Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.090
Filtrar
1.
Arch Oral Biol ; 163: 105980, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692246

RESUMO

OBJECTIVE: To determine the effect of hyaluronic acid (HA) degradation by hyaluronidase (HYAL) in inhibiting collagen fiber production by rat periodontal ligament cells (rPDLCs). DESIGN: Primary rPDLCs were isolated from the euthanized rats and used for in vitro experiments. The appropriate HYAL concentration was determined through CCK-8 testing for cytotoxicity detection and Alizarin red staining for mineralization detection. RT-qPCR and western blot assays were conducted to assess the effect of HYAL, with or without TGF-ß, on generation of collagen fiber constituents and expression of actin alpha 2, smooth muscle (ACTA2) of rPDLCs. RESULTS: Neither cell proliferation nor mineralization were significantly affected by treatment with 4 U/mL HYAL. HYAL (4 U/mL) alone downregulated type I collagen fiber (Col1a1 and Col1a2) and Acta2 mRNA expression; however, ACTA2 and COL1 protein levels were only downregulated by HYAL treatment after TGF-ß induction. CONCLUSIONS: Treatment of rPDLCs with HYAL can inhibit TGF-ß-induced collagen matrix formation and myofibroblast transformation.


Assuntos
Proliferação de Células , Colágeno , Fibroblastos , Hialuronoglucosaminidase , Miofibroblastos , Ligamento Periodontal , Fator de Crescimento Transformador beta , Animais , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Hialuronoglucosaminidase/farmacologia , Ratos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Colágeno/metabolismo , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Ácido Hialurônico/farmacologia , Células Cultivadas , Ratos Sprague-Dawley , Actinas/metabolismo , Western Blotting , Técnicas In Vitro , Colágeno Tipo I/metabolismo , Biomarcadores/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Masculino , RNA Mensageiro/metabolismo
2.
Braz Oral Res ; 38: e037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747824

RESUMO

Dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) can differentiate into osteoblasts, indicating that both are potential candidates for bone tissue engineering. Osteogenesis is influenced by many environmental factors, one of which is lipopolysaccharide (LPS). LPS-induced NF-κB activity affects the osteogenic potencies of different types of MSCs differently. This study evaluated the effect of LPS-induced NF-κB activity and its inhibition in DPSCs and PDLSCs. DPSCs and PDLSCs were cultured in an osteogenic medium, pretreated with/without NF-κB inhibitor Bay 11-7082, and treated with/without LPS. Alizarin red staining was performed to assess bone nodule formation, which was observed under an inverted light microscope. NF-κB and alkaline phosphatase (ALP) activities were measured to examine the effect of Bay 11-7082 pretreatment and LPS supplementation on osteogenic differentiation of DPSCs and PDLSCs. LPS significantly induced NF-κB activity (p = 0.000) and reduced ALP activity (p = 0.000), which inhibited bone nodule formation in DPSCs and PDLSCs. Bay 11-7082 inhibited LPS-induced NF-κB activity, and partially maintained ALP activity and osteogenic potency of LPS-supplemented DPSCs and PDLSCs. Thus, inhibition of LPS-induced NF-κB activity can maintain the osteogenic potency of DPSCs and PDLSCs.


Assuntos
Fosfatase Alcalina , Diferenciação Celular , Polpa Dentária , Lipopolissacarídeos , NF-kappa B , Nitrilas , Osteogênese , Ligamento Periodontal , Células-Tronco , Humanos , Lipopolissacarídeos/farmacologia , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , NF-kappa B/metabolismo , Fosfatase Alcalina/análise , Diferenciação Celular/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Células Cultivadas , Nitrilas/farmacologia , Sulfonas/farmacologia , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem , Adolescente
3.
Int J Oral Sci ; 16(1): 38, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734708

RESUMO

Periodontitis is a chronic inflammatory and immune reactive disease induced by the subgingival biofilm. The therapeutic effect for susceptible patients is often unsatisfactory due to excessive inflammatory response and oxidative stress. Sinensetin (Sin) is a nature polymethoxylated flavonoid with anti-inflammatory and antioxidant activities. Our study aimed to explore the beneficial effect of Sin on periodontitis and the specific molecular mechanisms. We found that Sin attenuated oxidative stress and inflammatory levels of periodontal ligament cells (PDLCs) under inflammatory conditions. Administered Sin to rats with ligation-induced periodontitis models exhibited a protective effect against periodontitis in vivo. By molecular docking, we identified Bach1 as a strong binding target of Sin, and this binding was further verified by cellular thermal displacement assay and immunofluorescence assays. Chromatin immunoprecipitation-quantitative polymerase chain reaction results also revealed that Sin obstructed the binding of Bach1 to the HMOX1 promoter, subsequently upregulating the expression of the key antioxidant factor HO-1. Further functional experiments with Bach1 knocked down and overexpressed verified Bach1 as a key target for Sin to exert its antioxidant effects. Additionally, we demonstrated that Sin prompted the reduction of Bach1 by potentiating the ubiquitination degradation of Bach1, thereby inducing HO-1 expression and inhibiting oxidative stress. Overall, Sin could be a promising drug candidate for the treatment of periodontitis by targeting binding to Bach1.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Estresse Oxidativo , Periodontite , Ubiquitinação , Estresse Oxidativo/efeitos dos fármacos , Periodontite/tratamento farmacológico , Periodontite/prevenção & controle , Periodontite/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ubiquitinação/efeitos dos fármacos , Ratos , Masculino , Modelos Animais de Doenças , Antioxidantes/farmacologia , Ratos Sprague-Dawley , Humanos , Imunoprecipitação da Cromatina , Western Blotting , Reação em Cadeia da Polimerase em Tempo Real , Simulação de Acoplamento Molecular , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia
4.
Int Immunopharmacol ; 133: 112094, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652969

