Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Plant Cell Rep ; 43(5): 130, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652336

RESUMO

KEY MESSAGE: We identify three SDEs that inhibiting host defence from Candidatus Liberibacter asiaticus psy62, which is an important supplement to the pathogenesis of HLB. Candidatus Liberibacter asiaticus (CLas) is the main pathogen of citrus Huanglongbing (HLB). 38 new possible sec-dependent effectors (SDEs) of CLas psy62 were predicted by updated predictor SignalP 5.0, which 12 new SDEs were found using alkaline phosphate assay. Among them, SDE4310, SDE4435 and SDE4955 inhibited hypersensitivity reactions (HR) in Arabidopsis thaliana (Arabidopsis, At) and Nicotiana benthamiana leaves induced by pathogens, which lead to a decrease in cell death and reactive oxygen species (ROS) accumulation. And the expression levels of SDE4310, SDE4435, and SDE4955 genes elevated significantly in mild symptom citrus leaves. When SDE4310, SDE4435 and SDE4955 were overexpressed in Arabidopsis, HR pathway key genes pathogenesis-related 2 (PR2), PR5, nonexpressor of pathogenesis-related 1 (NPR1) and isochorismate synthase 1 (ICS1) expression significantly decreased and the growth of pathogen was greatly increased relative to control with Pst DC3000/AvrRps4 treatment. Our findings also indicated that SDE4310, SDE4435 and SDE4955 interacted with AtCAT3 (catalase 3) and AtGAPA (glyceraldehyde-3-phosphate dehydrogenase A). In conclusion, our results suggest that SDE4310, SDE4435 and SDE4955 are CLas psy62 effector proteins that may have redundant functions. They inhibit ROS burst and cell death by interacting with AtCAT3 and AtGAPA to negatively regulate host defense.


Assuntos
Arabidopsis , Proteínas de Bactérias , Nicotiana , Doenças das Plantas , Espécies Reativas de Oxigênio , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Citrus/microbiologia , Citrus/genética , Citrus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Liberibacter/patogenicidade , Liberibacter/fisiologia , Interações Hospedeiro-Patógeno , Plantas Geneticamente Modificadas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizobiaceae/fisiologia , Resistência à Doença/genética
2.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38509024

RESUMO

AIMS: Huanglongbing (citrus greening) is a plant disease putatively caused by the unculturable Gram-negative bacterium Candidatus Liberibacter asiaticus (CLas), and it has caused severe damage to citrus plantations worldwide. There are no definitive treatments for this disease, and conventional disease control techniques have shown limited efficacy. This work presents an in silico evaluation of using specifically targeting anti-microbial peptides (STAMPs) consisting of a targeting segment and an antimicrobial segment to inhibit citrus greening by inhibiting the BamA protein of CLas, which is an outer membrane protein crucial for bacterial viability. METHODS AND RESULTS: Initially, a set of peptides with a high affinity toward BamA protein were screened and evaluated via molecular docking and molecular dynamics simulations and were verified in vitro via bio-layer interferometry (BLI). In silico studies and BLI experiments indicated that two peptides, HASP2 and HASP3, showed stable binding to BamA. Protein structures for STAMPs were created by fusing known anti-microbial peptides (AMPs) with the selected short peptides. The binding of STAMPs to BamA was assessed using molecular docking and binding energy calculations. The attachment of high-affinity short peptides significantly reduced the free energy of binding for AMPs, suggesting that it would make it easier for the STAMPs to bind to BamA. Efficacy testing in vitro using a closely related CLas surrogate bacterium showed that STAMPs had greater inhibitory activity than AMP alone. CONCLUSIONS: In silico and in vitro results indicate that the STAMPs can inhibit CLas surrogate Rhizobium grahamii more effectively compared to AMPs, suggesting that STAMPs can achieve better inhibition of CLas, potentially via enhancing the site specificity of AMPs.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Peptídeos Antimicrobianos , Simulação de Acoplamento Molecular , Liberibacter , Citrus/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Hemípteros/microbiologia
3.
Microbiol Spectr ; 12(4): e0405223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38440971

