Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 957
Filtrar
1.
Int Immunopharmacol ; 133: 112094, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652969

RESUMO

Periodontitis is a bacteria-induced inflammatory disease that damages the tissues supporting the teeth, gums, periodontal ligaments, and alveolar bone. Conventional treatments such as surgical procedures, anti-inflammatory drugs, and antibiotics, are somewhat effective; however, these may lead to discomfort and adverse events, thereby affecting patient outcomes. Therefore, this study aimed to find an effective method to prevent the onset of periodontal disease and explore the specific mechanisms of their action.The impact of thiostrepton on Porphyromonas gingivalis and periodontal ligament stem cells was evaluated in an inflammatory microenvironment. In vivo experiments were performed using a mouse periodontitis model to assess the effectiveness of locally applied thiostrepton combined with a silk fibroin hydrogel in impeding periodontitis progression. Thiostrepton exhibited significant antimicrobial effects against Porphyromonas gingivalis and anti-inflammatory properties by regulating the MAPK pathway through DUSP2. Locally applied thiostrepton effectively impeded the progression of periodontitis and reduced tissue damage. Thiostrepton treatment is a promising and tolerable preventive strategy for periodontitis, offering antimicrobial and anti-inflammatory benefits. These findings suggest the potential of thiostrepton as a valuable addition to periodontitis management, warranting further research and clinical exploration to improve patient outcomes.


Assuntos
Antibacterianos , Anti-Inflamatórios , Periodontite , Porphyromonas gingivalis , Animais , Porphyromonas gingivalis/efeitos dos fármacos , Periodontite/tratamento farmacológico , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células-Tronco/efeitos dos fármacos , Masculino , Periodonto/efeitos dos fármacos , Periodonto/microbiologia , Periodonto/patologia
2.
Int Immunopharmacol ; 132: 111984, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565043

RESUMO

Periodontitis is a chronic inflammatory disease with the destruction of supporting periodontal tissue. This study evaluated the role of insulin-like growth factor 2 (IGF2) in periodontitis by inhibiting the polarization of M1 macrophages via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. IGF2 was enriched in the gingival tissue of murine periodontitis model identified by RNA sequencing. IGF2 application alleviated the expression of pro-inflammatory factors and promoted osteogenesis and the expression of related genes and proteins in a dose-dependent manner in periodontitis. The result of micro-CT verified this finding. Both in vivo and in vitro results revealed that IGF2 decreased the polarization of M1 macrophages and pro-inflammatory factors by immunofluorescence staining, flow cytometry, western blotting and RT-PCR. IGF2 application promoted the osteogenic ability of periodontal ligament fibroblasts (PDLFs) indirectly via its inhibition of M1 polarization evaluated by alkaline phosphatase and alizarin red staining. Then, the cGAS/STING pathway was upregulated in periodontitis and macrophages challenged by LPS, the inhibition of which led to downregulation of M1 polarization. Furthermore, IGF2 could downregulate cGAS, STING and the phosphorylation of P65. Collectively, our study indicates IGF2 can regulate the polarization of M1 macrophages via the cGAS/STING pathway and highlights the promising future of IGF2 as a therapeutic treatment for periodontitis.


Assuntos
Fator de Crescimento Insulin-Like II , Macrófagos , Proteínas de Membrana , Nucleotidiltransferases , Periodontite , Animais , Humanos , Masculino , Camundongos , Regeneração Óssea/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/patologia , Periodontite/imunologia , Periodontite/metabolismo , Periodontite/tratamento farmacológico , Transdução de Sinais
3.
Mol Cells ; 47(4): 100059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554844

RESUMO

Periodontitis (PD) is an inflammatory disease with alveolar bone destruction by osteoclasts (OCs). In PD, both inflammation and OC activation are significantly influenced by periodontal ligament fibroblasts (PDL-Fib). Yet, whether PDL-Fib has heterogeneity and whether distinct PDL-Fib subsets have specific functions have not been investigated. In this study, we discovered the complexity of PDL-Fib in PD, utilizing single-cell RNA sequencing data from human PD patients. We identified distinct subpopulations of PDL-Fib: one expressing interleukin-1 beta (IL-1ß) and another expressing the receptor activator of nuclear factor-kappa B ligand (RANKL), both crucial in OC differentiation and bone resorption. In periodontal tissues of mice with PD, active IL-1ß, cleaved caspase 1, and nucleotide-binding oligomerization domain-like receptor 3 (NLPR3) were significantly elevated, implicating the NLRP3 inflammasome in IL-1ß production. Upon stimulation of PDL-Fib with LPS from Porphyromonas gingivalis (pg), the most well-characterized periodontal bacteria, a more rapid increase in IL-1ß, followed by RANKL induction, was observed. IL-1ß and tumor necrosis factor alpha (TNF-α), another LPS-responsive cytokine, effectively increased RANKL in PDL-Fib, suggesting an indirect effect of pgLPS through IL-1ß and TNF-α on RANKL induction. Immunohistological analyses of mouse periodontal tissues also showed markedly elevated levels of IL-1ß and RANKL upon PD induction and displayed separate locations of IL-1ß-expressing PDL-Fib and RANKL-expressing PDL-Fib in PD. The heterogenic feature of fibroblasts expressing IL-1ß and RANKL was also mirrored in our combined cross-tissue single-cell RNA sequencing datasets analysis. In summary, our study elucidates the heterogeneity of PDL-Fib, highlighting distinct functional groups for producing RANKL and IL-1ß, which collectively promote OC generation and bone destruction in PD.