RESUMO

Periodontitis is a bacteria-induced inflammatory disease that damages the tissues supporting the teeth, gums, periodontal ligaments, and alveolar bone. Conventional treatments such as surgical procedures, anti-inflammatory drugs, and antibiotics, are somewhat effective; however, these may lead to discomfort and adverse events, thereby affecting patient outcomes. Therefore, this study aimed to find an effective method to prevent the onset of periodontal disease and explore the specific mechanisms of their action.The impact of thiostrepton on Porphyromonas gingivalis and periodontal ligament stem cells was evaluated in an inflammatory microenvironment. In vivo experiments were performed using a mouse periodontitis model to assess the effectiveness of locally applied thiostrepton combined with a silk fibroin hydrogel in impeding periodontitis progression. Thiostrepton exhibited significant antimicrobial effects against Porphyromonas gingivalis and anti-inflammatory properties by regulating the MAPK pathway through DUSP2. Locally applied thiostrepton effectively impeded the progression of periodontitis and reduced tissue damage. Thiostrepton treatment is a promising and tolerable preventive strategy for periodontitis, offering antimicrobial and anti-inflammatory benefits. These findings suggest the potential of thiostrepton as a valuable addition to periodontitis management, warranting further research and clinical exploration to improve patient outcomes.


Assuntos
Antibacterianos , Anti-Inflamatórios , Periodontite , Porphyromonas gingivalis , Animais , Porphyromonas gingivalis/efeitos dos fármacos , Periodontite/tratamento farmacológico , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células-Tronco/efeitos dos fármacos , Masculino , Periodonto/efeitos dos fármacos , Periodonto/microbiologia , Periodonto/patologia
5.
Arch Oral Biol ; 162: 105956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522213

RESUMO

OBJECTIVE: The periodontal ligament is a crucial part of the periodontium, and its regeneration is challenging. This study compares the effect of simultaneous and sequential use of FGF-2 and TGF-ß1 with FGF-2 and TGF-ß3 on the periodontal ligament stem cells (PDLSCs) teno/ligamentogenic differentiation. DESIGN: This study comprises ten different groups. A control group with only PDLSCs; FGF-2 group containing PDLSCs with a medium culture supplemented with FGF-2 (50 ng/mL). In other experimental groups, different concentrations (5 ng/mL or 10 ng/mL) of TGF-ß1&-ß3 simultaneously or sequentially were combined with FGF-2 on the cultured PDLSCs. TGF-ß was added to the medium after day 3 in the sequential groups. Methyl Thiazolyl Tetrazolium (MTT) assay on days 3, 5, and 7 and Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) analysis after day 7 were conducted to investigate PLAP1, SCX, and COL3A1, RUNX2 genes. All experiments were conducted in a triplicate. The One-way and Two-way ANOVA with Tukey post hoc were utilized to analyze the results of the MTT and RT-qPCR tests, respectively. A p-value less than 0.05 is considered significant. RESULTS: The proliferation of cells on days 3, 5, and 7 was not significantly different among different experimental groups (P > 0.05). A higher expression of the PLAP1, SCX, and COL3A1 have been seen in groups with sequential use of growth factors; among these groups, the group using 5 ng/mL of TGF-ß3 led other groups with the most amount of significant upregulation in PLAP1(17.69 ± 1.11 fold; P < 0.0001), SCX (5.71 ± 0.38 fold; P < 0.0001), and COL1A3 (6.35 ± 0.39 fold; P < 0.0001) expression, compared to the control group. The expression of the RUNX2 decreased in all groups compared to the control group; this reduction was more in groups with sequential use of growth factors. CONCLUSION: The sequential use of growth factors can be more effective than simultaneous use in teno/ligamentogenic differentiation of PDLSCs. Moreover, treatment with 5 ng/mL TGF-ß3 after FGF-2 was more effective than TGF-ß1.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Ligamento Periodontal , Células-Tronco , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta3 , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Humanos
6.
Cells ; 13(2)2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38247838