RESUMO

"Candidatus Liberibacter asiaticus" (CLas), the causal agent of citrus Huanglongbing (HLB), is able to multiply to a high abundance in citrus fruit pith. However, little is known about the biological processes and phytochemical substances that are vital for CLas colonization and growth in fruit pith. In this study, CLas-infected fruit pith of three citrus cultivars ("Shatangju" mandarin, "Guanxi" pomelo, and "Shatian" pomelo) exhibiting different tolerance to CLas were collected and used for dual RNA-Seq and untargeted metabolome analysis. Comparative transcriptome analysis found that the activation of the CLas noncyclic TCA pathway and pathogenic-related effectors could contribute to the colonization and growth of CLas in fruit pith. The pre-established Type 2 prophage in the CLas genome and the induction of its CRISPR/cas system could enhance the phage resistance of CLas and, in turn, facilitate CLas population growth in fruit pith. CLas infection caused the accumulation of amino acids that were correlated with tolerance to CLas. The accumulation of most sugars and organic acids in CLas-infected fruit pith, which could be due to the phloem blockage caused by CLas infection, was thought to be beneficial for CLas growth in localized phloem tissue. The higher levels of flavonoids and terpenoids in the fruit pith of CLas-tolerant cultivars, particularly those known for their antimicrobial properties, could hinder the growth of CLas. This study advances our understanding of CLas multiplication in fruit pith and offers novel insight into metabolites that could be responsible for tolerance to CLas or essential to CLas population growth.IMPORTANCECitrus Huanglongbing (HLB, also called citrus greening disease) is a highly destructive disease currently threatening citrus production worldwide. HLB is caused by an unculturable bacterial pathogen, "Candidatus Liberibacter asiaticus" (CLas). However, the mechanism of CLas colonization and growth in citrus hosts is poorly understood. In this study, we utilized the fruit pith tissue, which was able to maintain the CLas at a high abundance, as the materials for dual RNA-Seq and untargeted metabolome analysis, aiming to reveal the biological processes and phytochemical substances that are vital for CLas colonization and growth. We provided a genome-wide CLas transcriptome landscape in the fruit pith of three citrus cultivars with different tolerance and identified the important genes/pathways that contribute to CLas colonization and growth in the fruit pith. Metabolome profiling identified the key metabolites, which were mainly affected by CLas infection and influenced the population dynamic of CLas in fruit pith.


Assuntos
Citrus , Liberibacter , Rhizobiaceae , Citrus/microbiologia , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Transcriptoma , Frutas/metabolismo , Metaboloma , Dinâmica Populacional , Compostos Fitoquímicos/metabolismo , Doenças das Plantas/microbiologia
4.
Bull Entomol Res ; 114(2): 210-229, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444234

RESUMO

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the key vector insect transmitting the Candidatus Liberibacter asiaticus (CLas) bacterium that causes the devastating citrus greening disease (Huanglongbing, HLB) worldwide. The D. citri salivary glands (SG) exhibit an important barrier against the transmission of HLB pathogen. However, knowledge on the molecular mechanism of SG defence against CLas infection is still limited. In the present study, we compared the SG transcriptomic response of CLas-free and CLas-infected D. citri using an illumine paired-end RNA sequencing. In total of 861 differentially expressed genes (DEGs) in the SG upon CLas infection, including 202 upregulated DEGs and 659 downregulated DEGs were identified. Functional annotation analysis showed that most of the DEGs were associated with cellular processes, metabolic processes, and the immune response. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses revealed that these DEGs were enriched in pathways involving carbohydrate metabolism, amino acid metabolism, the immune system, the digestive system, the lysosome, and endocytosis. A total of 16 DEGs were randomly selected to further validate the accuracy of RNA-Seq dataset by reverse-transcription quantitative polymerase chain reaction. This study provides substantial transcriptomic information regarding the SG of D. citri in response to CLas infection, which may shed light on the molecular interaction between D. citri and CLas, and provides new ideas for the prevention and control of citrus psyllid.


Assuntos
Hemípteros , Glândulas Salivares , Transcriptoma , Animais , Hemípteros/microbiologia , Hemípteros/genética , Glândulas Salivares/microbiologia , Glândulas Salivares/metabolismo , Doenças das Plantas/microbiologia , Citrus/microbiologia , Liberibacter
5.
J Insect Sci ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387432

RESUMO

Diaphorina citri, also known as the Asian citrus psyllid, is the main vector of 'Candidatus Liberibacter asiaticus' (CLas) associated with citrus Huanglongbing. It has been reported that D. citri could also be infected by Citrus tristeza virus (CTV), a virus that has been previously reported to be vectored by certain aphid species. In this study, the CTV and CLas profiles in different organs, color variants, developmental stages, or sexes of D. citri insects were analyzed. Although no significant differences were found between nymphs and adults in CTV titers, we found that the third instar nymph of D. citri was more efficient in CTV and CLas acquisition compared to the fourth and fifth instars and adults. With the instars of D. citri development, the relationship between the acquiring of CTV and CLas by D. citri seemed to follow an inverse trend, with the titer of CLas increased and the titer of CTV decreased. No significant differences were observed between the 2 sexes of D. citri in acquiring either CTV or CLas titers in the field. However, no differences were drawn among the 3 color morph variants for CTV titers. CTV titers in the midguts of adult D. citri were significantly higher than those in the salivary glands. Both CTV-positive incidence and CTV titers in the midguts of adult D. citri increased with increasing exposure periods. This study provides new data to deepen our understanding of the CTV-involved interaction between D. citri and CLas.


