostic performance of VFHGs in VILI. PCR and external dataset validation of the VILI model demonstrated the accuracy of VFHGs. Subsequently, the gene-miRNA network was successfully established. Ultimately, an Immune cell infiltration analysis associated with VILI was generated. CONCLUSIONS: The results emphasize the importance of 4 VFHGs and their involvement in ferroptosis in VILI, confirming their potential as diagnostic biomarkers for VILI.


Assuntos
Ferroptose , MicroRNAs , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Camundongos , Ferroptose/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Algoritmos , Ciclo-Oxigenase 2
3.
Cell Signal ; 112: 110920, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37827345

RESUMO

OBJECTIVE: To assess the influences and underlying mechanism of circular RNA UBR1 (circUBR1) in ventilator-induced lung injury (VILI). METHODS: In mice and mouse alveolar epithelial cells, VILI model was established. CircUBR1 and miR-20a-5p expression was assessed via quantitative real time polymerase chain reaction. Western blot and immunohistochemistry were applied to assess geranylgeranyl diphosphate synthase 1 (GGPPS1) protein expression. In lung tissues, the histopathological changes were utilized using hematoxylin and eosin staining. Cell counting kit-8 assay and flow cytometer were applied to detect cell proliferation and apoptosis. The levels of inflammatory cytokines [interleukin (IL)-1ß, IL-18, IL-6, and tumor necrosis factor (TNF)-α] were measured by western blot and enzyme-linked immunosorbent assay. RESULTS: In lung tissues of VILI mice, circUBR1 and GGPPS1 expression were upregulated, while miR-20a-5p expression was downregulated. In vivo, circUBR1 knockdown alleviated lung injury, inhibited cell apoptosis, and decreased the levels of inflammatory cytokines. In cells treated with cyclic stretch (CS), circUBR1 knockdown promoted cell viability, inhibited cell apoptosis, and reduced inflammatory cytokines. CircUBR1 could sponge miR-20a-5p, and GGPPS1 was the target gene of miR-20a-5p. In addition, in cells treated with CS, downregulation of miR-20a-5p or the overexpression of GGPPS1 reversed the promotive effect of circUBR1 knockdown on cell viability and the inhibitive effect of circUBR1 knockdown on cell apoptosis and inflammation production. CONCLUSIONS: In VILI, knockdown of circUBR1 attenuated lung injury and inflammation via regulating the miR-20a-5p/GGPPS1 pathway. Our study may provide a potential therapeutic target for treatment of VILI.


Assuntos
MicroRNAs , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Camundongos , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Regulação para Baixo , Citocinas , Apoptose/genética , Inflamação , MicroRNAs/genética
4.
Nanomedicine ; 50: 102679, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116556

RESUMO

Acute respiratory distress syndrome (ARDS) has high mortality (~40 %) and requires the lifesaving intervention of mechanical ventilation. A variety of systemic inflammatory insults can progress to ARDS, and the inflamed and injured lung is susceptible to ventilator-induced lung injury (VILI). Strategies to mitigate the inflammatory response while restoring pulmonary function are limited, thus we sought to determine if treatment with CNP-miR146a, a conjugate of novel free radical scavenging cerium oxide nanoparticles (CNP) to the anti-inflammatory microRNA (miR)-146a, would protect murine lungs from acute lung injury (ALI) induced with intratracheal endotoxin and subsequent VILI. Lung injury severity and treatment efficacy were evaluated via lung mechanical function, relative gene expression of inflammatory biomarkers, and lung morphometry (stereology). CNP-miR146a reduced the severity of ALI and slowed the progression of VILI, evidenced by improvements in inflammatory biomarkers, atelectasis, gas volumes in the parenchymal airspaces, and the stiffness of the pulmonary system.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Camundongos , Animais , Pulmão/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética
5.
Biosci Rep ; 43(3)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36825682

