Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 1715, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015447

RESUMO

Palm wine, the most commonly consumed traditional alcoholic beverage in Western Africa, harbours a complex microbiota and metabolites, which plays a crucial role in the overall quality and value of the product. In the present study, a combined metagenomic and metabolomic approach was applied to describe the microbial community structure and metabolites profile of fermented saps from three palm species (Elaeis guineensis, Raphia hookeri, Borassus aethiopum) in Côte d'Ivoire. Lactobacillaceae (47%), Leuconostocaceae (16%) and Acetobacteriaceae (28%) were the most abundant bacteria and Saccharomyces cerevisiae (87%) the predominant yeasts in these beverages. The microbial community structure of Raphia wine was distinctly different from the others. Multivariate analysis based on the metabolites profile clearly separated the three palm wine types. The main differentiating metabolites were putatively identified as gevotroline hydrochloride, sesartemin and methylisocitrate in Elaeis wine; derivative of homoserine, mitoxantrone in Raphia wine; pyrimidine nucleotide sugars (UDP-D-galacturonate) and myo-Inositol derivatives in Borassus wine. The enriched presence of gevotroline (an antipsychotic agent) and mitoxantrone (an anticancer drug) in palm wine supports its therapeutic potential. This work provides a valuable insight into the microbiology and biochemistry of palm wines and a rationale for selecting functional microorganisms for potential biotechnology applications.


Assuntos
Acetobacteraceae/fisiologia , Arecaceae/fisiologia , Genótipo , Lactobacillaceae/fisiologia , Leuconostocaceae/fisiologia , Saccharomyces cerevisiae/fisiologia , Vinho/microbiologia , Biologia Computacional , Côte d'Ivoire , Fermentação , Metaboloma , Metabolômica , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Ribossômico 16S/genética
2.
Bioresour Technol ; 102(21): 10057-64, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21908188

RESUMO

A system for biohydrogen production was developed based on long-term continuous cultures grown on sugar beet molasses in packed bed reactors. In two separate cultures, consortia of fermentative bacteria developed as biofilms on granitic stones. In one of the cultures, a granular sludge was also formed. Metagenomic analysis of the microbial communities by 454-pyrosequencing of amplified 16S rDNA fragments revealed that the overall biodiversity of the hydrogen-producing cultures was quite small. The stone biofilm from the culture without granular sludge was dominated by Clostridiaceae and heterolactic fermentation bacteria, mainly Leuconostocaeae. Representatives of the Leuconostocaeae and Enterobacteriaceae were dominant in both the granules and the stone biofilm formed in the granular sludge culture. The culture containing granular sludge produced hydrogen significantly more effectively than that containing only the stone biofilm: 5.43 vs. 2.8 mol H(2)/mol sucrose from molasses, respectively. The speculations that lactic acid bacteria may favor hydrogen production are discussed.


Assuntos
Biofilmes/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Clostridium/fisiologia , Fermentação/fisiologia , Hidrogênio/metabolismo , Leuconostocaceae/fisiologia , Esgotos/microbiologia , Biodiversidade , Reatores Biológicos/microbiologia , Clostridium/citologia , Clostridium/crescimento & desenvolvimento , Leuconostocaceae/citologia , Leuconostocaceae/crescimento & desenvolvimento , Melaço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...