Assuntos
Afídeos , Citrus , Closterovirus , Hemípteros , Liberibacter , Rhizobiaceae , Animais , Doenças das Plantas , Ninfa
6.
Toxicon ; 239: 107616, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38218384

RESUMO

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a key vector of the phloem-limited bacteria Candidatus Liberibacter asiaticus (CLas) associated with huanglongbing (HLB), the most serious and currently incurable disease of citrus worldwide. Here we report the first investigation into the potential use of a spider venom-derived recombinant neurotoxin, ω/κ-HxTx-Hv1h (hereafter HxTx-Hv1h) when delivered alone or when fused to snowdrop lectin (Galanthus nivalis agglutinin; GNA) to control D. citri. Proteins, including GNA alone, were purified from fermented transformed yeast Pichia pastoris cultures. Recombinant HxTx-Hv1h, HxTx-Hv1h/GNA and GNA were all orally toxic to D. citri, with Day 5 median lethal concentrations (LC50) derived from dose-response artificial diet assays of 27, 20 and 52 µM, respectively. Western analysis of whole insect protein extracts confirmed that psyllid mortality was attributable to protein ingestion and that the fusion protein was stable to cleavage by D. citri proteases. When applied topically (either via droplet or spray) HxTx-Hv1h/GNA was the most effective of the proteins causing >70 % mortality 5 days post treatment, some 2 to 3-fold higher levels of mortality as compared to the toxin alone. By contrast, no significant mortality or phenotypic effects were observed for bumble bees (Bombus terrestris L.) fed on the recombinant proteins in acute toxicity assays. This suggests that HxTx-Hv1h/GNA has potential as a novel bioinsecticide for the management of D. citri offering both enhanced target specificity as compared to chemical pesticides and compatibility with integrated pest management (IPM) strategies.


Assuntos
Citrus , Hemípteros , Liberibacter , Animais , Hemípteros/fisiologia , Neurotoxinas , Citrus/microbiologia , Doenças das Plantas/microbiologia
7.
Protoplasma ; 261(3): 499-512, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38092896

RESUMO

Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is a devastating immune-mediated disorder that has a detrimental effect on the citrus industry, with the distinguishing feature being an eruption of reactive oxygen species (ROS). This study explored the alterations in antioxidant enzyme activity, transcriptome, and RNA editing events of organelles in C. sinensis during CLas infection. Results indicated that there were fluctuations in the performance of antioxidant enzymes, such as ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POD), and superoxide dismutase (SOD), in plants affected by HLB. Transcriptome analysis revealed 3604 genes with altered expression patterns between CLas-infected and healthy samples, including those associated with photosynthesis, biotic interactions, and phytohormones. Samples infected with CLas showed a decrease in the expression of most genes associated with photosynthesis and gibberellin metabolism. It was discovered that RNA editing frequency and the expression level of various genes in the chloroplast and mitochondrion genomes were affected by CLas infection. Our findings provide insights into the inhibition of photosynthesis, gibberellin metabolism, and antioxidant enzymes during CLas infection in C. sinensis.


Assuntos
Citrus sinensis , Citrus , Liberibacter , Rhizobiaceae , Citrus sinensis/genética , Antioxidantes/farmacologia , Giberelinas/farmacologia , Transcriptoma/genética , Perfilação da Expressão Gênica , Doenças das Plantas
8.
Pest Manag Sci ; 80(3): 1484-1500, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948354