Assuntos
Fibroblastos , Interleucina-1beta , Ligamento Periodontal , Periodontite , Ligante RANK , Análise de Célula Única , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/patologia , Ligante RANK/metabolismo , Ligante RANK/genética , Fibroblastos/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Periodontite/metabolismo , Periodontite/genética , Periodontite/patologia , Humanos , Animais , Camundongos , Perfilação da Expressão Gênica , Osteoclastos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Análise da Expressão Gênica de Célula Única
4.
Discov Med ; 36(182): 518-526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531792

RESUMO

BACKGROUND: Periodontitis is a chronic inflammatory disease resulting from bacterial plaque infection. While the involvement of activating transcription factor 1 (ATF1) has been extensively explored in various human diseases, its specific role in periodontitis remains unclear. This study aims to elucidate the expression and biological function of ATF1 in the context of periodontitis. METHODS: Primary human periodontal ligament cells (hPDLCs) were procured from clinical samples and subsequently characterized. Following treatment with P. gingivalis lipopolysaccharide (LPS, 10 µg/mL), hPDLCs underwent transfection with either ATF1 vector or siRNA. The expression levels of ATF1 in LPS-treated hPDLCs or transfected cells were evaluated through real-time quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Inflammatory factors, including interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1ß), were quantified using Enzyme-linked Immunosorbent Assay (ELISA). The assessment of osteogenic proteins, such as runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteoprotegerin (OPG), as well as noncanonical nuclear factor-kappaB (NF-κB) pathway-related proteins (p65, p-p65, IkBα, p-IkBα), was conducted using western blot assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry assays were employed to detect cell viability. RESULTS: LPS induced an inflammatory response and hindered the osteogenic differentiation of hPDLCs (p < 0.05, p < 0.01). Furthermore, ATF1 silencing enhanced cell proliferation and suppressed apoptosis in LPS-stimulated hPDLCs (p < 0.05, p < 0.01). ATF1 silencing not only restrained the inflammatory response but also promoted the osteogenic differentiation of LPS-stimulated hPDLCs (p < 0.05, p < 0.01). Importantly, ATF1 silencing effectively blocked the LPS-induced activation of the NF-κB signaling pathway (p < 0.05, p < 0.01, p < 0.001). CONCLUSIONS: ATF1 emerges as a promising treatment option, inhibiting the osteogenic differentiation of hPDLCs and mitigating the inflammatory response by preventing the phosphorylation of the NF-κB signaling pathway.


Assuntos
NF-kappa B , Periodontite , Humanos , Fator 1 Ativador da Transcrição/metabolismo , Células Cultivadas , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/uso terapêutico , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Osteogênese , Ligamento Periodontal/metabolismo , Ligamento Periodontal/patologia , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Periodontite/patologia
5.
Dentomaxillofac Radiol ; 52(8): 20230176, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37772599

RESUMO

OBJECTIVES: The purpose of this study was to evaluate the association between clinical manifestations of occlusal trauma of the teeth and maximum signal intensity of periodontal ligament space on MRI. METHODS: 20 subjects (males: 9, females: 11, mean age: 35.9 ± 14.0 years, range: 22-65 years) participated in this study. Subjective symptoms of bruxism, tooth mobility, fremitus, occlusal contact area, occlusal force, widening of the periodontal ligament space, and thickening of the lamina dura were defined as clinical manifestations of occlusal trauma. The total number of clinical manifestations was used to evaluate the degree of clinical occlusal trauma, with a score of 7 indicating the highest degree of occlusal trauma. The maximum signal intensity in the periodontal ligament space was evaluated by a specific T2 weighted MRI sequence: IDEAL image. RESULTS: Spearman's rank correlation between the total clinical occlusal trauma score and maximum signal intensity in the periodontal ligament space was 0.529 for all teeth, 0.517 for anterior teeth, and 0.396 for molar teeth (p < 0.001 for all). CONCLUSIONS: A significant correlation between the degree of occlusal trauma and the signal intensity of the periodontal ligament space suggests a new potential MRI-based method for objectively determining occlusal trauma.