RESUMO

Ventilator-induced lung injury (VILI) may be caused by incorrect mechanical ventilation (MV), and its progression is mainly related to inflammatory reaction, apoptosis, and oxidative stress. The Wnt/ß-catenin pathway can modulate inflammation and apoptosis; however, its role in VILI is unknown. This research aims to explore the role of the Wnt/ß-catenin pathway in VILI. VILI models were established using rats and type II alveolar epithelial (ATII) cells. Glycogen synthase kinase 3ß (GSK-3ß), ß-catenin, and cyclin D1 were determined using western blotting and immunofluorescence. Apoptosis of lung tissues was evaluated using TUNEL, flow cytometry, Bax, and Bcl2 protein. Interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were detected via enzyme-linked immunosorbent assay (ELISA). Lung pathological injury was evaluated through hematoxylin and eosin (H&E) staining. Lung permeability was evaluated by the ratio of dry to wet weight of lung tissue and the total protein level of bronchoalveolar lavage fluid (BALF). The results showed that GSK-3ß expression was enhanced and ß-catenin expression was diminished in lung tissue under MV. SB216763 increased ß-catenin and cyclin D1 expression by inhibiting GSK-3ß expression and inhibited the inflammatory response and apoptosis of lung, alleviated pulmonary edema and lung tissue permeability, and significantly mitigated lung injury. However, inhibition of ß-catenin expression by MSAB attenuated the anti-inflammatory and antiapoptotic effects of SB216763 in VILI. Overall, the present study demonstrates that the Wnt/ß-catenin pathway activation in MV may play an anti-inflammatory and antiapoptotic role, thereby alleviating lung injury and delaying VILI progression, which may be a key point of intervention in VILI.


Assuntos
Lesão Pulmonar Induzida por Ventilação Mecânica , beta Catenina , Ratos , Animais , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Inflamação/patologia , Pulmão/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Apoptose , Anti-Inflamatórios/uso terapêutico , Interleucina-6/metabolismo
6.
Zhen Ci Yan Jiu ; 48(1): 71-6, 2023 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-36734501

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture (EA) pretreatment on inflammatory response in ven-tilator-induced lung injury (VILI) mice, so as to explore the underlying mechanism of EA pretreatment on prevention of VILI. METHODS: C57BL/6 mice were randomly divided into sham-operation group, model group, EA group and sham-acupoint group,with 8 mice in each group. The VILI model was established by ventilation with high tidal volume. Mice in the EA group and sham-acupoint group were given EA at "Zusanli" (ST36)and "Feishu"(BL13) or non-acupoints (located at 1-2 cm on both sides of the tail root of the proximal trunk) before mechanical ventilation, 30 min each time, once a day for 5 days. Arterial blood was collec-ted for blood gas analysis, the total protein content in bronchoalveolar lavage fluid (BALF) was detected by BCA method. The contents of interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) in BALF were detected by ELISA. Lung injury score was determined after HE staining. The protein expression levels of nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and Caspase-1 in lung tissue was detected by Western blot. RESULTS: Compared with the sham-operation group, the arterial partial pressure of oxygen and oxygenation index were decreased(P<0.05), the levels of total protein, IL-1ß and IL-18 in BALF, the W/D value and the pathological injury score of lung tissue and the protein expression levels of NLRP3, Caspase-1 and ASC were increased(P<0.05)in the model group. Following the interventions, the above mentioned increased or decreased indicators were reversed(P<0.05) in the EA group rather than in the sham-acupoint group. CONCLUSION: EA pretreatment of ST36 and BL13 can reduce the damage of lung tissue caused by mechanical ventilation, which may be related to its effect in reducing the expression of NLPR3 inflammasome related proteins, reducing the activation of inflammasome, and thereby reducing the inflammatory response.


Assuntos
Eletroacupuntura , Lesão Pulmonar Induzida por Ventilação Mecânica , Camundongos , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/terapia , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Caspase 1
7.
Am J Respir Crit Care Med ; 207(11): 1464-1474, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480958

RESUMO

Rationale: Mechanical ventilation (MV) is life-saving but may evoke ventilator-induced lung injury (VILI). Objectives: To explore how the circadian clock modulates severity of murine VILI via the core clock component BMAL1 (basic helix-loop-helix ARNT like 1) in myeloid cells. Methods: Myeloid cell BMAL1-deficient (LysM (lysozyme 2 promoter/enhancer driving cre recombinase expression)Bmal1-/-) or wild-type control (LysMBmal1+/+) mice were subjected to 4 hours MV (34 ml/kg body weight) to induce lung injury. Ventilation was initiated at dawn or dusk or in complete darkness (circadian time [CT] 0 or CT12) to determine diurnal and circadian effects. Lung injury was quantified by lung function, pulmonary permeability, blood gas analysis, neutrophil recruitment, inflammatory markers, and histology. Neutrophil activation and oxidative burst were analyzed ex vivo. Measurements and Main Results: In diurnal experiments, mice ventilated at dawn exhibited higher permeability and neutrophil recruitment compared with dusk. Experiments at CT showed deterioration of pulmonary function, worsening of oxygenation, and increased mortality at CT0 compared with CT12. Wild-type neutrophils isolated at dawn showed higher activation and reactive oxygen species production compared with dusk, whereas these day-night differences were dampened in LysMBmal1-/- neutrophils. In LysMBmal1-/- mice, circadian variations in VILI severity were dampened and VILI-induced mortality at CT0 was reduced compared with LysMBmal1+/+ mice. Conclusions: Inflammatory response and lung barrier dysfunction upon MV exhibit diurnal variations, regulated by the circadian clock. LysMBmal1-/- mice are less susceptible to ventilation-induced pathology and lack circadian variation of severity compared with LysMBmal1+/+ mice. Our data suggest that the internal clock in myeloid cells is an important modulator of VILI.