RESUMO

BACKGROUND: Huanglongbing (HLB) (caused by Candidatus Liberibacter asiaticus) is the most damaging disease of citrus around the world. This study investigated the effects of citrus tree height on Diaphorina citri Kuwayama mortality, endosymbiont responses, and HLB distribution. RESULTS: The results reveal that the age of citrus trees plays a significant role in psyllid mortality. Interestingly, the cumulative mean mortality (%) of psyllids over the seven-day observation period was higher (31.50±0.03) when four-year-old (501A1, 502A2, 501A3) citrus trees were sprayed with a US-SMART mechanical sprayer. In contrast, the psyllids mortality was 0.09±0.23 for the 13-year-old citrus trees (104A2, 104A3, 104C1) sprayed with a US-SMART mechanical sprayer and 9.10±0.05 for 13-year-old (502A2, 502B2, 502D1) citrus trees sprayed with a fixed US-SMART mechanical sprayer. Our findings also revealed that psyllids from both four- and 13-year-old citrus trees carried Candidatus Carsonella ruddii species and Wolbachia, the primary and secondary endosymbionts, respectively. Surprisingly, infection rates of these endosymbionts remained consistent across different age groups, as confirmed by quantitative polymerase chain reaction analysis. Furthermore, our study highlights the significance of tree height as a proxy for tree age in influencing HLB occurrence. Specifically, four-year-old citrus trees subjected to the US-SMART mechanical sprayer for citrus psyllid control demonstrated effective disease management compared to 13-year-old (104A2, 104A3, 104C1) citrus trees sprayed with US-SMART mechanical sprayers. Additionally, the investigation explored the impact of tree height on HLB distribution. In four-year-old trees, no significant correlation between HLB disease and tree height was observed, potentially due to effective spray coverage with US-SMART mechanical sprayer. However, in 13-year-old (104A2, 104A3, 104C1) citrus tree sprayed with US-SMART mechanical sprayer, a positive correlation between tree height and HLB disease was evident. CONCLUSION: This research provides valuable insights into the complex interaction between citrus tree age, psyllid endosymbionts responses, and HLB distribution. These results emphasize effective HLB management strategies, especially in orchards with diverse tree age populations, ultimately contributing to the long-term sustainability of citrus cultivation. © 2023 Society of Chemical Industry.


Assuntos
Citrus , Hemípteros , Liberibacter , Rhizobiaceae , Animais , Árvores , Gerenciamento Clínico , Doenças das Plantas
9.
Plant Dis ; 108(1): 113-117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37488981

RESUMO

The potato/tomato psyllid, Bactericera cockerelli (Sulc), is among the most important pests of solanaceous crops as a vector of the pathogen 'Candidatus Liberibacter solanacearum' (Lso). Lso-infected psyllids often arrive in crop fields from various wild species of Solanaceae and Convolvulaceae, especially those that provide early-season hosts for the vector. Physalis species are perennial plants within the family Solanaceae with often broad geographical distributions that overlap those of B. cockerelli, yet the status of many Physalis species as hosts for B. cockerelli or Lso remains unknown. Our objective was to determine whether wild Physalis species that occur in the potato-growing region of Galeana, Nuevo León, Mexico, host B. cockerelli populations and whether they also are susceptible to Lso. Sampling was carried out in the potato-growing zone of Galeana, Nuevo León, Mexico, where unidentified Physalis spp. are common. In March to October 2021, a wild plant identified as Physalis virginiana was observed; eggs, nymphs, and adults of B. cockerelli were observed on these plants throughout the growing season, and nymphs completed development on these plants under laboratory conditions. Lso also was detected in 22 of the 93 (23.7%) wild P. virginiana plants using conventional PCR, while 13.3% of B. cockerelli adults that emerged from P. virginiana cuttings harbored the pathogen. This is the first report that P. virginiana is a host for B. cockerelli and for Lso. These results suggest that P. virginiana is a likely source of Lso-infected psyllids colonizing solanaceous crops in northeastern Mexico. The importance of P. virginiana and other wild hosts on the population dynamics of the vector and pathogen should be investigated to assist in pest management decision-making.


Assuntos
Hemípteros , Physalis , Solanum lycopersicum , Solanum tuberosum , Animais , Liberibacter
10.
Phytopathology ; 114(1): 84-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37486097

RESUMO

Citrus greening disease, or Huanglongbing (HLB), has devastated citrus crops globally in recent years. The causal bacterium, 'Candidatus Liberibacter asiaticus', presents a sampling issue for qPCR diagnostics and results in a high false negative rate. In this work, we compared six metabolomics assays to identify HLB-infected citrus trees from leaf tissue extracted from 30 control and 30 HLB-infected trees. A liquid chromatography-mass spectrometry-based assay was most accurate. A final partial least squares-discriminant analysis (PLS-DA) model was trained and validated on 690 leaf samples with corresponding qPCR measures from three citrus varieties (Rio Red grapefruit, Hamlin sweet orange, and Valencia sweet orange) from orchards in Florida and Texas. Trees were naturally infected with HLB transmitted by the insect vector Diaphorina citri. In a randomized validation set, the assay was 99.9% accurate to classify diseased from nondiseased samples. This model was applied to samples from trees receiving plant defense-inducer compounds or biological treatments to prevent or cure HLB infection. From two trials, HLB-related metabolite abundances and PLS-DA scores were tracked longitudinally and compared with those of control trees. We demonstrate how our assay can assess tree health and the efficacy of HLB treatments and conclude that no trialed treatment was efficacious.


