Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 71(4): 880-903, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36468604

RESUMO

Traumatic brain injury (TBI) triggers neuroinflammatory cascades mediated by microglia, which promotes tissue repair in the short-term. These cascades may exacerbate TBI-induced tissue damage and symptoms in the months to years post-injury. However, the progression of the microglial function across time post-injury and whether this differs between biological sexes is not well understood. In this study, we examined the microglial proteome at 3-, 7-, or 28-days after a midline fluid percussion injury (mFPI) in male and female mice using label-free quantitative proteomics. Data are available via ProteomeXchange with identifier PXD033628. We identified a reduction in microglial proteins involved with clearance of neuronal debris via phagocytosis at 3- and 7-days post-injury. At 28 days post-injury, pro-inflammatory proteins were decreased and anti-inflammatory proteins were increased in microglia. These results indicate a reduction in microglial clearance of neuronal debris in the days post-injury with a shift to anti-inflammatory function by 28 days following TBI. The changes in the microglial proteome that occurred across time post-injury did not differ between biological sexes. However, we did identify an increase in microglial proteins related to pro-inflammation and phagocytosis as well as insulin and estrogen signaling in males compared with female mice that occurred with or without a brain injury. Although the microglial response was similar between males and females up to 28 days following TBI, biological sex differences in the microglial proteome, regardless of TBI, has implications for the efficacy of treatment strategies targeting the microglial response post-injury.


Assuntos
Lesões Encefálicas Difusas , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Feminino , Camundongos , Masculino , Animais , Microglia/metabolismo , Proteoma/metabolismo , Proteômica , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Camundongos Endogâmicos C57BL
2.
J Neurosci ; 42(48): 9082-9096, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36257689

RESUMO

Traumatic brain injury (TBI) is associated with chronic psychiatric complications and increased risk for development of neurodegenerative pathology. Aged individuals account for most TBI-related hospitalizations and deaths. Nonetheless, neurobiological mechanisms that underlie worsened functional outcomes after TBI in the elderly remain unclear. Therefore, this study aimed to identify pathways that govern differential responses to TBI with age. Here, adult (2 months of age) and aged (16-18 months of age) male C57BL/6 mice were subjected to diffuse brain injury (midline fluid percussion), and cognition, gliosis, and neuroinflammation were determined 7 or 30 d postinjury (dpi). Cognitive impairment was evident 7 dpi, independent of age. There was enhanced morphologic restructuring of microglia and astrocytes 7 dpi in the cortex and hippocampus of aged mice compared with adults. Transcriptional analysis revealed robust age-dependent amplification of cytokine/chemokine, complement, innate immune, and interferon-associated inflammatory gene expression in the cortex 7 dpi. Ingenuity pathway analysis of the transcriptional data showed that type I interferon (IFN) signaling was significantly enhanced in the aged brain after TBI compared with adults. Age prolonged inflammatory signaling and microgliosis 30 dpi with an increased presence of rod microglia. Based on these results, a STING (stimulator of interferon genes) agonist, DMXAA, was used to determine whether augmenting IFN signaling worsened cortical inflammation and gliosis after TBI. DMXAA-treated Adult-TBI mice showed comparable expression of myriad genes that were overexpressed in the cortex of Aged-TBI mice, including Irf7, Clec7a, Cxcl10, and Ccl5 Overall, diffuse TBI promoted amplified IFN signaling in aged mice, resulting in extended inflammation and gliosis.SIGNIFICANCE STATEMENT Elderly individuals are at higher risk of complications following traumatic brain injury (TBI). Individuals >70 years old have the highest rates of TBI-related hospitalization, neurodegenerative pathology, and death. Although inflammation has been linked with poor outcomes in aging, the specific biological pathways driving worsened outcomes after TBI in aging remain undefined. In this study, we identify amplified interferon-associated inflammation and gliosis in aged mice following TBI that was associated with persistent inflammatory gene expression and microglial morphologic diversity 30 dpi. STING (stimulator of interferon genes) agonist DMXAA was used to demonstrate a causal link between augmented interferon signaling and worsened neuroinflammation after TBI. Therefore, interferon signaling may represent a therapeutic target to reduce inflammation-associated complications following TBI.