Assuntos
Relógios Circadianos , Lesão Pulmonar Induzida por Ventilação Mecânica , Camundongos , Animais , Relógios Circadianos/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Pulmão , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Ritmo Circadiano/genética , Camundongos Endogâmicos C57BL
8.
Int Immunopharmacol ; 112: 109288, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36193608

RESUMO

BACKGROUND: Globally, Mechanical ventilation is the most commonly used short-term life support technology. Ventilator-induced lung injury (VILI) is an inflammatory injury caused by mechanical ventilation. MicroRNAs (miRNAs) are considered as new gene regulators that play an important role in lung injury and inflammation. However, the role and mechanism of action of miR-9a-5p in VILI remain unclear. METHODS: Herein, a rat model of VILI was established. To determine the expression levels of miR-9a-5p and CXCR4 mRNA, real-time quantitative polymerase chain reactions (qRT-PCR) were conducted. As well as western blot (WB) and immunofluorescence analyses, we determined the expression of CXCR4, SDF-1 and MAPK signaling pathway-related kinases. Hematoxylin and eosin (H&E) staining and the wet-dry ratio of the lung tissue were used to evaluate organ injury. An enzyme-linked immunosorbent assay (Elisa) and myeloperoxidase (MPO) activity measurements were performed to evaluate the inflammatory response. In addition, double luciferase reporter assays were used to verify the association between miR-9a-5p and CXCR4. RESULTS: The expression of miR-9a-5p was low, whereas that of CXCR4 was high in the lung tissues of VILI rats. The overexpression of miR-9a-5p alleviated the degree of pathological injury in the lung tissues of rats with VILI, downregulating inflammatory cytokine expression and MPO activity. In the VILI rat model, miR-9a-5p targeted the negative regulation of CXCR4, and CXCR4 overexpression to reverse the lung-protective and anti-inflammatory effects of miR-9a-5p overexpression in VILI rats. miR-9a-5p also inhibited the phosphorylation of extracellular signal receptor-activated kinase (ERK), a protein related to the MAPK signaling pathway, by downregulating CXCR4 expression. CONCLUSION: miR-9a-5p can hinder the activation of the MAPK/ERK signaling pathway and reduce inflammatory reactions and lung injury in VILI rats through the targeted regulation of CXCR4 expression. Therefore, miR-9a-5p could serve as an intervention target to supply a new strategy for the care of VILI.


Assuntos
MicroRNAs , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Ratos , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Regulação para Baixo , Amarelo de Eosina-(YS)/farmacologia , Hematoxilina/farmacologia , Inflamação/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Peroxidase/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , RNA Mensageiro , Transdução de Sinais , Lesão Pulmonar Induzida por Ventilação Mecânica/genética
9.
Mediators Inflamm ; 2022: 1002582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462787

RESUMO

Background: To examine the role of interferon regulatory factor-1 (IRF-1) and to explore the potential molecular mechanism in ventilator-induced lung injury. Methods: Wild-type C57BL/6 mice and IRF-1 gene knockout mice/caspase-1 knockout mice were mechanically ventilated with a high tidal volume to establish a ventilator-related lung injury model. The supernatant of the alveolar lavage solution and the lung tissues of these mice were collected. The degree of lung injury was examined by hematoxylin and eosin staining. The protein and mRNA expression levels of IRF-1, caspase-1 (p10), and interleukin (IL)-1ß (p17) in lung tissues were measured by western blot and quantitative real-time polymerase chain reaction, respectively. Pyroptosis of alveolar macrophages was detected by flow cytometry and western blotting for active caspase-1 and cleaved GSDMD. An enzyme-linked immunosorbent assay was used to measure the levels of IL-1ß, IL-18, IL-6, TNF-α, and high mobility group box protein 1 (HMGB-1) in alveolar lavage fluid. Results: IRF-1 expression and caspase-1-dependent pyroptosis in lung tissues of wild-type mice were significantly upregulated after mechanical ventilation with a high tidal volume. The degree of ventilator-related lung injury in IRF-1 gene knockout mice and caspase-1 knockout mice was significantly improved compared to that in wild-type mice, and the levels of GSDMD, IL-1ß, IL-18, IL-6, and HMGB-1 in alveolar lavage solution were significantly reduced (P < 0.05). The expression levels of caspase-1 (p10), cleaved GSDMD, and IL-1ß (p17) proteins in lung tissues of IRF-1 knockout mice with ventilator-related lung injury were significantly lower than those of wild-type mice, and the level of pyroptosis of macrophages in alveolar lavage solution was significantly reduced. Conclusions: IRF-1 may aggravate ventilator-induced lung injury by regulating the activation of caspase-1 and the focal death of alveolar macrophages.