Assuntos
Oclusão Dentária Traumática , Dente , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Ligamento Periodontal/diagnóstico por imagem , Ligamento Periodontal/patologia , Oclusão Dentária Traumática/complicações , Oclusão Dentária Traumática/diagnóstico por imagem , Força de Mordida , Imageamento por Ressonância Magnética
6.
Genesis ; 61(3-4): e23514, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37067171

RESUMO

The cementum is the outermost layer of hard tissue covering the dentin within the root portion of the teeth. It is the only hard tissue with a specialized structure and function that forms a part of both the teeth and periodontal tissue. As such, cementum is believed to be critical for periodontal tissue regeneration. In this review, we discuss the function and histological structure of the cementum to promote crystal engineering with a biochemical approach in cementum regenerative medicine. We review the microstructure of enamel and bone while discussing the mechanism underlying apatite crystal formation to infer the morphology of cementum apatite crystals and their complex structure with collagen fibers. Finally, the limitations of the current dental implant treatments in clinical practice are explored from the perspective of periodontal tissue regeneration. We anticipate the possibility of advancing periodontal tissue regenerative medicine via cementum regeneration using a combination of material science and biochemical methods.


Assuntos
Implantes Dentários , Ligamento Periodontal/patologia , Apatitas , Cemento Dentário
7.
ACS Biomater Sci Eng ; 9(4): 1961-1975, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36942823

RESUMO

Periodontal tissue regeneration is a major challenge in tissue engineering due to its regenerated environment complexity. It aims to regenerate not only the supporting alveolar bone and cementum around teeth but also the key connecting periodontal ligament. Herein, a constructed aligned porous hydrogel scaffold carrying cells based on chitosan (CHI) and oxidized chondroitin sulfate (OCS) treated with a freeze-casting technique was fabricated, which aimed to induce the arrangement of periodontal tissue regeneration. The microscopic morphology and physical and chemical properties of the hydrogel scaffold were evaluated. The biocompatibilities with periodontal ligament stem cells (PDLSCs) or gingival-derived mesenchymal stem cells (GMSCs) were verified, respectively, by Live/Dead staining and CCK8 in vitro. Furthermore, the regeneration effect of the aligned porous hydrogel scaffold combined with PDLSCs and GMSCs was evaluated in vivo. The biocompatibility experiments showed no statistical significance between the hydrogel culture group and blank control (P > 0.05). In a rat periodontal defect model, PDLSC and GMSC hydrogel experimental groups showed more pronounced bone tissue repair than the blank control (P < 0.05) in micro-CT. In addition, there was more tissue repair (P < 0.05) of PDLSC and GMSC hydrogel groups from histological staining images. Higher expressions of OPN, Runx-2, and COL-I were detected in both of the above groups via immunohistochemistry staining. More importantly, the group with the aligned porous hydrogel induced more order periodontal ligament formation than that with the ordinary hydrogel in Masson's trichrome analysis. Collectively, it is expected to promote periodontal tissue regeneration utilizing an aligned porous hydrogel scaffold combined with PDLSCs and GMSCs (CHI-OCS-PDLSC/GMSC composite), which provides an alternative possibility for clinical application.


Assuntos
Células-Tronco Mesenquimais , Ligamento Periodontal , Ratos , Animais , Ligamento Periodontal/metabolismo , Ligamento Periodontal/patologia , Porosidade , Alicerces Teciduais/química , Materiais Biocompatíveis/farmacologia , Células-Tronco , Células-Tronco Mesenquimais/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo
8.
Front Endocrinol (Lausanne) ; 14: 1098702, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755916