Assuntos
Lesões Encefálicas Difusas , Lesões Encefálicas Traumáticas , Animais , Camundongos , Masculino , Gliose/etiologia , Gliose/metabolismo , Camundongos Endogâmicos C57BL , Interferons , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Difusas/patologia , Microglia/metabolismo , Lesões Encefálicas Traumáticas/patologia , Encéfalo/metabolismo , Inflamação/metabolismo
3.
ASN Neuro ; 14: 17590914221099112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35503242

RESUMO

Traumatic brain injury (TBI) has consequences that last for years following injury. While TBI can precipitate a variety of diffuse pathologies, the mechanisms involved in injury-induced neuronal membrane disruption remain elusive. The lysosomal cysteine protease, Cathepsin B (Cath B), and specifically its redistribution into the cytosol has been implicated in cell death. Little is known about Cath B or neuronal membrane disruption chronically following diffuse TBI. Therefore, the current study evaluated Cath B and diffuse neuronal membrane disruption over a more chronic post-injury window (6 h-4 w). We evaluated Cath B in adult male Sprague-Dawley rats following central fluid percussion injury (CFPI). Expression of Cath B, as well as Cath B-associated pro (Bak and AIF) and anti-apoptotic (Bcl-xl) proteins, were assessed using western blot analysis. Cath B activity was also assessed. Localization of Cath B was evaluated in the membrane disrupted and non-disrupted population following CFPI using immunohistochemistry paired with quantitative image analysis and ultrastructural verification. There was no difference in expression or activity of Cath B or any of the associated proteins between sham and CFPI at any time post-injury. Immunohistological studies, however, showed a sub-cellular re-localization of Cath B at 2 w and 4 w post-injury in the membrane disrupted neuronal population as compared to the time-point matched non-disrupted neurons. Both membrane disruption and Cath B relocalization appear linked to neuronal atrophy. These observations are indicative of a late secondary pathology that represents an opportunity for therapeutic treatment of these neurons following diffuse TBI. Summary Statement Lysosomal cathepsin B relocalizes to the cytosol in neurons with disrupted plasmalemmal membranes weeks following diffuse brain injury. Both the membrane disrupted and cathepsin B relocalized neuronal subpopulations displayed smaller soma and nucleus size compared to non-pathological neurons, indicating atrophy.


Assuntos
Lesões Encefálicas Difusas , Lesões Encefálicas Traumáticas , Animais , Atrofia/metabolismo , Atrofia/patologia , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Difusas/patologia , Lesões Encefálicas Traumáticas/patologia , Catepsina B/análise , Catepsina B/metabolismo , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
4.
J Neurosci ; 42(20): 4215-4228, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35440489

RESUMO

Traumatic brain injury (TBI) is associated with an increased risk of cognitive, psychiatric, and neurodegenerative complications that may develop after injury. Increased microglial reactivity following TBI may underlie chronic neuroinflammation, neuropathology, and exaggerated responses to immune challenges. Therefore, the goal of this study was to force turnover of trauma-associated microglia that develop after diffuse TBI and determine whether this alleviated chronic inflammation, improved functional recovery and attenuated reduced immune reactivity to lipopolysaccharide (LPS) challenge. Male mice received a midline fluid percussion injury (mFPI) and 7 d later were subjected to a forced microglia turnover paradigm using CSF1R antagonism (PLX5622). At 30 d postinjury (dpi), cortical gene expression, dendritic complexity, myelin content, neuronal connectivity, cognition, and immune reactivity were assessed. Myriad neuropathology-related genes were increased 30 dpi in the cortex, and 90% of these gene changes were reversed by microglial turnover. Reduced neuronal connectivity was evident 30 dpi and these deficits were attenuated by microglial turnover. TBI-associated dendritic remodeling and myelin alterations, however, remained 30 dpi independent of microglial turnover. In assessments of functional recovery, increased depressive-like behavior, and cognitive impairment 30 dpi were ameliorated by microglia turnover. To investigate microglial priming and reactivity 30 dpi, mice were injected intraperitoneally with LPS. This immune challenge caused prolonged lethargy, sickness behavior, and microglial reactivity in the TBI mice. These extended complications with LPS in TBI mice were prevented by microglia turnover. Collectively, microglial turnover 7 dpi alleviated behavioral and cognitive impairments associated with microglial priming and immune reactivity 30 dpi.SIGNIFICANCE STATEMENT A striking feature of traumatic brain injury (TBI), even mild injuries, is that over 70% of individuals have long-term neuropsychiatric complications. Chronic inflammatory processes are implicated in the pathology of these complications and these issues can be exaggerated by immune challenge. Therefore, our goal was to force the turnover of microglia 7 d after TBI. This subacute 7 d postinjury (dpi) time point is a critical transitional period in the shift toward chronic inflammatory processes and microglia priming. This forced microglia turnover intervention in mice attenuated the deficits in behavior and cognition 30 dpi. Moreover, microglia priming and immune reactivity after TBI were also reduced with microglia turnover. Therefore, microglia represent therapeutic targets after TBI to reduce persistent neuroinflammation and improve recovery.