Assuntos
Caspase 1 , Fator Regulador 1 de Interferon , Macrófagos Alveolares , Piroptose , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Caspase 1/genética , Caspase 1/metabolismo , Proteína HMGB1/metabolismo , Fator Regulador 1 de Interferon/biossíntese , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Interleucina-18/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Macrófagos Alveolares/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piroptose/genética , Piroptose/fisiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
10.
Hum Cell ; 35(3): 871-884, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35334098

RESUMO

Mechanical ventilation may cause ventilator-induced lung injury (VILI) in patients requiring ventilator support. Inhibition of autophagy is an important approach to ameliorate VILI as it always enhances lung injury after exposure to various stress agents. This study aimed to further reveal the potential mechanisms underlying the effects of geranylgeranyl diphosphate synthase large subunit 1 (GGPPS1) knockout and autophagy in VILI using C57BL/6 mice with lung-specific GGPPS1 knockout that were subjected to mechanical ventilation. The results demonstrate that GGPPS1 knockout mice exhibit significantly attenuated VILI based on the histologic score, the lung wet-to-dry ratio, total protein levels, neutrophils in bronchoalveolar lavage fluid, and reduced levels of inflammatory cytokines. Importantly, the expression levels of autophagy markers were obviously decreased in GGPPS1 knockout mice compared with wild-type mice. The inhibitory effects of GGPPS1 knockout on autophagy were further confirmed by measuring the ultrastructural change of lung tissues under transmission electron microscopy. In addition, knockdown of GGPPS1 in RAW264.7 cells reduced cyclic stretch-induced inflammation and autophagy. The benefits of GGPPS1 knockout for VILI can be partially eliminated through treatment with rapamycin. Further analysis revealed that Rab37 was significantly downregulated in GGPPS1 knockout mice after mechanical ventilation, while it was highly expressed in the control group. Simultaneously, Rab37 overexpression significantly enhances autophagy in cells that are treated with cyclin stretch, including GGPPS1 knockout cells. Collectively, our results indicate that GGPPS1 knockout results in reduced expression of Rab37 proteins, further restraining autophagy and VILI.


Assuntos
Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Autofagia/genética , Dimetilaliltranstransferase , Farnesiltranstransferase , Geraniltranstransferase , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
11.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(1): 41-47, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35307059

