Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638960

RESUMO

Many current-generation biomedical implants are fabricated from the Ti-6Al-4V alloy because it has many attractive properties, such as low density and biocompatibility. However, the elastic modulus of this alloy is much larger than that of the surrounding bone, leading to bone resorption and, eventually, implant failure. In the present study, we synthesized and performed a detailed analysis of a novel low elastic modulus Ti-based alloy (Ti-28Nb-5Zr-2Ta-2Sn (TNZTS alloy)) using a variety of methods, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and tensile test. Additionally, the in vitro biocompatibility of the TNZTS alloy was evaluated using SCP-1, SaOs-2, and THP-1 cell lines and primary human osteoblasts. Compared to Ti-6Al-4V, the elastic modulus of TNZTS alloy was significantly lower, while measures of its in vitro biocompatibility are comparable. O2 plasma treatment of the surface of the alloy significantly increased its hydrophilicity and, hence, its in vitro biocompatibility. TNZTS alloy specimens did not induce the release of cytokines by macrophages, indicating that such scaffolds would not trigger inflammatory responses. The present results suggest that the TNZTS alloy may have potential as an alternative to Ti-6Al-4V.


Assuntos
Ligas/química , Ligas/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Nióbio/química , Tantálio/química , Estanho/química , Titânio/química , Zircônio/química , Ligas/farmacologia , Materiais Biocompatíveis/farmacologia , Módulo de Elasticidade , Humanos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais/métodos , Osteoblastos/efeitos dos fármacos , Próteses e Implantes , Propriedades de Superfície , Células THP-1 , Resistência à Tração , Titânio/farmacologia
2.
J Mater Sci Mater Med ; 32(9): 119, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34487244

RESUMO

The main target of the present research was a full assessment of the toxicity effects and biocompatibility of a Ti/Al-alloy device coated with biogenic hydroxyapatite (bHA) when implanted in dogs in comparison with those of an uncoated Ti/Al-alloy device. The coating of the alloy was carried out using controlled high-velocity suspension flame spray (HVSFS) technique. Both coated and uncoated devices were implanted in dogs' femur bones for different time periods (45 days and 90 days). Bone-formation ability and healing were followed up, and blood analysis was performed, at Time zero (immediately post surgery), and then at 3 days, 45 days, and 90 days post surgery. Bone mineral density checks, radiological scans of the femur bone, and histological analysis were also conducted. The in-vivo study results proved that implantation of a device made from bHA-coated Ti/Al alloy in dogs' femur bones is completely safe. This is due to the high osteoconductivity of the coated alloy, which enables the formation of new bone and a full connection between new and original bone material. At 90 days post surgery, the coated alloy had been completely digested within the original bone; thus, it appeared as a part of the femur bone and not as a foreign body. Both the scanning electron microscopy with energy-dispersive X-ray and histology analysis findings affirmed the results. Furthermore, the blood tests indicated no toxicity effects during the 90 days of implantation.


Assuntos
Alumínio/química , Durapatita/química , Próteses e Implantes , Titânio/química , Ligas/síntese química , Ligas/química , Ligas/farmacologia , Alumínio/farmacologia , Animais , Densidade Óssea/efeitos dos fármacos , Substitutos Ósseos/síntese química , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Cães , Durapatita/farmacologia , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fêmur/patologia , Masculino , Microscopia Eletrônica de Varredura , Osseointegração , Osteogênese/efeitos dos fármacos , Distribuição Aleatória , Propriedades de Superfície , Titânio/farmacologia
3.
Int J Biol Macromol ; 183: 1222-1235, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33984386