Assuntos
Citrus sinensis , Citrus , Hemípteros , Liberibacter , Rhizobiaceae , Citrus/microbiologia , Rhizobiaceae/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Árvores
11.
Pest Manag Sci ; 80(2): 602-612, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37740936

RESUMO

BACKGROUND: Asian citrus psyllid, Diaphorina citri, is a notorious pest in the citrus industry because it transmits Candidatus Liberibacter asiaticus, which causes an uncurable, devastating disease in citrus worldwide. Serratia marcescens is widely distributed in various environments that exhibits toxic effects to many insects. To develop strategies for enhancing the efficiency of pathogen-induced host mortality, a better understanding of the toxicity mechanism of Serratia marcescens on Diaphorina citri is critical. RESULTS: Serratia marcescens KH-001 successfully colonized Diaphorina citri gut by feeding artificial diets, resulting in the damage of cells including nucleus, mitochondria, vesicles, and microvilli. Oral ingestion of Serratia marcescens KH-001 strongly induced apoptosis in gut cells by enhancing levels of Cyt c, p53 and caspase-1 and decreasing levels of inhibitors of apoptosis (IAP) and Bax inhibitor-1 (BI-1). The expression of dual oxidase (Duox) and nitric oxide synthase (Nos) was up-regulated by Serratia marcescens KH-001, which increased hydrogen peroxide (H2 O2 ) levels in the gut. Injection of abdomen of Diaphorina citri with H2 O2 accelerated the death of the adults and induced apoptosis in the gut cells by activating Cyt c, p53 and caspase-1 and suppressing IAP and BI-1. Pretreatment of infected Diaphorina citri with vitamin c (Vc) increased the adult survival and diminished the apoptosis-inducing effect. CONCLUSIONS: The colonization of Serratia marcescens KH-001 in the guts of Diaphorina citri increased H2 O2 accumulation, leading to severe changes and apoptosis in intestinal cells, which enhanced a higher mortality level of D. citr. This study identifies the underlying virulence mechanism of Serratia marcescens KH-001 on Diaphorina citri that contributes to a widespread application in the integrated management of citrus psyllid. © 2023 Society of Chemical Industry.


Assuntos
Citrus , Hemípteros , Liberibacter , Rhizobiaceae , Animais , Espécies Reativas de Oxigênio , Serratia marcescens , Proteína Supressora de Tumor p53 , Estresse Oxidativo , Apoptose , Caspases , Doenças das Plantas
12.
Mol Ecol ; 33(2): e17214, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38018658

RESUMO

The evolution of insect vector-pathogen relationships has long been of interest in the field of molecular ecology. One system of special relevance, due to its economic impacts, is that between Diaphorina citri and 'Candidatus Liberibacter asiaticus' (CLas), the cause of the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts, boosting opportunities for pathogens to acquire new vector hosts. The molecular mechanism behind this life-history shift remains unclear. Here, we found that CLas promoted ovarian development and increased the expression of the vitellogenin receptor (DcVgR) in ovaries. DcVgR RNAi significantly decreased fecundity and CLas titer in ovaries, extended the preoviposition period, shortened the oviposition period and blocked ovarian development. Given their importance in gene regulation, we explored the role of miRNAs in shaping these phenotypes and their molecular triggers. Our results showed that one miRNA, miR-275, suppressed DcVgR expression by binding to its 3' UTR. Overexpression of miR-275 knocked down DcVgR expression and CLas titer in ovaries, causing reproductive defects that mimicked DcVgR knockdown phenotypes. We focused, further, on roles of the Juvenile Hormone (JH) pathway in shaping the observed fecundity phenotype, given its known impacts on ovarian development. After CLas infection, this pathway was upregulated, thereby increasing DcVgR expression. From these combined results, we conclude that CLas hijacks the JH signalling pathway and miR-275, thereby targeting DcVgR to increase D. citri fecundity. These changes simultaneously increase CLas replication, suggesting a pathogen-vector host mutualism, or a seemingly helpful, but cryptically costly life-history manipulation.