Assuntos
Lesões Encefálicas Difusas , Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Animais , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Difusas/patologia , Lesões Encefálicas Traumáticas/patologia , Disfunção Cognitiva/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo
5.
Sci Rep ; 11(1): 8620, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883663

RESUMO

Traumatic brain injury (TBI) is a common phenomenon, accounting for significant cost and adverse health effects. While there is information about focal pathologies following TBI, knowledge of more diffuse processes is lacking, particularly regarding how analgesics affect this pathology. As buprenorphine is the most commonly used analgesic in experimental TBI models, this study investigated the acute effects of the opioid analgesic buprenorphine (Bup-SR-Lab) on diffuse neuronal/glial pathology, neuroinflammation, cell damage, and systemic physiology. We utilized a model of central fluid percussion injury (CFPI) in adult male rats treated with a single subcutaneous bolus of Bup-SR-Lab or saline 15 min post-injury. Microscopic assessments were performed at 1 day post-injury. Cell impermeable dextran was infused intraventricularly prior to sacrifice to assess neuronal membrane disruption. Axonal injury was assessed by investigating labeling of the anterogradely transported amyloid precursor protein. Neuroinflammation was assessed by analyzing Iba-1 + microglial and GFAP + astrocyte histological/morphological features as well as cytokine levels in both regions of interest (ROIs). Myelin pathology was assessed by evaluating the expression of myelin basic protein (MBP) and the propensity of MBP + myelin debris. Acute physiologic data showed no difference between groups except for reduction in weight loss following cFPI in Bup treated animals compared to saline. There were no discernable differences in axonal injury or membrane disruption between treatment groups. Cytokine levels were consistent between Bup and saline treated animals, however, microglia and astrocytes revealed region specific histological changes at 1d following Bup treatment. Myelin integrity and overall MBP expression showed no differences between Bup and saline treated animals, but there were significant regional differences in MBP expression between the cortex and thalamus. These data suggest effects of Bup treatment on weight following CFPI and potential regional specificity of Bup-associated microglial and astrocyte alterations, but very little change in other acute pathology at 1-day post-injury. Overall, this preliminary study indicates that use of Bup-SR-Lab in preclinical work does have effects on acute glial pathology, however, longer term studies will be needed to assess potential effects of Bup treatment on more chronic pathological progressions.


Assuntos
Astrócitos/efeitos dos fármacos , Lesões Encefálicas Difusas/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Buprenorfina/farmacologia , Microglia/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Analgésicos Opioides/farmacologia , Animais , Astrócitos/metabolismo , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Citocinas/metabolismo , Masculino , Microglia/metabolismo , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Ratos , Ratos Sprague-Dawley
7.
J Neurotrauma ; 37(17): 1918-1932, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32178582

RESUMO

Oculomotor deficits, such as insufficiencies in accommodation, convergence, and saccades, are common following traumatic brain injury (TBI). Previous studies in patients with mild TBI attributed these deficits to insufficient activation of subcortical oculomotor nuclei, although the exact mechanism is unknown. A possible cause for neuronal dysfunction in these regions is biomechanically induced plasma membrane permeability. We used our established porcine model of head rotational TBI to investigate whether cell permeability changes occurred in subcortical oculomotor areas following single or repetitive TBI, with repetitive injuries separated by 15 min, 3 days, or 7 days. Swine were subjected to sham conditions or head rotational acceleration in the sagittal plane using a HYGE pneumatic actuator. Two hours prior to the final injury, the cell-impermeant dye Lucifer Yellow was injected into the ventricles to diffuse throughout the interstitial space to assess plasmalemmal permeability. Animals were sacrificed 15 min after the final injury for immunohistological analysis. Brain regions examined for cell membrane permeability included caudate, substantia nigra pars reticulata, superior colliculus, and cranial nerve oculomotor nuclei. We found that the distribution of permeabilized neurons varied depending on the number and spacing of injuries. Repetitive injuries separated by 15 min or 3 days resulted in the most permeability. Many permeabilized cells lost neuron-specific nuclear protein reactivity, although no neuronal loss occurred acutely after injury. Microglia contacted and appeared to begin phagocytosing permeabilized neurons in repetitively injured animals. These pathologies within oculomotor areas may mediate transient dysfunction and/or degeneration that may contribute to oculomotor deficits following diffuse TBI.


