Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 232: 43-51, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27240219

RESUMO

Human norovirus (NoV) is a major cause of fresh produce-associated outbreaks and human NoV in irrigation water can potentially lead to viral internalization in fresh produce. Therefore, there is a need to develop novel intervention strategies to target internalized viral pathogens while maintaining fresh produce quality. In this study electron beam (E-beam) and gamma radiation were evaluated for efficacy against a human NoV GII.4 strain and Tulane virus (TV). Virus survival following ionizing radiation treatments was determined using direct quantitative reverse transcriptase PCR (RT-qPCR), the porcine gastric mucin magnetic bead (PGM-MB) binding assay followed by RT-qPCR, and plaque assay. In simple media, a high dose of E-beam treatment was required to completely abolish the receptor binding ability of human NoV (35.3kGy) and TV (19.5-24.1kGy), as assessed using the PGM-MB binding assay. Both human NoV and TV were more susceptible to gamma irradiation than E-beam, requiring 22.4kGy to achieve complete inactivation. In whole strawberries, no human NoV or TV RNA was detected following 28.7kGy of E-beam treatment using the PGM-MB binding assay. Overall, human NoV and TV are highly resistant to ionizing radiation and therefore the technology may not be suitable to eliminate viruses in fresh produce at the currently approved levels. In addition, the PGM-MB binding assay is an improved method to detect viral infectivity compared to direct RT-qPCR.


Assuntos
Infecções por Caliciviridae/prevenção & controle , Fragaria/virologia , Gastroenterite/prevenção & controle , Norovirus/efeitos da radiação , Ligação Viral/efeitos da radiação , Inativação de Vírus/efeitos da radiação , Animais , Infecções por Caliciviridae/virologia , Surtos de Doenças , Raios gama , Mucinas Gástricas/metabolismo , Gastroenterite/virologia , Humanos , Separação Imunomagnética , Norovirus/classificação , Norovirus/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Suínos/virologia , Internalização do Vírus/efeitos da radiação
2.
Appl Environ Microbiol ; 81(12): 4090-7, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862222

RESUMO

Rotavirus, the leading cause of diarrheal diseases in children under the age of five, is often resistant to conventional wastewater treatment and thus can remain infectious once released into the aquatic environment. Solar and heat treatments can inactivate rotavirus, but it is unknown how these treatments inactivate the virus on a molecular level. To answer this question, our approach was to correlate rotavirus inactivation with the inhibition of portions of the virus life cycle as a means to identify the mechanisms of solar or heat inactivation. Specifically, the integrity of the rotavirus NSP3 gene, virus-host cell interaction, and viral RNA synthesis were examined after heat (57°C) or solar treatment of rotavirus. Only the inhibition of viral RNA synthesis positively correlated with a loss of rotavirus infectivity; 57°C treatment of rotavirus resulted in a decrease of rotavirus RNA synthesis at the same rate as rotavirus infectivity. These data suggest that heat treatment neutralized rotaviruses primarily by targeting viral transcription functions. In contrast, when using solar disinfection, the decrease in RNA synthesis was responsible for approximately one-half of the decrease in infectivity, suggesting that other mechanisms, including posttranslational, contribute to inactivation. Nevertheless, both solar and heat inactivation of rotaviruses disrupted viral RNA synthesis as a mechanism for inactivation.


Assuntos
Temperatura Alta , RNA Viral/biossíntese , Rotavirus/fisiologia , Raios Ultravioleta , Ligação Viral/efeitos da radiação , Inativação de Vírus , Animais , Linhagem Celular , Chlorocebus aethiops , Desinfecção , Humanos , Rotavirus/genética , Rotavirus/efeitos da radiação , Energia Solar , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...