RESUMO

Orthodontic tooth movement (OTM) is thought to be impeded by bisphosphonate (BP) therapy, mainly due to increased osteoclast apoptosis and changes in the periodontal ligament (PdL), a connecting tissue between the alveolar bone and teeth. PdL cells, mainly fibroblasts (PdLFs), are crucial regulators in OTM by modulating force-induced local inflammatory processes. Recently, we identified the TGF-ß/BMP superfamily member GDF15 as an important modulator in OTM, promoting the pro-inflammatory mechanoresponses of PdLFs. The precise impact of the highly potent BP zoledronate (ZOL) on the mechanofunctionality of PdLFs is still under-investigated. Therefore, the aim of this study was to further characterize the ZOL-induced changes in the initial inflammatory mechanoresponse of human PdLFs (hPdLFs) and to further clarify a potential interrelationship with GDF15 signaling. Thus, two-day in vitro treatment with 0.5 µM, 5 µM and 50 µM of ZOL altered the cellular properties of hPdLFs partially in a concentration-dependent manner. In particular, exposure to ZOL decreased their metabolic activity, the proliferation rate, detected using Ki-67 immunofluorescent staining, and survival, analyzed using trypan blue. An increasing occurrence of DNA strand breaks was observed using TUNEL and an activated DNA damage response was demonstrated using H2A.X (phosphoS139) staining. While the osteogenic differentiation of hPdLFs was unaffected by ZOL, increased cellular senescence was observed using enhanced p21Waf1/Cip1/Sdi1 and ß-galactosidase staining. In addition, cytokine-encoding genes such as IL6, IL8, COX2 and GDF15, which are associated with a senescence-associated secretory phenotype, were up-regulated by ZOL. Subsequently, this change in the hPdLF phenotype promoted a hyperinflammatory response to applied compressive forces with an increased expression of the pro-inflammatory markers IL1ß, IL6 and GDF15, as well as the activation of monocytic THP1 cells. GDF15 appeared to be particularly relevant to these changes, as siRNA-mediated down-regulation balanced these hyperinflammatory responses by reducing IL-1ß and IL-6 expression (IL1B p-value < 0.0001; IL6 p-value < 0.001) and secretion (IL-1ß p-value < 0.05; IL-6 p-value < 0.001), as well as immune cell activation (p-value < 0.0001). In addition, ZOL-related reduced RANKL/OPG values and inhibited osteoclast activation were enhanced in GDF15-deficient hPdLFs (both p-values < 0.0001; all statistical tests: one-way ANOVA, Tukey's post hoc test). Thus, GDF15 may become a promising new target in the personalized orthodontic treatment of bisphosphonatepatients.


Assuntos
Fator 15 de Diferenciação de Crescimento , Ligamento Periodontal , Ácido Zoledrônico , Humanos , Fibroblastos , Fator 15 de Diferenciação de Crescimento/metabolismo , Interleucina-6 , Osteogênese , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Ácido Zoledrônico/farmacologia
7.
Biomolecules ; 13(4)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37189437

RESUMO

Hyperglycemic condition in diabetic patients tends to exacerbate periodontitis severity. Thus, the influence of hyperglycemia on the biological and inflammatory response of periodontal ligament fibroblasts (PDLFs) needs to be elucidated. In this study, PDLFs were seeded in media containing glucose concentrations (5.5, 25, or 50 mM) and stimulated with 1 µg/mL of lipopolysaccharide (LPS). PDLFs' viability, cytotoxicity, and the migration ability were determined. The mRNA expression of Interleukin (IL)-6, IL-10, and IL-23 (p19/p40), and Toll-like receptor (TLR)-4 were analyzed; at 6 and 24 h, protein expression of IL-6 and IL-10 was also determined. PDLFs grown in 50 mM glucose medium showed lower viability. The 5.5 mM glucose led to the highest percentage of wound closure compared to 25 mM and 50 mM glucose with/without LPS. Additionally, 50 mM glucose with LPS exhibited the least migration ability among all groups. The expression of IL-6 was amplified significantly in LPS-stimulated cells in 50 mM glucose medium. IL-10 was constitutively expressed in different glucose concentrations, and LPS stimulation decreased it. IL-23 p40 was up-regulated after LPS stimulation in 50 mM glucose concentration. TLR-4 was highly expressed after LPS stimulation in all glucose concentrations. Hyperglycemic conditions limit PDLF proliferation and migration, and enhance the expression of certain pro-inflammatory cytokines to induce periodontitis.


Assuntos
Citocinas , Glucose , Hiperglicemia , Ligamento Periodontal , Humanos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Interleucina-10/metabolismo , Interleucina-23/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Meios de Cultura
8.
Stem Cell Res Ther ; 13(1): 305, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841070

RESUMO

BACKGROUND: High glucose-induced damage to the osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) has long been a challenge to periodontal regeneration for diabetic individuals. Metformin is an anti-hyperglycemic drug that exhibits abundant biological activities associated with cell metabolism and downstream tissue regeneration. However, how metformin combats damage to PDLSC osteogenic differentiation under high glucose and the underlying mechanisms remain unknown. METHODS: Osteogenic differentiation of PDLSCs was assessed by alkaline phosphatase (ALP) staining, ALP activity, Alizarin Red staining and quantitative assay, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. RNA-seq analysis was performed to screen target genes of metformin, and the effects of target genes were confirmed using lentivirus transfection. Western blot analysis was also used to detect the protein level of underlying signaling pathways. RESULTS: We found that osteogenic differentiation of PDLSCs under high glucose was decreased, and metformin addition enhanced this capacity of differentiation. Furthermore, the results of RNA-seq analysis showed that natriuretic peptide receptor 3 (NPR3) was upregulated in PDLSCs under high glucose and downregulated after metformin addition. When the underlying pathways involved were investigated, we found that upregulation of NPR3 can compromise the metformin-enhanced PDLSC osteogenic differentiation and activate the MAPK pathway (especially the p38 MAPK and Erk1/2 pathway), and that inhibition of the NPR3-mediated p38 MAPK or Erk1/2 pathway enhanced the osteogenic differentiation of PDLSCs under high glucose. CONCLUSIONS: The present study suggests that metformin may enhance the osteogenic differentiation of PDLSCs under high glucose via downregulation of NPR3 and inhibition of its downstream MAPK pathway. This is the first report identifying the involvement of NPR3-mediated MAPK pathway in the metformin-enhanced osteogenic differentiation, indicating that NPR3 antagonists, such as metformin, may be feasible therapeutics for periodontal tissue regeneration in diabetic individuals.