RESUMO

OBJECTIVE: To investigate differential expression gene (DEG) in mice with ventilator-induced lung injury (VILI) by bioinformatics analysis, and to verify the key genes by reproducing the VILI mouse model. METHODS: (1) Experiment 1 (bioinformatics analysis): the microarray dataset of GSE9368 and GSE11662 regarding VILI mice and those in the spontaneous breathing control group were downloaded from the gene expression omnibus (GEO) database. DEG obtained by R and Venn map was further used to obtain common DEG. DAVID online database was used to obtain gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, the protein-protein interaction (PPI) analysis of common DEG was carried out by using Search Tool for the Retrieval of Interacting Genes Database (STRING) and the key genes were screened out by using CytoScape software, molecular complex detection (MCODE) analysis plug-in and CytoHubba plug-in with maximum cluster centrality (MCC), maximum neighbor connectivity (MNC) and degree. (2) Experiment 2 (related protein verification): VILI mouse model was reproduced by high tidal volume (20 mL/kg) ventilator. Spontaneous breathing control group was set up. Hematoxylin-eosin (HE) staining was performed to assess lung injury and the key genes screened in experiment 1 were verified by immunohistochemical staining. RESULTS: (1) Experiment 1 results: a total of 114 DEG were screened from GSE9368 dataset, including 99 up-regulated genes and 15 down-regulated genes. A total of 258 DEG were screened from GSE11662 dataset, including 188 up-regulated genes and 70 down-regulated genes. Furthermore, 66 common DEG were obtained, including 61 up-regulated genes and 5 down-regulated genes. GO analysis showed that the common DEG were mainly involved in inflammatory response, immune response, leukocyte and neutrophil chemotaxis. KEGG analysis showed that the common DEG were involved cell adhesion, cytokine receptor interaction and tumor necrosis factor (TNF) signaling pathway. STRING and CytoScape analysis were used to construct gene PPI network diagram and important sub modules. And the CytoHubba plug-in with MCC, MNC and degree algorithms was used to perform topology analysis and then taken an intersection to obtain eight genes including suppressor of cytokine signaling 3 (SOCS3), interleukin-1ß (IL-1ß), matrix metalloproteinase-9 (MMP-9), integrin Itgam, CXC chemokine ligand 2 (CXCL2), CXC chemokine receptor 2 (CXCR2), Sell and CC chemokine receptor 1 (CCR1). (2) Experiment 2 results: a mouse model of high tidal volume VILI was reproduced. Compared with the spontaneous breathing control group, the lung tissue was injured slightly at 0 hour after the end of ventilation, and the lung tissue structure was significantly damaged at 6 hours after the end of ventilation, showing bleeding in alveolar cavity, significant increase and collapse of alveolar wall thickness, and infiltration of inflammatory cells. The top three genes from intersection and topological analysis including IL-1ß, SOCS3 and MMP-9 were verified by immunohistochemical staining. The results showed that the expressions of IL-1ß, SOCS3 and MMP-9 were gradually increased with time of ventilation, the differences were found at 6 hours as compared with those in the spontaneous breathing control group [IL-1ß (integral A value): 8.40±2.67 vs. 5.10±0.94, SOCS3 (integral A value): 9.74±1.80 vs. 5.95±1.31, MMP-9 (integral A value): 11.45±6.20 vs. 5.36±1.28, all P < 0.05]. CONCLUSIONS: Bioinformatics analysis based on GSE9368 and GSE11662 data sets found that VILI is mainly related to inflammatory injury, cytokines and immune cell infiltration; IL-1ß, SOCS3 and MMP-9 might be biomarkers of VILI.


Assuntos
Biologia Computacional , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Biologia Computacional/métodos , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Camundongos , Lesão Pulmonar Induzida por Ventilação Mecânica/genética
12.
Mol Med Rep ; 25(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34981816

RESUMO

Long non­coding (lnc)RNA nuclear enriched abundant transcript 1 (NEAT1) has been reported to serve an important role in cancer, but its effects on ventilator­induced lung injury (VILI) remain unclear. The present study aimed to investigate the role of lncRNA NEAT1 in alveolar macrophages (AMs) on ventilator­induced lung injury (VILI). Mouse and cell models were established to detect NEAT1 expression, pathological changes in lung tissues, apoptosis of AMs, expression of the M1 phenotype marker, CD86 and M2 phenotype marker, CD206, and the expression levels of interleukin (IL)­1ß, IL­6, tumor necrosis factor (TNF)­α and inducible nitric oxide synthase (iNOS). The associations between NEAT1, microRNA (miRNA/miR)­20b and STAT3 were predicted using StarBase and TargetScan, and verified via the dual­luciferase reporter and RIP assays. NEAT1 short hairpin RNA and miR­20b inhibitor were co­transfected into AMs to assess the effect of NEAT1 and miR­20b in VILI. The results demonstrated that NEAT1 was highly expressed in lung tissues of VILI mice and cell stretch (CS) treated AMs. Furthermore, NEAT1 knockdown inhibited lung injury and cell apoptosis induced by VILI. Compared with VILI mice or CS­treated AMs, NEAT1 knockdown accelerated the phenotypic transformation from M1 to M2, and decreased the expression levels of IL­1ß, IL­6, TNF­α and iNOS. Notably, miR­20b was identified as the target of NEAT1, and STAT3 was the target of miR­20b. NEAT1 knockdown decreased STAT3 protein expression, the effects of which were reversed following transfection with miR­20b inhibitor. Furthermore, the protective effect of NEAT1 knockdown on VILI was reversed following transfection with miR­20b inhibitor. Taken together, the results of the present study suggest that NEAT1 knockdown promotes phenotypic transformation of AMs from M1 to M2 and alleviates lung injury and apoptosis of VILI by regulating miR­20b expression.