Assuntos
Citrus , Hemípteros , Liberibacter , MicroRNAs , Rhizobiaceae , Animais , Feminino , Rhizobiaceae/genética , Citrus/genética , Doenças das Plantas/genética , Hemípteros/genética , Fertilidade/genética , MicroRNAs/genética , Proliferação de Células
13.
PeerJ ; 11: e16347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941933

RESUMO

Background: The psyllid, Bactericera cockerelli, is an insect vector of 'Candidatus Liberibacter' causing "Zebra chip" disease that affects potato and other Solanaceae crops worldwide. In the present study, we analyzed the bacterial communities associated with the insect vector Bactericera cockerelli central haplotype of tomato crop fields in four regions from Mexico. Methods: PCR was used to amplify the mitochondrial cytochrome oxidase I gene (mtCOI) and then analyze the single nucleotide polymorphisms (SNP) and phylogenetic analysis for haplotype identification of the isolated B. cockerelli. Moreover, we carried out the microbial diversity analysis of several B. cockerelli collected from four regions of Mexico through the NGS sequencing of 16S rRNA V3 region. Finally, Wolbachia was detected by the wsp gene PCR amplification, which is the B. cockerelli facultative symbiont. Also we were able to confirm the relationship with several Wolbachia strains by phylogenetic analysis. Results: Our results pointed that B. cockerelli collected in the four locations from Mexico (Central Mexico: Queretaro, and Northern Mexico: Sinaloa, Coahuila, and Nuevo Leon) were identified, such as the central haplotype. Analyses of the parameters of the composition, relative abundance, and diversity (Shannon index: 1.328 ± 0.472; Simpson index 0.582 ± 0.167), showing a notably relatively few microbial species in B. cockerelli. Analyses identified various facultative symbionts, particularly the Wolbachia (Rickettsiales: Anaplasmataceae) with a relative abundance higher. In contrast, the genera of Sodalis and 'Candidatus Carsonella' (Gammaproteobacteria: Oceanospirillales: Halomonadaceae) were identified with a relatively low abundance. On the other hand, the relative abundance for the genus 'Candidatus Liberibacter' was higher only for some of the locations analyzed. PCR amplification of a fragment of the gene encoding a surface protein (wsp) of Wolbachia and phylogenetic analysis corroborated the presence of this bacterium in the central haplotype. Beta-diversity analysis revealed that the presence of the genus 'Candidatus Liberibacter' influences the microbiota structure of this psyllid species. Conclusions: Our data support that the members with the highest representation in microbial community of B. cockerelli central haplotype, comprise their obligate symbiont, Carsonella, and facultative symbionts. We also found evidence that among the factors analyzed, the presence of the plant pathogen affects the structure and composition of the bacterial community associated with B. cockerelli.


Assuntos
Hemípteros , Solanum lycopersicum , Animais , Haplótipos , RNA Ribossômico 16S/genética , Hemípteros/genética , Filogenia , México , Bactérias/genética , Liberibacter/genética , Produtos Agrícolas/genética
14.
Nat Commun ; 14(1): 7838, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030598

RESUMO

The bacterium Candidatus Liberibacter asiaticus (CLas) causes citrus Huanglongbing disease. Our understanding of the pathogenicity and biology of this microorganism remains limited because CLas has not yet been cultivated in artificial media. Its genome is relatively small and encodes approximately 1136 proteins, of which 415 have unknown functions. Here, we use a high-throughput yeast-two-hybrid (Y2H) screen to identify interactions between CLas proteins, thus providing insights into their potential functions. We identify 4245 interactions between 542 proteins, after screening 916 bait and 936 prey proteins. The false positive rate of the Y2H assay is estimated to be 2.9%. Pull-down assays for nine protein-protein interactions (PPIs) likely involved in flagellar function support the robustness of the Y2H results. The average number of PPIs per node in the CLas interactome is 15.6, which is higher than the numbers previously reported for interactomes of free-living bacteria, suggesting that CLas genome reduction has been accompanied by increased protein multi-functionality. We propose potential functions for 171 uncharacterized proteins, based on the PPI results, guilt-by-association analyses, and comparison with data from other bacterial species. We identify 40 hub-node proteins, including quinone oxidoreductase and LysR, which are known to protect other bacteria against oxidative stress and might be important for CLas survival in the phloem. We expect our PPI database to facilitate research on CLas biology and pathogenicity mechanisms.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Citrus/microbiologia , Rhizobiaceae/genética , Liberibacter , Doenças das Plantas/microbiologia , Hemípteros/genética
15.
BMC Genom Data ; 24(1): 63, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37923990