Assuntos
Lesões Encefálicas Difusas/patologia , Lesões Encefálicas Traumáticas/patologia , Membrana Celular/patologia , Neurônios/patologia , Complexo Nuclear Oculomotor/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Membrana Celular/metabolismo , Feminino , Neurônios/metabolismo , Complexo Nuclear Oculomotor/metabolismo , Suínos
8.
Neurocrit Care ; 32(2): 486-491, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31218643

RESUMO

BACKGROUND: Brain tissue oxygenation (PbtO2) in traumatic brain injury (TBI) is known to be dependent on cerebral blood flow (CBF) which remains difficult to assess during the very early phase of TBI management. This study evaluates if blood flow velocity measurement with 2D color-coded transcranial Doppler (TCD) can predict cerebral hypoxic episodes in moderate-to-severe TBI measured with a PbtO2 probe. METHODS: This is a prospective observational study of serial TCD measurements to assess blood flow velocity and its association with PbtO2. Measurements were done bilaterally on the middle cerebral artery (MCA) early after the insertion of PbtO2 monitoring, daily for 5 days and during dynamic challenge tests. Physiological parameters affecting PbtO2 and Doppler velocities were collected simultaneously (PaO2, PaCO2, hemoglobin [Hb] level, intracranial pressure, and cerebral perfusion pressure [CPP]). RESULTS: We enrolled 17 consecutive patients with a total of 85 TCD studies. Using 2D color-coded TCD, signal acquisition was successful in 96% of the cases. Twenty-nine (34%) TCD measures were performed during an episode of cerebral hypoxia (PbtO2 ≤ 20 mmHg). For early episodes of cerebral hypoxia (occurring ≤ 24 h from trauma), all Vmean < 40 cm/s were associated with an ipsilateral PbtO2 ≤ 20 mmHg (positive predictive value 100%). However, when considering all readings over the course of the study, however, we found no correlation between PbtO2 and MCA's mean blood flow velocity (Vmean). Vmean is also positively correlated with PaCO2, whereas PbtO2 is also correlated with PaO2, CPP, and Hb level. CONCLUSIONS: Early TCD measurements compatible with low CBF (mean velocity < 40 cm/s) detect brain tissue hypoxia early after TBI (≤ 24 h) and could potentially be used as a screening tool before invasive monitoring insertion to help minimize time-sensitive secondary injury. Various factors influence the relationship between Vmean and PbtO2, affecting interpretation of their interaction after 24 h.


Assuntos
Velocidade do Fluxo Sanguíneo , Lesões Encefálicas Difusas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Hipóxia Encefálica/diagnóstico por imagem , Artéria Cerebral Média/diagnóstico por imagem , Oxigênio/metabolismo , Hemorragia Subaracnoídea Traumática/diagnóstico por imagem , Ultrassonografia Doppler Transcraniana/métodos , Adulto , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Dióxido de Carbono/metabolismo , Circulação Cerebrovascular , Feminino , Escala de Coma de Glasgow , Escala de Resultado de Glasgow , Humanos , Hipóxia Encefálica/metabolismo , Pressão Intracraniana , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Pressão Parcial , Hemorragia Subaracnoídea Traumática/metabolismo , Índices de Gravidade do Trauma
9.
Curr Opin Neurol ; 32(6): 786-795, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31633494

RESUMO

PURPOSE OF REVIEW: Diffuse or traumatic axonal injury is one of the principal pathologies encountered in traumatic brain injury (TBI) and the resulting axonal loss, disconnection, and brain atrophy contribute significantly to clinical morbidity and disability. The seminal discovery of the slow Wallerian degeneration mice (Wld) in which transected axons do not degenerate but survive and function independently for weeks has transformed concepts on axonal biology and raised hopes that axonopathies may be amenable to specific therapeutic interventions. Here we review mechanisms of axonal degeneration and also describe how these mechanisms may inform biological therapies of traumatic axonopathy in the context of TBI. RECENT FINDINGS: In the last decade, SARM1 [sterile a and Toll/interleukin-1 receptor (TIR) motif containing 1] and the DLK (dual leucine zipper bearing kinase) and LZK (leucine zipper kinase) MAPK (mitogen-activated protein kinases) cascade have been established as the key drivers of Wallerian degeneration, a complex program of axonal self-destruction which is activated by a wide range of injurious insults, including insults that may otherwise leave axons structurally robust and potentially salvageable. Detailed studies on animal models and postmortem human brains indicate that this type of partial disruption is the main initial pathology in traumatic axonopathy. At the same time, the molecular dissection of Wallerian degeneration has revealed that the decision that commits axons to degeneration is temporally separated from the time of injury, a window that allows potentially effective pharmacological interventions. SUMMARY: Molecular signals initiating and triggering Wallerian degeneration appear to be playing an important role in traumatic axonopathy and recent advances in understanding their nature and significance is opening up new therapeutic opportunities for TBI.