Assuntos
Sistema de Sinalização das MAP Quinases , Metformina , Ligamento Periodontal , Receptores do Fator Natriurético Atrial , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Glucose/administração & dosagem , Glucose/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metformina/farmacologia , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Receptores do Fator Natriurético Atrial/antagonistas & inibidores , Receptores do Fator Natriurético Atrial/metabolismo , Células-Tronco/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
J Periodontal Res ; 57(4): 835-848, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35675063

RESUMO

BACKGROUND: Growing evidence suggests that excessive inflammation hampers the regenerative capacity of periodontal ligament cells (PDLCs) and that activation of the Wnt/ß-catenin pathway is crucial in suppressing immune dysregulation. OBJECTIVE: This study aimed to establish the role of the Wnt/ß-catenin in regulating the immune microenvironment and its subsequent impact on periodontal regeneration. METHODS: Lithium chloride (LiCl, Wnt activator) was administered daily into the standard periodontal defects created in 12-week-old Lewis rats. Harvested at 1-week and 2-week post-surgery, samples were then subjected to histological and immunohistochemical evaluation of macrophage distribution and phenotype (pro-inflammatory M1 and anti-inflammatory M2). A murine macrophage cell line, RAW 264.7, was stimulated with LiCl to activate Wnt/ß-catenin. Following treatment with the conditioned medium derived from the LiCl-activated macrophages, the expression of bone- and cementum-related markers of the PDLCs was determined. The involvement of Wnt/ß-catenin in the immunoregulation and autophagic activity was further investigated with the addition of cardamonin, a commercially available Wnt inhibitor. RESULTS: A significantly increased number of macrophages were detected around the defects during early healing upon receiving the Wnt/ß-catenin signaling cue. The defect sites in week 2 exhibited fewer M1 and more M2 macrophages along with an enhanced regeneration of alveolar bone and cementum in the Wnt/ß-catenin activation group. LiCl-induced immunomodulatory effect was accompanied with the activation Wnt/ß-catenin signaling, which was suppressed in the presence of Wnt inhibitor. Exposure to LiCl could induce autophagy in a dose-dependent manner, thus maintaining macrophages in a regulatory state. The expression level of bone- and cementum-related markers was significantly elevated in PDLCs stimulated with LiCl-activated macrophages. CONCLUSION: The application of Wnt activator LiCl facilitates the recruitment of macrophages to defect sites and regulates their phenotypic switching in favor of periodontal regeneration. Suppression of Wnt/ß-catenin pathway could attenuate the LiCl-induced immunomodulatory effect. Taken together, the Wnt/ß-catenin pathway may be targeted for therapeutic interventions in periodontal diseases.


Assuntos
Cloreto de Lítio , Ligamento Periodontal , Regeneração , Via de Sinalização Wnt , Animais , Cloreto de Lítio/farmacologia , Camundongos , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/crescimento & desenvolvimento , Células RAW 264.7 , Ratos , Ratos Endogâmicos Lew , Regeneração/efeitos dos fármacos , beta Catenina/metabolismo
10.
Basic Clin Pharmacol Toxicol ; 130(1): 132-140, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34740282

RESUMO

In genome-wide association studies, the CYP2C8 gene locus has been reported to be associated with bisphosphonate-related osteonecrosis of the jaw, a severe devastating side effect of antiresorptive bone treatment. The aim of this study was to elucidate the putative pathomechanism explaining the association between the genetic polymorphism with the alleles CYP2C8*2 and *3 causing low CYP2C8 activity, and disturbed periodontal remodelling in periodontal fibroblasts cultured from patients undergoing orthodontic treatment. CYP2C8 activity, enzyme expression and substrate metabolism were detected in human periodontal fibroblast cultures. Zoledronic acid caused enhanced reactive oxygen species (ROS) production in periodontal fibroblasts, which was enhanced by arachidonic acid as inflammatory signal. Enhanced bisphosphonate-induced uncoupling of the CYP2C8 enzyme was detected in the variant allele (CYP2C8*3) with the result of increased H2 O2 production and lowered substrate oxidation. Conversely, substrate (amodiaquine) addition led to decreased H2 O2 production in isolated CYP2C8 enzymes, but in CYP2C8*3 enzyme, increased H2 O2 was still detected, especially in presence of arachidonic acid. CYP2C8 variants leading to decreased enzyme activity in substrate oxidation may enhance ROS production by reaction uncoupling, and thus, contribute to difficulties in orthodontic treatment and the risk of side effects of antiresorptive drugs.