RESUMO

OBJECTIVES: "Candidatus Liberibacter asiaticus" (CLas) is an un-culturable α-proteobacterium that caused citrus Huanglongbing (HLB), a destructive disease threatening citrus production worldwide. In China, the presence of HLB was first reported in Chaoshan region of Guangdong province, China around a century ago. Thus, whole genome information of CLas strains from Chaoshan area become the most important resource to understand the population diversity and evaluation of CLas in China. DATA DESCRIPTION: CLas strain GDCZ was originally from Chaozhou city (Chaoshan area) and sequenced using PacBio Sequel long-read sequencing and Illumina short-read sequencing. The genome of strain GDCZ comprised of 1,230,507 bp with an average G + C content of 36.4%, along with a circular CLasMV1 phage: CLasMV1_GDCZ (8,869 bp). The CLas strain GDCZ contained a Type 2 prophage (37,452 bp) and encoded a total of 1,057 open reading frames and 53 RNA genes. The whole genome sequence of CLas strain GDCZ from the historical HLB endemic region in China will serve as a useful resource for further analyses of CLas evolution and HLB epidemiology in China and world.


Assuntos
Liberibacter , Rhizobiaceae , Liberibacter/genética , Rhizobiaceae/genética , Sequenciamento de Nucleotídeos em Larga Escala , Prófagos/genética , China/epidemiologia
16.
Phytopathology ; 113(9): 1708-1715, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37665323

RESUMO

'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited pathogen associated with devastating diseases in members of the Solanaceae and Apiaceae and vectored by several psyllid species. Different Lso haplotypes have been identified, and LsoA and LsoB are responsible for diseases in Solanaceae crops. Our efforts are aimed at identifying pathogenicity factors used by this bacterium to thrive in different hosts. Bacterial secreted proteins can play a role in host colonization or the manipulation of the host immune responses; these proteins are called effectors. In this study, we identified six LsoB-specific proteins with a conserved secretion motif as well as a conserved N-terminal domain in the mature protein. These proteins had different expression and secretion patterns but a similar subcellular localization in Nicotiana benthamiana leaves, suggesting that they play different roles regardless of their conserved secretion motif. One of these proteins, CKC_04425, was expressed at high levels in the insect vector and the host plant, indicating that it could play a role in both the plant and insect hosts, whereas the others were mainly expressed in the plant. One protein, CKC_05701, was able to efficiently suppress programmed cell death and reactive oxygen species production, suggesting that it may have a virulence role in LsoB-specific pathogenesis.


Assuntos
Hemípteros , Rhizobiaceae , Animais , Liberibacter , Haplótipos , Doenças das Plantas/microbiologia , Hemípteros/microbiologia , Produtos Agrícolas , Rhizobiaceae/fisiologia
17.
Plant J ; 116(5): 1309-1324, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37614043

RESUMO

Citrus production is severely threatened by the devastating Huanglongbing (HLB) disease globally. By studying and analyzing the defensive behaviors of an HLB-tolerant citrus cultivar 'Shatangju', we discovered that citrus can sense Candidatus Liberibacter asiaticus (CLas) infection and induce immune responses against HLB, which can be further strengthened by both endogenously produced and exogenously applied methyl salicylate (MeSA). This immune circuit is turned on by an miR2977-SAMT (encoding a citrus Salicylate [SA] O-methyltransferase) cascade, by which CLas infection leads to more in planta MeSA production and aerial emission. We provided both transgenic and multi-year trail evidences that MeSA is an effective community immune signal. Ambient MeSA accumulation and foliage application can effectively induce defense gene expression and significantly boost citrus performance. We also found that miRNAs are battle fields between citrus and CLas, and about 30% of the differential gene expression upon CLas infection are regulated by miRNAs. Furthermore, CLas hijacks host key processes by manipulating key citrus miRNAs, and citrus employs miRNAs that coordinately regulate defense-related genes. Based on our results, we proposed that miRNAs and associated components are key targets for engineering or breeding resistant citrus varieties. We anticipate that MeSA-based management, either induced expression or external application, would be a promising tool for HLB control.


Assuntos
Citrus , MicroRNAs , Rhizobiaceae , Citrus/fisiologia , Doenças das Plantas , Melhoramento Vegetal , Salicilatos/metabolismo , Liberibacter/genética , MicroRNAs/genética , MicroRNAs/metabolismo
18.
J Invertebr Pathol ; 200: 107959, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392992