Assuntos
MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Animais , Sobrevivência Celular/genética , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Macrófagos Alveolares/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
13.
Dis Markers ; 2021: 5535890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927789

RESUMO

BACKGROUND: Mechanical ventilation could lead to ventilator-induced lung injury (VILI), but its underlying pathogenesis remains largely unknown. In this study, we aimed to determine the genes which were highly correlated with VILI as well as their expressions and interactions by analyzing the differentially expressed genes (DEGs) between the VILI samples and controls. METHODS: GSE11434 was downloaded from the gene expression omnibus (GEO) database, and DEGs were identified with GEO2R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using DAVID. Next, we used the STRING tool to construct protein-protein interaction (PPI) network of the DEGs. Then, the hub genes and related modules were identified with the Cytoscape plugins: cytoHubba and MCODE. qRT-PCR was further used to validate the results in the GSE11434 dataset. We also applied gene set enrichment analysis (GSEA) to discern the gene sets that had a significant difference between the VILI group and the control. Hub genes were also subjected to analyses by CyTargetLinker and NetworkAnalyst to predict associated miRNAs and transcription factors (TFs). Besides, we used CIBERSORT to detect the contributions of different types of immune cells in lung tissues of mice in the VILI group. By using DrugBank, small molecular compounds that could potentially interact with hub genes were identified. RESULTS: A total of 141 DEGs between the VILI group and the control were identified in GSE11434. Then, seven hub genes were identified and were validated by using qRT-PCR. Those seven hub genes were largely enriched in TLR and JAK-STAT signaling pathways. GSEA showed that VILI-associated genes were also enriched in NOD, antigen presentation, and chemokine pathways. We predicted the miRNAs and TFs associated with hub genes and constructed miRNA-TF-gene regulatory network. An analysis with CIBERSORT showed that the proportion of M0 macrophages and activated mast cells was higher in the VILI group than in the control. Small molecules, like nadroparin and siltuximab, could act as potential drugs for VILI. CONCLUSION: In sum, a number of hub genes associated with VILI were identified and could provide novel insights into the pathogenesis of VILI and potential targets for its treatment.


Assuntos
Transcriptoma , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Animais , Redes Reguladoras de Genes , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo
14.
Am J Respir Crit Care Med ; 204(4): 421-430, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848447

RESUMO

Rationale: Mechanical ventilation is a mainstay of intensive care but contributes to the mortality of patients through ventilator-induced lung injury. eCypA (extracellular CypA [cyclophilin A]) is an emerging inflammatory mediator and metalloproteinase inducer, and the gene responsible for its expression has recently been linked to coronavirus disease (COVID-19). Objectives: To explore the involvement of eCypA in the pathophysiology of ventilator-induced lung injury. Methods: Mice were ventilated with a low or high Vt for up to 3 hours, with or without blockade of eCypA signaling, and lung injury and inflammation were evaluated. Human primary alveolar epithelial cells were exposed to in vitro stretching to explore the cellular source of eCypA, and CypA concentrations were measured in BAL fluid from patients with acute respiratory distress syndrome to evaluate the clinical relevance. Measurements and Main Results: High-Vt ventilation in mice provoked a rapid increase in soluble CypA concentration in the alveolar space but not in plasma. In vivo ventilation and in vitro stretching experiments indicated the alveolar epithelium as the likely major source. In vivo blockade of eCypA signaling substantially attenuated physiological dysfunction, macrophage activation, and MMPs (matrix metalloproteinases). Finally, we found that patients with acute respiratory distress syndrome showed markedly elevated concentrations of eCypA within BAL fluid. Conclusions: CypA is upregulated within the lungs of injuriously ventilated mice (and critically ill patients), where it plays a significant role in lung injury. eCypA represents an exciting novel target for pharmacological intervention.


Assuntos
Anti-Inflamatórios/imunologia , Ciclofilina A/imunologia , Inflamação/imunologia , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/imunologia , Mucosa Respiratória/imunologia , Lesão Pulmonar Induzida por Ventilação Mecânica/imunologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Animais , COVID-19/genética , COVID-19/fisiopatologia , Células Cultivadas/efeitos dos fármacos , Ciclofilina A/farmacologia , Humanos , Inflamação/fisiopatologia , Masculino , Camundongos , Modelos Animais , Síndrome do Desconforto Respiratório/fisiopatologia , SARS-CoV-2 , Lesão Pulmonar Induzida por Ventilação Mecânica/genética
15.
PLoS One ; 16(3): e0248959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33740009