Assuntos
Axônios , Lesões Encefálicas Difusas , Lesões Encefálicas Traumáticas , Degeneração Walleriana , Animais , Axônios/metabolismo , Axônios/patologia , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Difusas/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Humanos , Degeneração Walleriana/tratamento farmacológico , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia
10.
Neuroreport ; 30(6): 389-396, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30855558

RESUMO

Oxidative stress is a critical mechanism underlying secondary injury during diffuse axonal injury (DAI), and nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) is an important element in the antioxidative stress pathway. This study investigated changes in Nrf2-ARE expression in rats with DAI to provide a basis for studying the DAI mechanism and a guide for clinical practice. The rat traumatic brain injury (TBI) model was established by a speeding rotation device and confirmed by neural scoring and silver staining. Nrf2 protein expression at 1, 6, 24, 48, and 72 h after TBI was measured by western blot analysis. Nrf2, heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxidoreductase 1 gene expression was measured by RT-PCR. The in-situ expression of Nrf2 and HO-1 was detected by immunohistochemistry analysis. Nrf2 protein expression was significantly higher in TBI rats than in sham rats (P<0.01). The change in Nrf2 expression was time dependent, peaking at 24 h and remaining high for 72 h. RT-PCR analysis indicated that HO-1 and NAD(P)H:quinone oxidoreductase 1 mRNA expression was increased in TBI rats compared with that in sham rats (P<0.05). Immunohistochemistry analysis indicated that the Nrf2 and HO-1 expression in the nuclei and cytoplasm of neurons and glial cells was significantly increased in TBI rats compared with that in sham rats (P<0.05). The Nrf2-ARE signaling pathway may be involved in the endogenous response to DAI.


Assuntos
Lesões Encefálicas Difusas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Animais , Elementos de Resposta Antioxidante/fisiologia , Lesões Encefálicas Traumáticas/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
11.
Eur J Neurosci ; 50(2): 1972-1980, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30762917

RESUMO

Sympathetic hyperactivity occurs in a subgroup of patients after traumatic brain injury (TBI). The rostral ventrolateral medulla (RVLM) is a key region for the activity of sympathetic nervous system. Oxidative stress in the RVLM is proved to be responsible for the increased level of sympathetic activity in animal models of hypertension and heart failure. In this study, we investigated whether oxidative stress in the RVLM contributed to the development of sympathetic hyperactivity after TBI in rats. Model of diffuse axonal injury was induced using Sprague-Dawley rats, and level of mean arterial pressure (MAP) and plasma Norepinephrine (NE) was measured to evaluate the sympathetic activity. For the assessment of oxidative stress, expression of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) in the RVLM was determined. Microinjection of Tempol into the RVLM was performed to determine the effect of oxidative stress on sympathetic hyperactivity. According to the results, TBI led to elevated MAP and plasma NE in rats. It also induced a significantly increased level of ROS, MDA production and decreased level of SOD in the RVLM. The sympathetic activity, ROS, and MDA in the RVLM decreased significantly after microinjection of Tempol. Therefore, the present results suggested that oxidative stress in the RVLM was involved in the development of sympathetic hyperactivity following TBI.


Assuntos
Lesões Encefálicas Difusas , Hipercinese , Bulbo , Estresse Oxidativo , Agitação Psicomotora , Sistema Nervoso Simpático , Animais , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Difusas/fisiopatologia , Modelos Animais de Doenças , Hipercinese/metabolismo , Hipercinese/fisiopatologia , Masculino , Bulbo/metabolismo , Bulbo/fisiopatologia , Estresse Oxidativo/fisiologia , Agitação Psicomotora/metabolismo , Agitação Psicomotora/fisiopatologia , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia
12.
J Neurotrauma ; 35(23): 2837-2849, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29690837