RESUMO

'Candidatus Liberibacter' is a genus of plant-associated bacteria that can be transmitted by insects of the superfamily Psylloidea. Since many members of this genus are putative causal agents of plant diseases, it is crucial in studying their interactions with the psyllid vectors. However, previous studies have mainly focused on few species associated with diseases of economic significance, and this may potentially hinder the development of a more comprehensive understanding of the ecology of 'Ca. Liberibacter'. The present study showed that an endemic psyllid species in Taiwan, Cacopsylla oluanpiensis, is infected with a species of 'Ca. Liberibacter'. The bacterium was present in geographically distant populations of the psyllid and was identified as 'Ca. Liberibacter europaeus' (CLeu), a species which generally does not induce plant symptoms. Analysis of CLeu infection densities in male and female C. oluanpiensis with different abdominal colors using quantitative polymerase chain reaction revealed that CLeu infection was not significantly associated with psyllid gender and body color. Instead, CLeu infection had a negative effect on the body sizes of both male and female psyllids, which is influenced by bacterial titer. Investigation on CLeu's distribution patterns in C. oluanpiensis's host plant Pittosporum pentandrum indicated that CLeu does not behave as a plant pathogen. Also, results showed that nymph-infested twigs had a greater chance of carrying high loads of CLeu, suggesting that ovipositing females and the nymphs are the main source of the bacterium in the plants. This study is not only the first to formally report the presence of CLeu in C. oluanpiensis and plants in the family Pittosporaceae, but also represents the first record of the bacterium in Taiwan. Overall, the findings in this work broaden the understanding of associations between psyllids and 'Ca. Liberibacter' in the field.


Assuntos
Hemípteros , Rhizobiaceae , Animais , Liberibacter , Hemípteros/microbiologia , Doenças das Plantas/microbiologia , Taiwan
19.
Sci Rep ; 13(1): 10895, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407637

RESUMO

Diaphorina citri Kuwayama, also known as the Asian citrus psyllid (ACP), can vector the bacterium Candidatus Liberibacter asiaticus (CLas), agent of Huanglongbing (HLB): an incurable disease affecting citrus trees worldwide. In citrus growing regions where ACP and HLB are absent, such as Australia, the risk of an incursion and consequent economic damage to citrus industries make this psyllid one of the top-priority pests. Due to ACP's small dimensions and the generally poorly studied native psylloid fauna worldwide, morphological identification of this insect to distinguish it from harmless species is challenging, especially in the field, and with immature, partial or damaged specimens. To allow rapid and efficient detection of ACP in the field, we designed and optimised a new Loop-mediated isothermal amplification (LAMP) assay for the detection of D. citri based on the mitochondrial 16S locus. The optimised ACP 16S LAMP assay produced amplification from D. citri samples within 13.3 ± 3.6 min, with an anneal derivative of ~ 78.5 °C. A synthetic gBlock gene fragment was also developed to be used as positive control for the new LAMP assay with a different anneal derivative of ~ 83 °C. An existing commercially available LAMP assay for detection of the bacterium CLas was also tested in this study on ACP DNA. The ACP 16S LAMP assay we developed and tested here provides a valuable new in-field compatible tool that can allow early detections of ACP, enabling a quick biosecurity response, and could potentially be adopted by a wide range of users, from farmers to agronomists and from researchers to industry.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Hemípteros/microbiologia , Citrus/microbiologia , Rhizobiaceae/genética , Doenças das Plantas/microbiologia , Liberibacter
20.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511229

RESUMO

Huanglongbing (HLB), caused by the Candidatus Liberibacter spp., is the most devastating disease in the citrus industry. HLB significantly affects and alters the microbial community structure or potential function of the microbial community of leaves and roots. However, it is unknown how the microbial community structure of the pericarp with different pigments is affected by Candidatus Liberibacter asiaticus (CLas). This study identified the enriched taxa of the microbial community in the citrus pericarp with normal or abnormal pigment and determine the effects of HLB on the pericarp microbial community using 16S rRNA-seq. The alpha and beta diversity and composition of microbial communities were significantly different between normal and abnormal pigment pericarp tissues of ripe fruits infected by CLas. Firmicutes, Actinobacteriota, Bacteroidota, Acidobacteriota, and Desulfobacterota dominated the pericarp microbiota composition in WDYFs (whole dark yellow fruits) samples. The relative abundance of most genera in WDYFs was higher than 1%, such as Burkholderia, and Pelomonas. However, with the exception of the HLB pathogen, the relative abundance of most genera in the abnormal-colored pericarp samples was less than 1%. CLas decreased the relative abundance of pericarp taxonomic. The predicted function of microbial was more plentiful and functional properties in the WDYF sample, such as translation, ribosomal structure and biogenesis, amino acid transport and metabolism, energy production and conversion, and some other clusters of orthologous groups (COG) except for cell motility. The results of this study offer novel insights into understanding the composition of microbial communities of the CLas-affected citrus pericarps and contribute to the development of biological control strategies for citrus against Huanglongbing.


Assuntos
Citrus , Rhizobiaceae , Rhizobiaceae/genética , Liberibacter , Citrus/microbiologia , RNA Ribossômico 16S/genética , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...