RESUMO

Monocytes and vascular endothelial growth factor (VEGF) have profound effects on tissue injury and repair. In ventilator-induced lung injury (VILI), monocytes, the majority of which are Ly6C+high, and VEGF are known to initiate lung injury. However, their roles in post-VILI lung repair remain unclear. In this study, we used a two-hit mouse model of VILI to identify the phenotypes of monocytes recruited to the lungs during the resolution of VILI and investigated the contributions of monocytes and VEGF to lung repair. We found that the lung-recruited monocytes were predominantly Ly6C+low from day 1 after the insult. Meanwhile, contrary to inflammatory cytokines, pulmonary VEGF decreased upon VILI but subsequently increased significantly on days 7 and 14 after the injury. There was a strong positive correlation between VEGF expression and proliferation of alveolar epithelial cells in lung sections. The expression pattern of VEGF mRNA in lung-recruited monocytes was similar to that of pulmonary VEGF proteins, and the depletion of monocytes significantly suppressed the increase of pulmonary VEGF proteins on days 7 and 14 after VILI. In conclusion, during recovery from VILI, the temporal expression patterns of pulmonary growth factors are different from those of inflammatory cytokines, and the restoration of pulmonary VEGF by monocytes, which are mostly Ly6C+low, is associated with pulmonary epithelial proliferation. Lung-recruited monocytes and pulmonary VEGF may play crucial roles in post-VILI lung repair.


Assuntos
Pulmão/patologia , Monócitos/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Animais , Citocinas/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
16.
Biosci Rep ; 41(3)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33687057

RESUMO

Mechanical ventilation is extensively adopted in general anesthesia and respiratory failure management, but it can also induce ventilator-induced lung injury (VILI). Therefore, it is of great urgency to explore the mechanisms involved in the VILI pathogenesis, which might contribute to its future prevention and treatment. Four microarray datasets from the GEO database were selected in our investigation, and were subjected to the Weighted Gene Co-Expression Network Analysis (WGCNA) to identify the VILI-correlated gene modules. The limma package in R software was used to identify the differentially expressed genes (DEGs) between the VILI and control groups. WGCNA was constructed by merging the GSE9314, GSE9368, GSE11434 and GSE11662 datasets. A total of 49 co-expression network modules were determined as associated with VILI. The intersected genes between hub genes screened from DEGs for VILI and those identified using WGCNA were as follows: Tlr2, Hmox1, Serpine1, Mmp9, Il6, Il1b, Ptgs2, Fos and Atf3, which were determined to be key genes for VILI. Those key genes were validated by GSE86229 and quantitative PCR (qPCR) experiment to have significantly statistical difference in their expression between the VILI and control groups. In a nutshell, nine key genes with expression differences in VILI were screened by WGCNA by integrating multiple datasets.


Assuntos
Redes Reguladoras de Genes , Transcriptoma , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Biologia Computacional , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo
17.
J Biol Regul Homeost Agents ; 35(1): 59-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33501817

RESUMO

Leptin has been linked to acute lung injury (ALI) through its regulation of immune responses. We aimed to scrutinize the effects of leptin on nucleotide oligomerization domain-like receptors containing pyrin domain 3 (NLRP3), nucleotide oligomerization domain-like receptors with caspase activation and recruitment domain 4 (NLRC4), and nucleotide oligomerization domain-like receptors with caspase activation and recruitment domain 3 (NLRC3), as an essential part of the immune system, in ventilator-induced lung injury (VILI) of rats. In the present study, pathogen-free adult male SD rats were given saline or leptin, followed by ventilation. Lung tissue samples, bronchoalveolar lavage fluids (BALF), and blood were collected four hours after installation. Notable acute lung inflammation induced by mechanical ventilation is well-characterized by a massive increase in lung injury score and wet/dry weight (W/D) ratio. We also observed VILI was associated with interleukin (IL-1ß and IL-18). Rats that received ventilation showed a decrease in the levels of NLRP3 and NLRC4, and an increased level of NLRC3. Pre-treatment with leptin could abolish all of these effects induced by VILI. It has been suggested that the regulation of NLRP3, NLRC4, and NLRC3 may underlie the protection observed during VILI by exogenous leptin.