RESUMO

Traumatic brain injury (TBI) commonly results in injury to the components of the white matter tracts, causing post-injury cognitive deficits. The myelin-producing oligodendrocytes (OLs) are vulnerable to TBI, although may potentially be replaced by proliferating oligodendrocyte progenitor cells (OPCs). The cytokine interleukin-1ß (IL-1ß) is a key mediator of the complex inflammatory response, and when neutralized in experimental TBI, behavioral outcome was improved. To evaluate the role of IL-1ß on oligodendrocyte cell death and OPC proliferation, 116 adult male mice subjected to sham injury or the central fluid percussion injury (cFPI) model of traumatic axonal injury, were analyzed at two, seven, and 14 days post-injury. At 30 min post-injury, mice were randomly administered an IL-1ß neutralizing or a control antibody. OPC proliferation (5-ethynyl 2'- deoxyuridine (EdU)/Olig2 co-labeling) and mature oligodendrocyte cell loss was evaluated in injured white matter tracts. Microglia/macrophages immunohistochemistry and ramification using Sholl analysis were also evaluated. Neutralizing IL-1ß resulted in attenuated cell death, indicated by cleaved caspase-3 expression, and attenuated loss of mature OLs from two to seven days post-injury in brain-injured animals. IL-1ß neutralization also attenuated the early, two day post-injury increase of microglia/macrophage immunoreactivity and altered their ramification. The proliferation of OPCs in brain-injured animals was not altered, however. Our data suggest that IL-1ß is involved in the TBI-induced loss of OLs and early microglia/macrophage activation, although not the OPC proliferation. Attenuated oligodendrocyte cell loss may contribute to the improved behavioral outcome observed by IL-1ß neutralization in this mouse model of diffuse TBI.


Assuntos
Lesões Encefálicas Difusas/patologia , Lesões Encefálicas Traumáticas/patologia , Interleucina-1beta/antagonistas & inibidores , Oligodendroglia/patologia , Animais , Lesões Encefálicas Difusas/imunologia , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/metabolismo , Interleucina-1beta/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
13.
J Neurotrauma ; 35(14): 1694-1704, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29390943

RESUMO

Traumatic brain injury (TBI) is a prevalent disease with significant costs. Although progress has been made in understanding the complex pathobiology of focal lesions associated with TBI, questions remain regarding the diffuse responses to injury. Expression of the transient receptor potential melastatin 4 (Trpm4) channel is linked to cytotoxic edema during hemorrhagic contusion expansion. However, little is known about Trpm4 following diffuse TBI. To explore Trpm4 expression in diffuse TBI, rats were subjected to a diffuse central fluid percussion injury (CFPI) and survived for 1.5 h to 8 weeks. The total number of Trpm4+ cells, as well as individual cellular intensity/expression of Trpm4, were assessed. Hemotoxylin and eosin (H&E) labeling was performed to evaluate cell damage/death potentially associated with Trpm4 expression following diffuse TBI. Finally, ultrastructural assessments were performed to evaluate the integrity of Trpm4+ cells and the potential for swelling associated with Trpm4 expression. Trpm4 was primarily restricted to astrocytes within the hippocampus and peaked at 6 h post-injury. While the number of Trpm4+ astrocytes returned to sham levels by 8 weeks post-CFPI, cellular intensity occurred in region-specific waves following injury. Correlative H&E assessments demonstrated little evidence of hippocampal damage, suggesting that Trpm4 expression by astrocytes does not precipitate cell death following diffuse TBI. Additionally, ultrastructural assessments showed Trpm4+ astrocytes exhibited twice the soma size compared with Trpm4- astrocytes, indicating that astrocyte swelling is associated with Trpm4 expression. This study provides a foundation for future investigations into the role of Trpm4 in astrocyte swelling and edema following diffuse TBI.


Assuntos
Astrócitos/metabolismo , Astrócitos/patologia , Edema Encefálico/patologia , Lesões Encefálicas Traumáticas/patologia , Canais de Cátion TRPM/metabolismo , Animais , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Difusas/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
14.
Neuroscience ; 359: 209-223, 2017 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-28736137