RESUMO

Objectives: To observe the elongation of the axial tooth movement in the unopposed rodent molar model with type 1 diabetes mellitus and explore the pathological changes of periodontal ligament and alveolar bone, and their correlation with tooth axial movement. Methods: The 80 C57BL/6J mice were randomly divided into the streptozotocin(STZ)-injected group (n = 50) and the control group (n = 30). Mice in the streptozotocin(STZ)-injected group were injected intraperitoneal with streptozotocin (STZ), and mice in the control group were given intraperitoneal injection of equal doses of sodium citrate buffer. Thirty mice were randomly selected from the successful models as the T1DM group. The right maxillary molar teeth of mice were extracted under anesthesia, and allowed mandibular molars to super-erupt. Mice were sacrificed at 0, 3, 6,9, and 12 days. Tooth elongation and bone mineral density (BMD) were evaluated by micro-CT analysis(0,and 12 days mice). Conventional HE staining, Masson staining and TRAP staining were used to observe the changes in periodontal tissue(0, 3, 6, 9, and 12 days mice). The expression differences of SPARC, FGF9, BMP4, NOGGIN, and type I collagen were analyzed by RT-qPCR. Results: After 12 days of tooth extraction, our data showed significant super-eruption of mandibular mouse molars of the two groups. The amount of molar super-eruption in the T1DM group was 0.055mm( ± 0.014mm), and in the control group was 0.157( ± 0.017mm). The elongation of the T1DM mice was less than that of the control mice(P<0.001). It was observed that the osteoclasts and BMD increased gradually in both groups over time. Compared with the control group, the collagen arrangement was more disordered, the number of osteoclasts was higher (P<0.05), and the increase of bone mineral density was lower(2.180 ± 0.007g/cm3 vs. 2.204 ± 0.006g/cm3, P<0.001) in the T1DM group. The relative expression of SPARC, FGF9, BMP4, and type I collagen in the two groups increased with the extension of tooth extraction time while NOGGIN decreased. The relative expression of all of SPARC, FGF9, BMP4, and type I collagen in the T1DM group were significantly lower, and the expression of NOGGIN was higher than that in the control group (P<0.05). Conclusion: The axial tooth movement was inhibited in type 1 diabetic mice. The result may be associated with the changes of periodontal ligament osteoclastogenic effects and alveolar bone remodeling regulated by the extracellular matrix and osteogenesis-related factors.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Camundongos , Animais , Ligamento Periodontal/metabolismo , Ligamento Periodontal/patologia , Diabetes Mellitus Tipo 1/metabolismo , Colágeno Tipo I/metabolismo , Diabetes Mellitus Experimental/metabolismo , Estreptozocina , Camundongos Endogâmicos C57BL
9.
Immun Inflamm Dis ; 11(1): e743, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36705422

RESUMO

INTRODUCTION: Chronic periodontitis (CP) is an inflammatory periodontal disease with high incidence and complex pathology. This research is aimed to investigate the function of exosomal miR-205-5p (Exo-miR-205-5p) in CP and the underlying molecular mechanisms. METHOD: Exo-miR-205-5p was isolated from miR-205-5p mimics-transfected periodontal ligament stem cells (PDLSCs), and subsequently cocultured with lipopolysaccharide (LPS)-induced cells or injected into LPS-treated rats. The mRNA expression of inflammatory factors and Th17/Treg-related factors were measured by quantitative real-time PCR. The contents of inflammatory factors and the percentages of Th17/Treg cells were measured by enzyme-linked immunosorbent assay and flow cytometry, respectively. Besides, the target relation between miR-205-5p and X-box binding protein 1 (XBP1) was explored. RESULTS: MiR-205-5p was downregulated in LPS-induced PDLSCs and corresponding exosomes. Exo-miR-205-5p inhibited inflammatory cell infiltration, decreased the production of TNF-α, IL-1ß, and IL-6, and decreased the percentage of Th17 cells in LPS-treated rats. In addition, XBP1 was a target of miR-205-5p. Overexpression of XBP1 weakened the effects of Exo-miR-205-5p on inhibiting inflammation and regulating Treg/Th17 balance in LPS-induced cells. CONCLUSIONS: Exo-miR-205-5p derived from PDLSCs relieves the inflammation and balances the Th17/Treg cells in CP through targeting XBP1.


Assuntos
Periodontite Crônica , MicroRNAs , Células-Tronco , Proteína 1 de Ligação a X-Box , Animais , Ratos , Periodontite Crônica/metabolismo , Periodontite Crônica/patologia , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , Ligamento Periodontal/citologia , Ligamento Periodontal/patologia , Células-Tronco/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
10.
Oral Dis ; 29(8): 3583-3598, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35839150