Assuntos
Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Líquido da Lavagem Broncoalveolar , Peptídeos e Proteínas de Sinalização Intercelular , Leptina , Pulmão , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular , Lesão Pulmonar Induzida por Ventilação Mecânica/genética
18.
Redox Biol ; 38: 101796, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246293

RESUMO

Oxidative stress is considered one of the early underlying contributors of acute lung injury (ALI) and ventilator-induced lung injury (VILI). DJ-1, also known as PARK7, has a well-established role as an antioxidant. We have previously shown maintaining oxidative balance via the ATF3-Nrf2 axis was important in protection from ALI. Here, we exclusively characterize the role of DJ-1 in sterile LPS-induced ALI and VILI. DJ-1 protein expression was increased after LPS treatment in human epithelial and endothelial cell lines and lungs of wild-type mice. DJ-1 deficient mice exhibited greater susceptibility to LPS-induced acute lung injury as demonstrated by increased cellular infiltration, augmented levels of pulmonary cytokines, enhanced ROS levels and oxidized by-products, increased pulmonary edema and cell death. In a two-hit model of LPS and mechanical ventilation (MV), DJ-1 deficient mice displayed enhanced susceptibility to inflammation and lung injury. Collectively, these results identify DJ-1 as a negative regulator of ROS and inflammation, and suggest its expression protects from sterile lung injury driven by high oxidative stress.


Assuntos
Lesão Pulmonar Aguda , Proteína Desglicase DJ-1 , Lesão Pulmonar Induzida por Ventilação Mecânica , Lesão Pulmonar Aguda/genética , Animais , Linhagem Celular , Humanos , Lipopolissacarídeos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Proteína Desglicase DJ-1/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Ventiladores Mecânicos
19.
Mediators Inflamm ; 2020: 7650978, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774150

RESUMO

Ventilator-induced lung injury (VILI) is one of the most common complications of mechanical ventilation (MV), which strongly impacts the outcome of ventilated patients. Current evidences indicated that inflammation is a major contributor to the pathogenesis of VILI. Our results showed that MV induced excessive proinflammatory cytokine productions together with decreased CXCL14 and increased PKM2 expressions in injured lungs. In addition, CXCL14 overexpression downregulated PKM2 expression and attenuated VILI with reduced inflammation. Moreover, the overexpression of PKM2 markedly diminished the protective effects of CXCL14 against VILI as reflected by worsened morphology and increased cytokine production, whereas PKM2 knockdown decreased cytokine production and attenuated VILI. Collectively, these results suggested that CXCL14 overexpression attenuates VILI through the downregulation of PKM2-mediated proinflammatory cytokine production.


Assuntos
Quimiocinas CXC/metabolismo , Citocinas/metabolismo , Piruvato Quinase/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Animais , Western Blotting , Quimiocinas CXC/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piruvato Quinase/genética , Reação em Cadeia da Polimerase em Tempo Real , Lesão Pulmonar Induzida por Ventilação Mecânica/genética
20.
Ann Palliat Med ; 9(5): 2474-2484, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32787359

RESUMO

BACKGROUND: Mechanical ventilation is a dispensable work in clinical treatment and rescue, and always caused of ventilator-induced lung injury (VILI). Dexmedetomidine is a clinical drug to prevent lung injury, but its mechanism still unclear. METHODS: Thirty-six SD rats were randomly divided into three groups: self-breathing control group (Group C), high tidal volume (VT 20 mL/kg) group (Group H) and high VT + dexmedetomidine group (Group DEX). Serum, lung tissue, bronchoalveolar lavage fluid (BALF) were collected after rats were sacrificed by anesthetic drug of pentobarbital sodium. The pathological changes of lung tissue were observed by hematoxylin and eosin stain (HE staining), and the lung injury score and wet/dry (W/D) ratio were tested to assess lung injury. The total protein level in BALF and contents of the interleukin-1ß (IL-1ß), IL-18 in serum and BALF were detected by enzyme-linked immunosorbent assay (ELISA), the mRNA and protein expression level of NLR Family CARD Domain Containing 3 (NLRC3), NLR Family Pyrin Domain Containing 3 (NLRP3), Apoptosis associated speck-like protein containing a CARD domain (ASC) and caspase-1 were measured by qRT-PCR and Western Blotting respectively. RESULTS: Compared with Group C, VILI mode of Group H were success established because of lung injury score and W/D value increased. when compared with Group H, which were decreased significantly in Group DEX (P<0.05), and the total protein level in BALF and the contents of IL-1ß, IL-18 in serum and BALF of Group DEX were reduced markedly (P<0.05), Besides the mRNA and protein expression of NLRP3, ASC and caspase-1 in lung tissue of Group DEX were lowered dramatically (P<0.05). However, mRNA and protein expression of NLRC3 in lung tissue of Group DEX were up-regulated observably (P<0.05). CONCLUSIONS: This study demonstrates that NLRC3 is involved in the VILI of rats, and dexmedetomidine can attenuate the VILI in rats by up-regulating the expression level of NLRC3.


Assuntos
Dexmedetomidina , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Líquido da Lavagem Broncoalveolar , Dexmedetomidina/uso terapêutico , Ratos , Ratos Sprague-Dawley , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...