Assuntos
Citocromo P-450 CYP2C8/genética , Fibroblastos/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Ácido Zoledrônico/toxicidade , Alelos , Amodiaquina/farmacologia , Ácido Araquidônico/metabolismo , Conservadores da Densidade Óssea/toxicidade , Células Cultivadas , Fibroblastos/citologia , Estudo de Associação Genômica Ampla , Humanos , Peróxido de Hidrogênio/metabolismo , Ortodontia , Oxirredução , Ligamento Periodontal/citologia , Polimorfismo Genético , Espécies Reativas de Oxigênio/metabolismo
11.
Sci Rep ; 11(1): 22091, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764383

RESUMO

White mineral trioxide aggregate (WMTA) is a root canal treatment material, which is known to exhibit a dark brown color when in contact with sodium hypochlorite solution (NaOCl). This study aimed to investigate the effects of NaOCl on the surface properties of WMTA discs and WMTA-induced osteoblastic differentiation of periodontal ligament stem cells (PDLSCs). Mixed WMTA (ProRoot MTA) was filled into the molds to form WMTA discs. These discs were immersed in distilled water (D-WMTA) or 5% NaOCl (Na-WMTA). Their surface structures and Ca2+ release level was investigated. Moreover, they were cultured with a clonal human PDLSC line (line 1-17 cells). The main crystal structures of Na-WMTA were identical to the structures of D-WMTA. Globular aggregates with polygonal and needle-like crystals were found on D-WMTA and Na-WMTA, which included Ca, Si, Al, C and O. However, many amorphous structures were also identified on Na-WMTA. These structures consisted of Na and Cl, but did not include Ca. NaOCl immersion also reduced Ca2+ release level from whole WMTA discs. Line 1-17 cells cultured with D-WMTA formed many mineralized nodules and exhibited high expression levels of osteoblast-related genes. However, cells incubated with Na-WMTA generated a small number of nodules and showed low expression levels of osteoblast-related genes. These results indicated that NaOCl reduced Ca2+ release from WMTA by generating amorphous structures and changing its elemental distribution. NaOCl may also partially abolish the ability of WMTA to stimulate osteoblastic differentiation of PDLSCs.


Assuntos
Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Óxidos/farmacologia , Ligamento Periodontal/efeitos dos fármacos , Materiais Restauradores do Canal Radicular/farmacologia , Silicatos/farmacologia , Hipoclorito de Sódio/farmacologia , Células-Tronco/efeitos dos fármacos , Compostos de Alumínio/química , Cálcio/metabolismo , Compostos de Cálcio/química , Linhagem Celular , Combinação de Medicamentos , Humanos , Osteoblastos/metabolismo , Óxidos/química , Ligamento Periodontal/metabolismo , Silicatos/química , Hipoclorito de Sódio/química , Células-Tronco/metabolismo , Propriedades de Superfície/efeitos dos fármacos
12.
Int J Med Sci ; 18(16): 3674-3683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790039

RESUMO

Periodontitis is the most prevalent oral infection disease, which causes the destruction of periodontal supporting tissues and eventual tooth loss. This study aimed to investigate the molecular mechanism of miRNA-23b (miR-23b) in regulating the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) in an inflammatory environment. Results revealed that tumor necrosis factor-α (TNF-α), a notoriously inflammatory cytokine, remarkably attenuated the osteogenic differentiation of hPDLSCs, which were partially rescued by SKL2001 (Wnt/ß-catenin agonist). We further explored the underlying roles of miRNAs involved in TNF-α-inhibited osteogenesis of hPDLSCs. The miR-23b significantly increased with TNF-α stimulation, which was abolished by SKL2001. Similar to the effect of TNF-α, miR-23b agonist (agomir-23b) dramatically reduced the expression of runt-related transcription factor 2 (Runx2) and suppressed the osteogenic differentiation of hPDLSCs. The inhibition of miR-23b significantly increased Runx2, which is the major transcription factor during osteogenesis, thereby indicating that miR-23b was an endogenous regulator of Runx2 in hPDLSCs. Bioinformatic analysis and dual luciferase reporter assays confirmed that Runx2 was a target gene of miR-23b. Furthermore, the gain function assay of Runx2 revealed that the Runx2 overexpression efficiently reversed the suppression of the osteogenic differentiation of hPDLSCs with miR-23b agonist, suggesting that the suppressing effect of miR-23b on osteogenesis was mediated by Runx2 inhibition. Our study clarified that miR-23b mediated the TNF-α-inhibited osteogenic differentiation of hPDLSCs by targeting Runx2. Therefore, the expanded function of miR-23b in the osteogenesis of hPDLSCs under inflammatory conditions. This study might provide new insights and a novel therapeutic target for periodontitis.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Ligamento Periodontal/citologia , Células-Tronco/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Adolescente , Adulto , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , MicroRNAs/fisiologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células-Tronco/fisiologia , Adulto Jovem
13.
Eur J Med Res ; 26(1): 105, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526113