RESUMO

BACKGROUND: Periodontal regenerative therapy using bone-substituting materials has gained favorable clinical significance in enhancing osseous regeneration. These materials should be biocompatible, osteogenic, malleable, and biodegradable. This study assessed the periodontal regenerative capacity of a novel biodegradable bioactive hydrogel template of organic-inorganic composite loaded with melatonin. MATERIALS AND METHODS: A melatonin-loaded alginate-chitosan/beta-tricalcium phosphate composite hydrogel was successfully prepared and characterized. Thirty-six critical-sized bilateral class II furcation defects were created in six Mongrel dogs, and were randomly divided and allocated to three cohorts; sham, unloaded composite, and melatonin-loaded. Periodontal regenerative capacity was evaluated via histologic and histomorphometric analysis. RESULTS: Melatonin-treated group showed accelerated bone formation and advanced maturity, with a significant twofold increase in newly formed inter-radicular bone compared with the unloaded composite. The short-term regenerative efficacy was evident 4 weeks postoperatively as a significant increase in cementum length concurrent with reduction of entrapped epithelium. After 8 weeks, the scaffold produced a quality of newly synthesized bone similar to normal compact bone, with potent periodontal ligament attachment. CONCLUSIONS: Melatonin-loaded hydrogel template accelerated formation and enhanced quality of newly formed bone, allowing complete periodontal regeneration. Furthermore, the scaffold prevented overgrowth and entrapment of epithelial cells in furcation defects.


Assuntos
Defeitos da Furca , Melatonina , Animais , Cães , Regeneração Óssea , Cemento Dentário , Defeitos da Furca/tratamento farmacológico , Defeitos da Furca/cirurgia , Defeitos da Furca/patologia , Regeneração Tecidual Guiada Periodontal , Hidrogéis , Melatonina/farmacologia , Melatonina/uso terapêutico , Ligamento Periodontal/patologia
11.
Braz Oral Res ; 36: e056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507743

RESUMO

The understanding of the biological mechanisms involved in root resorption in deciduous teeth is important to the future development of preventive measures and treatments of this condition. The aim of the present study was to compare the expression and immunostaining of iNOS, MMP-9, OPG and RANKL in the periodontal ligament (PDL) of deciduous teeth with physiologic root resorption (GI), inflammatory pathological root resorption (GII) and permanent teeth (GIII), the negative control. Teeth in GI (n = 10), GII (n = 10) and (GIII) (n = 10) were submitted to immunohistochemical analysis to determine the expression of iNOS, MMP-9, OPG, and RANKL. The immunostaining was analysed by optical density. Statistical analysis included one-way ANOVA, followed by Student-Newman-Keuls post hoc test (p < 0.05). The results showed that iNOS, MMP-9 and RANKL expression in the PDL was higher in GII compared to GI and GIII (p < 0.05). Moreover, RANKL expression was higher in GI compared to GIII (p < 0.001), while OPG immunolabelling was lower in GII compared to GI and GIII (p < 0.001). The PDL of deciduous teeth bearing inflammatory processed exhibited upregulation of resorption-associated factors as well as enzymes related to tissue degradation which, in turn explains the exacerbation and greater susceptibility of those teeth to root resorption process.


Assuntos
Ligamento Periodontal , Reabsorção da Raiz , Humanos , Ligamento Periodontal/patologia , Reabsorção da Raiz/patologia , Metaloproteinase 9 da Matriz , Osteoprotegerina , Dente Decíduo , Ligante RANK , Inflamação/patologia
12.
Sci Rep ; 12(1): 15637, 2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36117187

RESUMO

Human periodontal ligament stem cells (PDLSCs) have been studied as a promising strategy in regenerative approaches. The protease-activated receptor 1 (PAR1) plays a key role in osteogenesis and has been shown to induce osteogenesis and increase bone formation in PDLSCs. However, little is known about its effects when activated in PDLSCs as a cell sheet construct and how it would impact bone formation as a graft in vivo. Here, PDLSCs were obtained from 3 patients. Groups were divided into control, osteogenic medium and osteogenic medium + PAR1 activation by TFLLR-NH2 peptide. Cell phenotype was determined by flow cytometry and immunofluorescence. Calcium deposition was quantified by Alizarin Red Staining. Cell sheet microstructure was analyzed through light, scanning electron microscopy and histology and transplanted to Balb/c nude mice. Immunohistochemistry for bone sialoprotein (BSP), integrin ß1 and collagen type 1 and histological stains (H&E, Van Giesson, Masson's Trichrome and Von Kossa) were performed on the ex-vivo mineralized tissue after 60 days of implantation in vivo. Ectopic bone formation was evaluated through micro-CT. PAR1 activation increased calcium deposition in vitro as well as BSP, collagen type 1 and integrin ß1 protein expression and higher ectopic bone formation (micro-CT) in vivo.