RESUMO

Diffuse traumatic brain injury (TBI) initiates secondary pathology, including inflammation and reduced myelination. Considering these injury-related pathologies, the many states of activated microglia as demonstrated by differing morphologies would form, migrate, and function in and through fields of growth-inhibitory myelin byproduct, specifically Nogo. Here we evaluate the relationship between inflammation and reduced myelin antigenicity in the wake of diffuse TBI and present the hypothesis that the Nogo-66 receptor antagonist peptide NEP(1-40) would reverse the injury-induced shift in distribution of microglia morphologies by limiting myelin-based inhibition. Adult male rats were subjected to midline fluid percussion sham or brain injury. At 2h, 6h, 1d, 2d, 7d, and 21d post-injury, immunohistochemical staining was analyzed in sensory cortex (S1BF) for myelin antigens (myelin basic protein; MBP and CNPase), microglia morphology (ionized calcium-binding adapter protein; Iba1), Nogo receptor and Nogo. Pronounced reduction in myelin antigenicity was evident transiently at 1d post-injury, as evidenced by decreased MBP and CNPase staining, as well as loss of white matter organization, compared to sham and later injury time points. Concomitant with reduced myelin antigenicity, injury shifted microglia morphology from the predominantly ramified morphology observed in sham-injured cortex to hyper-ramified, activated, fully activated, or rod. Changes in microglial morphology were evident as early as 2h post-injury, and remained at least until day 21. Additional cohorts of uninjured and brain-injured animals received vehicle or drug (NEP(1-40), i.p., 15min and 19h post-injury) and brains were collected at 2h, 6h, 1d, 2d, or 7d post-injury. NEP(1-40) administration further shifted distributions of microglia away from an injury-induced activated morphology toward greater proportions of rod and macrophage-like morphologies compared to vehicle-treated. By 7d post-injury, no differences in the distributions of microglia were noted between vehicle and NEP(1-40). This study begins to link secondary pathologies of white matter damage and inflammation after diffuse TBI. In the injured brain, secondary pathologies co-occur and likely interact, with consequences for neuronal circuit disruption leading to neurological symptoms.


Assuntos
Lesões Encefálicas Difusas/metabolismo , Encefalite/metabolismo , Microglia/metabolismo , Receptor Nogo 1/metabolismo , Animais , Modelos Animais de Doenças , Encefalite/complicações , Masculino , Receptor Nogo 1/antagonistas & inibidores , Ratos Sprague-Dawley
15.
J Neurotrauma ; 34(14): 2315-2319, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28249552

RESUMO

Traumatic brain injury (TBI) was shown to impair pressure-induced myogenic response of cerebral arteries, which is associated with vascular and neural dysfunction and increased mortality of TBI patients. Hypertension was shown to enhance myogenic tone of cerebral arteries via increased vascular production of 20-hydroxyeicosatrienoic acid (HETE). This adaptive mechanism protects brain tissue from pressure/volume overload; however, it can also lead to increased susceptibility to cerebral ischemia. Although both effects may potentiate the detrimental vascular consequences of TBI, it is not known how hypertension modulates the effect of TBI on myogenic responses of cerebral vessels. We hypothesized that in hypertensive rats, the enhanced myogenic cerebrovascular response is preserved after TBI. Therefore, we investigated the myogenic responses of isolated middle cerebral arteries (MCA) of normotensive and spontaneously hypertensive rats (SHR) after severe impact acceleration diffuse brain injury. TBI diminished myogenic constriction of MCAs isolated from normotensive rats, whereas the 20-HETE-mediated enhanced myogenic response of MCAs isolated from SHRs was not affected by TBI. These results suggest that the optimal cerebral perfusion pressure values and vascular signaling pathways can be different and, therefore, should be targeted differently in normotensive and hypertensive patients following TBI.


Assuntos
Lesões Encefálicas Difusas/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Circulação Cerebrovascular/fisiologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensão/fisiopatologia , Artéria Cerebral Média/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Animais , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Hipertensão/metabolismo , Artéria Cerebral Média/metabolismo , Músculo Liso Vascular/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
16.
J Neurotrauma ; 34(2): 414-422, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27142118

RESUMO

Increasing evidence suggests that traumatic brain injury (TBI) may raise the risk of developing late-onset Parkinson's disease (PD). Recently, the peroxisome proliferation-activated receptor gamma (PPARγ) agonist pioglitazone has been demonstrated to be neuroprotective in animal models of neurodegeneration. The present study investigates the vulnerability of the nigrostriatal system after TBI, and intervention with pioglitazone treatment. Adult male Sprague-Dawley rats were subjected to sham or moderate midline fluid percussion brain injury (mFPI), followed by an intraperitoneal injection of 10 mg/kg pioglitazone or vehicle beginning 30 min after the injury and subsequently every 24 h for 5 days. Following injury, pro-inflammatory cytokines and chemokine were acutely increased in the striatum and substantia nigra within 6 h. Dopaminergic axonal damage and microglial activation were revealed using immunohistochemistry in the medial forebrain bundle at 1 day post-injury. Microglial activation identified by Iba1 and OX-6 immunostaining was persistently increased in the substantia nigra pars compacta 7 to 28 days post-injury. Further, brain injury induced significant dopaminergic neuronal loss, which was quantified by tyrosine hydroxylase immunostaining and retrograde fluorescent tracer fluorogold labeling in the nigra at 28 days. Loss of neurons was accompanied by increased extracellular dopamine (DA) turnover in the striatum, indicating enhanced dopaminergic activity in functional compensation after nigrostriatal damage. Strikingly, pioglitazone treatment greatly attenuated microglial activation and improved dopaminergic neuronal survival in the nigrostriatal system, which may promote locomotor recovery. These results suggest that interventions that attenuate secondary inflammation could be a feasible therapeutic treatment to improve outcome after TBI.