RESUMO

BACKGROUND: Platelet-rich plasma (PRP) has the potential to be used for bone regeneration. However, its effect on osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its effect on cell autophagy of hPDLSCs remain unknown. In this study, we investigated the effects of PRP on cell viability and osteogenic differentiation of hPDLSCs and the underlying molecular mechanisms. METHODS: hPDLSCs were isolated and identified by morphology and flow cytometry analysis. Next, thrombin-activated PRP was used to stimulate hPDLSCs. The MTT assay was used to analyze cell viability. Osteogenic differentiation was investigated using alkaline phosphatase (ALP) activity assay, alizarin red S (ARS) staining, and gene expression analysis of osteogenic markers. Expression of the autophagic proteins was determined using western blotting. RESULTS: Thrombin-activated PRP significantly enhanced cell viability, ALP activity, osteogenic-related mRNA levels and alizarin red-mineralization activity in hPDLSCs in a dose-dependent manner. Furthermore, activated PRP dose-dependently increased LC3-II/I ratio and the expression of SIRT1 and Beclin-1. PRP treatment also enhanced the autophagic flux. It was also demonstrated that the inhibition of SIRT1 using sirtinol or suppression of autophagy by 3-methyladenine (3-MA) abrogated PRP-induced viability and osteogenic differentiation of hPDLSCs. CONCLUSION: Our study suggested that thrombin-activated PRP accelerated the viability and osteogenic differentiation of hPDLSCs via SIRT1-mediated autophagy induction.


Assuntos
Diferenciação Celular , Osteogênese , Ligamento Periodontal/citologia , Plasma Rico em Plaquetas/fisiologia , Sirtuína 1/metabolismo , Células-Tronco/citologia , Trombina/farmacologia , Adulto , Autofagia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Feminino , Hemostáticos/farmacologia , Humanos , Masculino , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Plasma Rico em Plaquetas/efeitos dos fármacos , Sirtuína 1/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
14.
Acta Biochim Biophys Sin (Shanghai) ; 53(10): 1266-1276, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34519779

RESUMO

Periodontitis is one of the most common chronic inflammations of the oral cavity, which eventually leads to tooth loss. Betulinic acid (BetA) is an organic acid that has anti-inflammatory effects and is derived from fruits and plants, but its effect on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is still unclear. This study aimed to explore the effect of BetA on the osteogenic differentiation of hPDLSCs and its mechanism. Our results revealed that BetA not only promoted the viability of hPDLSCs but also induced their osteogenic differentiation in a dose-dependent manner. In addition, RNA sequencing was used to screen the differentially expressed genes (DEGs) after hPDLSCs were treated with BetA, and 127 upregulated and 138 downregulated genes were identified. Gene Ontology enrichment analysis showed that DEGs were mainly involved in the response to lithium ions and the positive regulation of macrophage-derived foam cell differentiation. The Kyoto Encyclopedia of Genes and Genomes analysis results revealed that DEGs were enriched in the nuclear factor-κB and interleukin-17 signaling pathways. More importantly, we confirmed that early growth response gene 1 (EGR1), one of the three DEGs involved in bone formation, significantly promoted the expression of osteogenic markers and the mineralization of hPDLSCs. Knockdown of EGR1 obviously limited the effect of BetA on the osteogenic differentiation of hPDLSCs. In conclusion, BetA promoted the osteogenic differentiation of hPDLSCs through upregulating EGR1, and BetA might be a promising candidate in the clinical application of periodontal tissue regeneration.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Osteogênese/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Células-Tronco/metabolismo , Adulto , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ligamento Periodontal/citologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Adulto Jovem , Ácido Betulínico
15.
Int Immunopharmacol ; 100: 108134, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34547679

RESUMO

Transient receptor potential channel 6 (TRPC6) is a receptor-operated Ca2+ channel that plays an important role in Ca2+ influx in the majority of non-excitable cells and influences calcium signalling and cellular responses. Therefore, the purpose of the present study was to gain insight into the role of TRPC6 in the osteogenesis of periodontal ligament cells (PDLCs). By western blot and immunohistochemical staining, the protein level of TRPC6 was found to be increased in a time-dependent manner during osteoblastic differentiation of PDLCs. In addition, the TRPC6 inhibitor SKF96365 was used to block the function of TRPC6 and inhibit osteoblastic differentiation of PDLCs. The TRPC6 activator hyperforin dicyclohexylammonium salt (hyperforin DCHA) was used to activate TRPC6 and promote osteoblastic differentiation of PDLCs. In vivo, wild-type mice showed better bone regeneration than TRPC6-/- mice, suggesting that TRPC6 has notable osteogenic induction properties and is important for bone defect repair. In conclusion, the current data demonstrated that TRPC6 plays a significant role in osteoblastic differentiation of PDLCs, suggesting that it may be a promising therapeutic target in osteogenesis.


Assuntos
Osteoblastos/metabolismo , Osteogênese , Ligamento Periodontal/metabolismo , Crânio/metabolismo , Canal de Cátion TRPC6/metabolismo , Adolescente , Animais , Diferenciação Celular , Células Cultivadas , Criança , Feminino , Humanos , Imidazóis/farmacologia , Masculino , Camundongos Knockout , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/patologia , Transdução de Sinais , Crânio/efeitos dos fármacos , Crânio/patologia , Canal de Cátion TRPC6/efeitos dos fármacos , Canal de Cátion TRPC6/genética , Terpenos/farmacologia
16.
J Tissue Eng Regen Med ; 15(11): 964-997, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34480421