Assuntos
Osteogênese , Ligamento Periodontal , Receptor PAR-1 , Animais , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Colágeno/metabolismo , Humanos , Integrina beta1/metabolismo , Sialoproteína de Ligação à Integrina/metabolismo , Camundongos , Camundongos Nus , Osteogênese/genética , Osteogênese/fisiologia , Ligamento Periodontal/patologia , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Células-Tronco
13.
Genesis ; 60(8-9): e23496, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35916605

RESUMO

Transplantation and replantation of teeth are effective therapeutic approaches for tooth repositioning and avulsion, respectively. Transplantation involves transplanting an extracted tooth from the original site into another site, regenerating tissue including the periodontal ligament (PDL) and alveolar bone, around the transplanted tooth. Replantation places the avulsed tooth back to its original site, regenerating functional periodontal tissue. In clinical settings, transplantation and replantation result in favorable outcomes with regenerated PDL tissue in many cases. However, they often result in poor outcomes with two major complications: tooth ankylosis and root resorption. In tooth ankylosis, the root surface and alveolar bone are fused, reducing the PDL tissue between them. The root is subjected to remodeling processes and is partially replaced by bone. In severe cases, the resorbed root is completely replaced by bone tissue, which is called as "replacement resorption." Resorption is sometimes accompanied by infection-mediated inflammation. The molecular mechanisms of ankylosis and root resorption remain unclear, although some signaling mechanisms have been proposed. In this mini-review, we summarized the biological basis of repair mechanisms of tissues in transplantation and replantation and the pathogenesis of their healing failure. We also discussed possible therapeutic interventions to improve treatment success rates.


Assuntos
Reabsorção da Raiz , Anquilose Dental , Avulsão Dentária , Humanos , Ligamento Periodontal/patologia , Reabsorção da Raiz/etiologia , Reabsorção da Raiz/patologia , Anquilose Dental/complicações , Anquilose Dental/patologia , Avulsão Dentária/complicações , Avulsão Dentária/patologia , Avulsão Dentária/terapia , Reimplante Dentário/efeitos adversos
14.
Genesis ; 60(8-9): e23491, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35785409

RESUMO

Periodontal tissues, including gingiva, cementum, periodontal ligament, and alveolar bone, play important roles in oral health. Under physiological conditions, periodontal tissues surround and support the teeth, maintaining the stability of the teeth and distributing the chewing forces. However, under pathological conditions, with the actions of various pathogenic factors, the periodontal tissues gradually undergo some irreversible changes, that is, gingival recession, periodontal ligament rupture, periodontal pocket formation, alveolar bone resorption, eventually leading to the loosening and even loss of the teeth. Currently, the regenerations of the periodontal tissues are still challenging. Therefore, it is necessary to study the development of the periodontal tissues, the principles and processes of which can be used to develop new strategies for the regeneration of periodontal tissues. This review summarizes the development of periodontal tissues and current strategies for periodontal healing and regeneration.


Assuntos
Ligamento Periodontal , Periodonto , Ligamento Periodontal/patologia , Ligamento Periodontal/fisiologia , Periodonto/fisiologia
15.
Sci Rep ; 12(1): 9940, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705614

RESUMO

Current rat alveolar ridge preservation models have not been well standardized. In this study, we proposed decoronation-induced infected alveolar socket model of rat. The bilateral maxillary first molars (M1) of twenty-four rats were decoronized or extracted. After 2, 6, 10, and 14 weeks, bone and soft tissue changes at M1 and periodontal conditions of maxillary second (M2) and third molars (M3) were evaluated by micro-computed tomography and histological analysis. Additional eighteen rats with standardized size defects were grafted with Bio-Oss Collagen to compare with unmanipulated contralateral side. Decoronation preserved greater bone and soft tissue dimensions at M1, provided larger three-dimensional (3D) bone contour volume, but also promoted periodontal breakdown of M2 Histological results showed intense inflammatory cell infiltrations and severe bone resorption within M1 socket and at mesial aspect of M2. The critical dimensions to accommodate largest standardized defect at M1 were 2.2-2.3 mm at vertical bone height and 2.8-3.2 mm at alveolar crestal width. Bio-Oss Collagen could not fully preserve buccal or palatal bone height but could be beneficial in preserving ridge width in large alveolar defects. Collectively, if periodontally-involved alveolar bone defect is preferred, we suggest extracting M1 roots 6 weeks after decoronation to allow periodontitis to occur at M2. If standardized critical dimension defect is preferred, we suggest extracting M1 roots 2 weeks after decoronation, and creating defect in the middle of M1 site with size no larger than 2.7 mm diameter to its full depth.