Assuntos
Lesões Encefálicas Difusas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mediadores da Inflamação/metabolismo , Neostriado/metabolismo , Substância Negra/metabolismo , Tiazolidinedionas/uso terapêutico , Animais , Lesões Encefálicas Difusas/efeitos dos fármacos , Lesões Encefálicas Difusas/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Neostriado/efeitos dos fármacos , Neostriado/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Degeneração Neural/prevenção & controle , Pioglitazona , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Tiazolidinedionas/farmacologia
17.
Acta Neurochir Suppl ; 122: 133-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165893

RESUMO

Controversy exists regarding the brain tissue oxygen (PbtO2) monitor's optimal tip location and what it actually measures. Recent work [2] identified a "PbtO2 change point" (CPPbt), below which PbtO2 displays pressure-passive behavior, showing significant correlation with optimal cerebral perfusion pressure (CPPopt) as defined by the pressure reactivity index (PRx). This would further support the concept of CPPopt [1] as an individualized target. We endeavored to validate these findings and further explore the relationship between PbtO2 and suboptimal CPP. CPPopt can be determined 55 % of the time [1]. It is undetermined whether PbtO2 can be an adjunctive modality for determining CPPopt.


Assuntos
Contusão Encefálica/metabolismo , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Circulação Cerebrovascular/fisiologia , Oxigênio/metabolismo , Adulto , Pressão Arterial , Encéfalo/irrigação sanguínea , Contusão Encefálica/diagnóstico por imagem , Lesões Encefálicas Difusas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/fisiopatologia , Humanos , Pressão Intracraniana , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica , Tomografia Computadorizada por Raios X , Adulto Jovem
18.
Brain Behav Immun ; 54: 95-109, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26774527

RESUMO

Traumatic brain injury (TBI) elicits immediate neuroinflammatory events that contribute to acute cognitive, motor, and affective disturbance. Despite resolution of these acute complications, significant neuropsychiatric and cognitive issues can develop and progress after TBI. We and others have provided novel evidence that these complications are potentiated by repeated injuries, immune challenges and stressors. A key component to this may be increased sensitization or priming of glia after TBI. Therefore, our objectives were to determine the degree to which cognitive deterioration occurred after diffuse TBI (moderate midline fluid percussion injury) and ascertain if glial reactivity induced by an acute immune challenge potentiated cognitive decline 30 days post injury (dpi). In post-recovery assessments, hippocampal-dependent learning and memory recall were normal 7 dpi, but anterograde learning was impaired by 30 dpi. Examination of mRNA and morphological profiles of glia 30 dpi indicated a low but persistent level of inflammation with elevated expression of GFAP and IL-1ß in astrocytes and MHCII and IL-1ß in microglia. Moreover, an acute immune challenge 30 dpi robustly interrupted memory consolidation specifically in TBI mice. These deficits were associated with exaggerated microglia-mediated inflammation with amplified (IL-1ß, CCL2, TNFα) and prolonged (TNFα) cytokine/chemokine expression, and a marked reactive morphological profile of microglia in the CA3 of the hippocampus. Collectively, these data indicate that microglia remain sensitized 30 dpi after moderate TBI and a secondary inflammatory challenge elicits robust microglial reactivity that augments cognitive decline. STATEMENT OF SIGNIFICANCE: Traumatic brain injury (TBI) is a major risk factor in development of neuropsychiatric problems long after injury, negatively affecting quality of life. Mounting evidence indicates that inflammatory processes worsen with time after a brain injury and are likely mediated by glia. Here, we show that primed microglia and astrocytes developed in mice 1 month following moderate diffuse TBI, coinciding with cognitive deficits that were not initially evident after injury. Additionally, TBI-induced glial priming may adversely affect the ability of glia to appropriately respond to immune challenges, which occur regularly across the lifespan. Indeed, we show that an acute immune challenge augmented microglial reactivity and cognitive deficits. This idea may provide new avenues of clinical assessments and treatments following TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/psicologia , Mediadores da Inflamação/metabolismo , Microglia/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Lesões Encefálicas Difusas/imunologia , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Difusas/patologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/metabolismo , Quimiocinas/metabolismo , Cognição/fisiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Microglia/metabolismo , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...