RESUMO

The ultimate goal in periodontal treatments is to achieve a functional and anatomical regeneration of the lost tissues. Numerous studies have in some way illustrated the beneficial effects of biologic modifiers in this process, yet they are subject to a rather large degree of diversity in their results. Thanks to the promising outcomes of bioengineering techniques in the field of periodontal regeneration, this systematic review aims to evaluate the effect of various biologic modifiers used in periodontal defects of animal models. Electronic databases (Medline, Scopus, Embase, Web of Science, and Google Scholar) were searched (March 2010-December 2020) for every study that used biomolecules for regeneration of periodontal osseous defects in animal models. Regenerated bone height or area, new cementum, new connective tissues, new regenerated periodontal ligament and the dimensions of epithelial attachment (either in mm/mm2 or percentage) were the investigated outcomes. The risk of bias of the included studies was assessed using the SYRCLE tool. In closing, there was a meta-analysis carried out on the outcomes of interest. Trial Sequential Analysis was also carried out to figure out the power of meta-analytic outcomes. From 1995 studies which were found in the initial search, 34 studies were included in this review, and 20 of them were selected for the meta-analysis. The eligible studies were categorized according to the morphology of the experimental periodontal defects as one-, two-, and three-wall intrabony defects; furcation defects, and recession-type defects. The most studied biomolecules were rhFGF-2, rhGDF-5, platelet-derived growth factor, bone morphogenetic protein-2, and enamel matrix derivative (EMD). Based on the meta-analysis findings, combined application of biomolecules with regenerative treatments could improve new bone and cementum formation near 1 mm when compared to the control groups in one, two and three-wall intrabony defect models (p < 0.001). In furcation grade II defect, the addition of biomolecules was observed to enhance bone area gain and cementum height regeneration up to almost 2 mm (p < 0.001). Trial Sequential Analysis results confirmed the significant effect in the aforementioned meta-analyses. In cases of the buccal recession model, the application of rhFGF-2 and rhGDF-5 decreased the dimension of epithelial attachments besides regenerative advantages on bone and cementum formation, but EMD deposition exerted no inhibitory effect on epithelial down-growth. Application of biologic modifiers especially FGF-2 and GDF-5, could positively improve the regeneration of periodontal tissues, particularly cementum and bone in animal models. Trial Sequential Analysis confirmed the results but the power of the evidences was high just in some subgroup meta-analyses, like bone and cementum regeneration in furcation grade II model and cementum regeneration in one-wall intrabony defects. The outcomes of this study can potentially endow clinicians with guidelines for the appropriate application of growth factors in periodontal regenerative therapies.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Ligamento Periodontal/patologia , Ligamento Periodontal/fisiopatologia , Regeneração/fisiologia , Animais , Modelos Animais de Doenças , Defeitos da Furca/fisiopatologia , Ligamento Periodontal/efeitos dos fármacos , Regeneração/efeitos dos fármacos
17.
Drug Des Devel Ther ; 15: 3509-3522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408403

RESUMO

PURPOSE: Emerging evidence has indicated that oxidative stress (OS) contributes to periodontitis. Periodontal ligament cells (PDLCs) are important for the regeneration of periodontal tissue. Quercetin, which is extracted from fruits and vegetables, has strong antioxidant capabilities. However, whether and how quercetin affects oxidative damage in PDLCs during periodontitis remains unknown. The aim of this study was to assess the effects of quercetin on oxidative damage in PDLCs and alveolar bone loss in periodontitis and underlying mechanisms. MATERIALS AND METHODS: The tissue block culture method was used to extract human PDLCs (hPDLCs). First, a cell counting kit 8 (CCK-8) assay was used to identify the optimal concentrations of hydrogen peroxide (H2O2) and quercetin. Subsequently, a 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) probe, RT-qPCR, Western blotting and other methods were used to explore the effects of quercetin on OS in hPDLCs and the underlying mechanism. Finally, quercetin was administered to mice with periodontitis through gavage, and the effect of quercetin on the level of OS and alveolar bone resorption in these mice was observed by immunofluorescence, microcomputed tomography (micro-CT), hematoxylin and eosin staining (H&E) staining and so on. RESULTS: Quercetin at 5 µM strongly activated NF-E2-related factor 2 (NRF2) signaling, alleviated oxidative damage and enhanced the antioxidant capacity of hPDLCs. In addition, quercetin reduced cellular senescence and protected the osteogenic ability of hPDLCs. Finally, quercetin activated NRF2 signaling in the periodontal ligaments, reduced the OS level of mice with periodontitis, and slowed the absorption of alveolar bone in vivo. CONCLUSION: Quercetin can increase the antioxidant capacity of PDLCs and reduce OS damage by activating the NRF2 signaling pathway, which alleviates alveolar bone loss in periodontitis.


Assuntos
Perda do Osso Alveolar/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Periodontite/tratamento farmacológico , Quercetina/farmacologia , Adolescente , Adulto , Animais , Antioxidantes/farmacologia , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/patologia , Periodontite/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
18.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445386