Assuntos
Perda do Osso Alveolar , Processo Alveolar , Alvéolo Dental , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/patologia , Processo Alveolar/diagnóstico por imagem , Processo Alveolar/patologia , Animais , Colágeno/uso terapêutico , Minerais , Ligamento Periodontal/patologia , Ratos , Extração Dentária , Microtomografia por Raio-X
16.
Tissue Eng Regen Med ; 19(2): 377-387, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119647

RESUMO

BACKGROUND: Although tooth transplantation is a desirable treatment option for congenital defects of permanent teeth in children, transplantation to a narrow alveolar ridge is not feasible. In this study, we investigated the possibility of bone tissue engineering simultaneously with tooth transplantation to enhance the width of the alveolar bone. METHODS: Bone marrow mononuclear cells or cortical bone-derived mesenchymal stromal cell spheroids were seeded onto atelocollagen sponge and transplanted with freshly extracted molars from mice of the same strain. New bone formation around the tooth root was evaluated using micro-computed tomography and histological analysis. Tooth alone, or tooth with scaffold but without cells, was also transplanted and served as controls. RESULTS: Micro-computed tomography showed new bone formation in the furcation area in all four groups. Remarkable bone formation outside the root was also observed in the cortical bone-derived mesenchymal stromal cell group, but was scarce in the other three groups. Histological analysis revealed that the space between the new bone and the root was filled with collagen fibers in all four groups, indicating that the periodontal ligament was maintained. CONCLUSION: This study demonstrates the potential of simultaneous alveolar bone expansion employing bone tissue engineering approach using cortical bone-derived mesenchymal stromal cell spheroids for tooth transplantation. The use of an orthotopic transplantation model may further clarify the feasibility and functional recovery of the transplanted tooth over a longer period.


Assuntos
Osteogênese , Engenharia Tecidual , Animais , Osso Cortical , Camundongos , Ligamento Periodontal/patologia , Microtomografia por Raio-X
17.
Sci Rep ; 12(1): 382, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013397

RESUMO

The epithelial cell rests of Malassez (ERM) are essential in preventing ankylosis between the alveolar bone and the tooth (dentoalveolar ankylosis). Despite extensive research, the mechanism by which ERM cells suppress ankylosis remains uncertain; perhaps its varied population is to reason. Therefore, in this study, eighteen unique clones of ERM (CRUDE) were isolated using the single-cell limiting dilution and designated as ERM 1-18. qRT-PCR, ELISA, and western blot analyses revealed that ERM-2 and -3 had the highest and lowest amelogenin expression, respectively. Mineralization of human periodontal ligament fibroblasts (HPDLF) was reduced in vitro co-culture with CRUDE ERM, ERM-2, and -3 cells, but recovered when an anti-amelogenin antibody was introduced. Transplanted rat molars grown in ERM-2 cell supernatants produced substantially less bone than those cultured in other cell supernatants; inhibition was rescued when an anti-amelogenin antibody was added to the supernatants. Anti-Osterix antibody staining was used to confirm the development of new bones. In addition, next-generation sequencing (NGS) data were analysed to discover genes related to the distinct roles of CRUDE ERM, ERM-2, and ERM-3. According to this study, amelogenin produced by ERM cells helps to prevent dentoalveolar ankylosis and maintain periodontal ligament (PDL) space, depending on their clonal diversity.


Assuntos
Amelogenina/metabolismo , Separação Celular , Células Epiteliais/metabolismo , Ligamento Periodontal/metabolismo , Anquilose Dental/metabolismo , Amelogenina/genética , Animais , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células Epiteliais/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Masculino , Dente Molar/metabolismo , Dente Molar/patologia , Dente Molar/transplante , Osteogênese , Ligamento Periodontal/patologia , Fenótipo , Ratos Wistar , Sus scrofa , Anquilose Dental/genética , Anquilose Dental/patologia , Anquilose Dental/prevenção & controle
18.
Clin Oral Investig ; 26(3): 3151-3166, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35006293

RESUMO

OBJECTIVES: This study's aim was to investigate the safety and performance of a self-assembling peptide matrix (SAPM) P11-4 for the treatment of periodontal disease in a controlled pre-clinical study. MATERIALS AND METHODS: Acute buccal bony dehiscence defects (LxW: 5 × 3 mm) were surgically created on the distal root of four teeth on one mandible side of 7 beagle dogs followed by another identical surgery 8 weeks later on the contralateral side. SAPM P11-4 (with and without root conditioning with 24% EDTA (T1, T2)), Emdogain® (C) and a sham intervention (S) were randomly applied on the four defects at each time point. Four weeks after the second surgery and treatment, the animals were sacrificed, the mandibles measured by micro-computed tomography (µ-CT) and sections of the tissue were stained and evaluated histologically. RESULTS: Clinically and histologically, no safety concerns or pathological issues due to the treatments were observed in any of the study groups at any time point. All groups showed overall similar results after 4 and 12 weeks of healing regarding new cementum, functionality of newly formed periodontal ligament and recovery of height and volume of the new alveolar bone and mineral density. CONCLUSION: A controlled clinical study in humans should be performed in a next step as no adverse effects or safety issues, which might affect clinical usage of the product, were observed. CLINICAL RELEVANCE: The synthetic SAPM P11-4 may offer an alternative to the animal-derived product Emdogain® in the future.


Assuntos
Regeneração Tecidual Guiada Periodontal , Oligopeptídeos , Ligamento Periodontal , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/patologia , Perda do Osso Alveolar/cirurgia , Animais , Regeneração Óssea , Cemento Dentário , Cães , Regeneração Tecidual Guiada Periodontal/veterinária , Mandíbula/cirurgia , Oligopeptídeos/efeitos adversos , Ligamento Periodontal/patologia , Raiz Dentária/cirurgia , Microtomografia por Raio-X
19.
J Clin Periodontol ; 49(3): 270-279, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34970759

RESUMO

OBJECTIVE: This review aims to present the current understanding of endotoxin tolerance (ET) in chronic inflammatory diseases and explores the potential connection with periodontitis. SUMMARY: Subsequent exposure to lipopolysaccharides (LPS) triggers ET, a phenomenon regulated by different mechanisms and pathways, including toll-like receptors (TLRs), nuclear factor kappa-light-chain enhancer of activated B-cells (NFκB), apoptosis of immune cells, epigenetics, and microRNAs (miRNAs). These mechanisms interconnect ET with chronic inflammatory diseases including periodontitis. While the direct correlation between ET and periodontal destruction has not been fully elucidated, emerging reports point towards the potential tolerization of human periodontal ligament cells (hPDLCs) and gingival tissues with a significant reduction of TLR levels. CONCLUSIONS: There is a potential link between ET and periodontal diseases. Future studies should explore the crucial role of ET in the pathogenesis of periodontal diseases, as evidence of a tolerized oral mucosa may represent an intrinsic mechanism capable of regulating the oral immune response. A clear understanding of this host immune regulatory mechanism might lead to effective and more predictable therapeutic strategies to treat chronic inflammatory diseases and periodontitis.


Assuntos
Doenças Periodontais , Periodontite , Tolerância à Endotoxina , Humanos , Lipopolissacarídeos/metabolismo , Doenças Periodontais/patologia , Ligamento Periodontal/patologia , Periodontite/tratamento farmacológico
20.
Int Immunopharmacol ; 103: 108459, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34954560

RESUMO

BACKGROUND: Placenta-specific 8 (PLAC8) is reported to regulate cellular functions in the progression of various diseases. However, its role in periodontitis is still unclear. METHODS: Human periodontal ligament cells (hPDLCs) were treated with lipopolysaccharide of Porphyromonas Gingivalis (LPS-PG) to mimic periodontitis in vitro. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to measure the mRNA expression levels and western blot was for protein levels. Wound healing and transwell migration assays were performed to assess the cell mobility of hPDLCs. Both mRNA and protein levels of inflammatory cytokines including IFN-γ, IL-17, TNF-α, IL-4, IL-10 and IL-13 were accessed to evaluated process of periodontitis in vitro. Furthermore, the protein expressions of mitogen-activated protein kinase kinase (MEK), extracellular regulated protein kinase (ERK) and their phosphorylated products quantified by western blotting assay were determined to confirm the activation of the MEK/ERK signaling pathway. RESULTS: The microarray analysis results showed that PLAC8 was most significantly downregulated in periodontium samples of patients with periodontitis, which participates in blood coagulation and integrin-mediated signaling pathway. PLAC8 was also markedly downregulated in the LPS-PG-treated hPDLCs. Moreover, overexpression of PLAC8 ameliorated inflammation and promoted cell mobility of LPS-PG-treated hPDLCs, while inhibition of PLAC8 exhibited the opposite effects. MEK/ERK was selected based on analyses of the protein-protein interaction (PPI) network as the potential signaling pathway interacted with PLAC8, and PLAC8 showed regulatory function on activation of the MEK/ERK pathway. Additionally, U0126, the inhibitor of MEK, abrogated the effects of PLAC8 on inflammation and cell mobility of LPS-PG-treated hPDLCs. CONCLUSION: Overexpression of PLAC8 protected hPDLCs from dysfunction of inflammation and cell mobility via activating MEK/ERK pathway, indicating a novel therapeutic target for periodontitis.


Assuntos
MAP Quinase Quinase Quinases , Ligamento Periodontal , Periodontite , Proteínas , Células Cultivadas , Humanos , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Ligamento Periodontal/metabolismo , Ligamento Periodontal/patologia , Periodontite/metabolismo , Periodontite/patologia , Proteínas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...