RESUMO

Understanding the biological and morphological reactions of human cells towards different dentinal derivate grafting materials is fundamental for choosing the type of dentin for specific clinical situations. This study aimed to evaluate human periodontal ligament fibroblasts (hPLF) cells exposed to different dentinal derivates particles. The study design included the in vitro evaluation of mineralized dentine (SG), deproteinized and demineralized dentine (DDP), and demineralized dentine (TT) as test materials and of deproteinized bovine bone (BIOS) as the positive control material. The materials were kept with the hPLF cell line, and the evaluations were made after 24 h, 72 h, and 7 days of in vitro culture. The evaluated outcomes were proliferation by using XTT assays, the morphological characteristics by light microscopy (LM) and by the use of scanning electron microscopy (SEM), and adhesion by using confocal microscopy (CLSM). Overall, the experimental materials induced a positive response of the hPLFs in terms of proliferation and adhesion. The XTT assay showed the TT, and the SG induced significant growth compared to the negative control at 7 days follow-up. The morphological data supported the XTT assay: the LM observations showed the presence of densely packed cells with a modified shape; the SEM observations allowed the assessment of how fibroblasts exposed to DDP and TT presented cytoplasmatic extensions; and SG and BIOS also presented the thickening of the cellular membrane. The CLMS observations showed the expression of the proliferative marker, as well as and the expression of cytoskeletal elements involved in the adhesion process. In particular, the vinculin and integrin signals were stronger at 72 h, while the actin signal remained constantly expressed in all the follow-up of the sample exposed to SG material. The integrin signal was stronger at 72 h, and the vinculin and actin signals were stronger at 7 days follow-up in the sample exposed to DDP material. The vinculin and integrin signals were stronger at 72 h follow-up in the sample exposed to TT material; vinculin and integrin signals appear stronger at 24 h follow-up in the sample exposed to BIOS material. These data confirmed how dentinal derivates present satisfying biocompatibility and high conductivity and inductivity properties fundamental in the regenerative processes. Furthermore, the knowledge of the effects of the dentin's degree of mineralization on cellular behavior will help clinicians choose the type of dentine derivates material according to the required clinical situation.


Assuntos
Biomarcadores/metabolismo , Substitutos Ósseos/farmacologia , Dentina/química , Ligamento Periodontal/citologia , Animais , Substitutos Ósseos/química , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Integrinas/metabolismo , Teste de Materiais , Microscopia Confocal , Microscopia Eletrônica de Varredura , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Vinculina/metabolismo
19.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199865

RESUMO

In obese patients, enhanced serum levels of free fatty acids (FFA), such as palmitate (PA) or oleate (OA), are associated with an increase in systemic inflammatory markers. Bacterial infection during periodontal disease also promotes local and systemic low-grade inflammation. How both conditions concomitantly impact tooth movement is largely unknown. Thus, the aim of this study was to address the changes in cytokine expression and the secretion of human periodontal ligament fibroblasts (HPdLF) due to hyperlipidemic conditions, when additionally stressed by bacterial and mechanical stimuli. To investigate the impact of obesity-related hyperlipidemic FFA levels on HPdLF, cells were treated with 200 µM PA or OA prior to the application of 2 g/cm2 compressive force. To further determine the additive impact of bacterial infection, HPdLF were stimulated with lipopolysaccharides (LPS) obtained from Porphyromonas gingivalis. In mechanically compressed HPdLF, PA enhanced COX2 expression and PGE2 secretion. When mechanically stressed HPdLF were additionally stimulated with LPS, the PGE2 and IL6 secretion, as well as monocyte adhesion, were further increased in PA-treated cultures. Our data emphasize that a hyperlipidemic condition enhances the susceptibility of HPdLF to an excessive inflammatory response to compressive forces, when cells are concomitantly exposed to bacterial components.


Assuntos
Fibroblastos/imunologia , Hiperlipidemias/fisiopatologia , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Ligamento Periodontal/imunologia , Porphyromonas gingivalis/química , Estresse Mecânico , Força Compressiva , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/patologia , Pressão
20.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299157

RESUMO

Curcumin, a yellow polyphenol extracted from the turmeric root is used as a diet supplement. It exhibits anti-inflammatory, antioxidant, and antitumor properties by modulating different intracellular mechanisms. Due to their low solubility in water, the curcumin molecules must be encapsulated into liposomes to improve the bioavailability and biomedical potential. For the periodontal tissue and systemic health, it is essential to regulate the local inflammatory response. In this study, the possible beneficial effect of liposomes loaded with curcumin (CurLIP) in neural crest-derived human periodontal ligament stem cells (hPDLSCs) and in endothelial-differentiated hPDLSCs (e-hPDLSCs) induced with an inflammatory stimulus (lipopolysaccharide obtained from Porphyromonas gingivalis, LPS-G) was evaluated. The CurLIP formulation exhibited a significant anti-inflammatory effect by the downregulation of Toll-like receptor-4 (TLR4)/Myeloid differentiation primary response 88 (MyD88)/nuclear factor kappa light chain enhancer of activated B cells (NFkB)/NLR Family Pyrin Domain Containing 3 (NLRP3)/Caspase-1/Interleukin (IL)-1ß inflammation cascade and reactive oxygen species (ROS) formation. Moreover, the exposure to LPS-G caused significant alterations in the expression of epigenetic modifiers, such as DNA Methyltransferase 1 (DNMT1) and P300, while the CurLIP treatment showed physiological expression. Overall, our in vitro study provides novel mechanistic insights into the intracellular pathway exert by CurLIP in the regulation of inflammation and epigenetic modifications.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/farmacologia , Endotélio Vascular/efeitos dos fármacos , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Crista Neural/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Diferenciação Celular , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lipossomos/administração & dosagem , Lipossomos/química , Crista Neural/citologia , Crista Neural/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Porphyromonas gingivalis/química , Espécies Reativas de Oxigênio , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...