RESUMO

Bacterial contamination in implanted biomedical devices is a critical daily concern. The most used material for permanent implant in biomedical field is Ti6Al4V alloy due to its beneficial mechanical properties and high biocompatibility. Accordingly, in this work different polymeric antibacterial coatings poly(N-vinyl pyrrolidone) (PVP), hyaluronic acid (HA) and chitosan (CHI) were developed and comparatively analysed for Ti6Al4V surface covering. The adhesion of these coatings to Ti6Al4V substrates were carried out after the conjugation of these polymers with the so well-known bioadhesive properties of catechol (CA) anchor group. These surface modifications were characterized by X-ray photoelectronic spectroscopy, contact angle measurements and atomic force microscopy. In addition, the stability of CA-conjugated polymeric coatings was compared with the coatings formed with unconjugated polymers. Finally, the cytocompatibility and antibacterial properties against gram-positive and gram-negative strains on coated Ti6Al4V substrates were assessed confirming the effectiveness of these polymeric coatings against bacterial infections for future applications in protecting biomedical implants.


Assuntos
Ligas/síntese química , Antibacterianos/síntese química , Catecóis/química , Ácido Hialurônico/química , Pirrolidinonas/química , Ligas/química , Ligas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular , Quitosana , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Teste de Materiais , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Próteses e Implantes , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
4.
J Mater Chem B ; 8(47): 10837-10844, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33179704

RESUMO

Herein, uric acid@Ti3C2 quantum dots (UA@Ti3C2 QDs) were synthesized via a microwave-assisted strategy on the basis of acid etching and stripping. The UA@Ti3C2 QDs have bright blue emission. Intriguingly, the fluorescence emission of the UA@Ti3C2 QDs was significantly quenched after the addition of 2,4,6-trinitrophenol (TNP), due to inner-filter effect (IFE). Based on these findings, a novel environmentally friendly and water-soluble fluorescence probe based on UA@Ti3C2 QDs was demonstrated for the sensitive and selective detection of TNP. The method presented a wide linear range for TNP detection in the 0.01-40 µM range, with a low detection limit of 9.58 nM. Furthermore, the probe was successfully used for the sensitive detection of TNP in real water and smartphone-based colorimetric (SPBC) detection of TNP on surfaces with the linear range from 10.0 to 100.0 ng. On the whole, this work provides an effective strategy for the synthesis of UA@Ti3C2 QDs and an alternative fluorescence probe for detecting TNP both on surface and in solution.


Assuntos
Ligas/síntese química , Carbono/química , Picratos/análise , Pontos Quânticos/química , Titânio/química , Ácido Úrico/síntese química , Química Farmacêutica/métodos , Corantes Fluorescentes/síntese química , Indicadores e Reagentes/análise , Soluções Farmacêuticas/análise , Propriedades de Superfície , Fatores de Tempo
5.
J Mater Sci Mater Med ; 31(12): 123, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33247812

RESUMO

In this study, Mg was alloyed with Zn and Ca to produce six different Mg-Zn-Ca alloys (designated as ZX alloys) by the gravity die casting method. Zn contents of the alloys were 1 wt., 3 wt., and 5 wt.% and Ca contents of the alloys were 0.2 wt. and 1.8 wt.%. Homogenization heat treatment was applied to all cast alloys. After that, a part of each homogenization heat-treated alloys was hot-rolled. Microstructure, mechanical properties, electrochemical and immersion corrosion behaviors at simulated physiological conditions of the heat-treated and hot-rolled alloys were compared. Increasing the amount of alloying elements (Zn and Ca) in Mg reduces grain size and improves the hardness. It was seen that the microstructure consisted of α-Mg as a matrix phase and intermetallic phases: Mg2Ca phase for the alloy having Zn/Ca = 0.37 (ZX12) and Ca2Mg6Zn3 phase for the other alloys. When the mechanical properties and corrosion rates of homogenized and hot-rolled alloys were compared, it was seen that hot-rolled ZX10-h (Mg-0.94Zn-0.16Ca) alloy can be considered as a fracture bone fixation plate material with its acceptable properties: 121 ± 2.1 MPa yield strength, 226 ± 3.7 MPa tensile strength, % 4.1 ± 0.2 elongation, and 0.062 mm/year immersion corrosion rate.


Assuntos
Ligas , Substitutos Ósseos , Cálcio/química , Magnésio/química , Zinco/química , Implantes Absorvíveis , Ligas/síntese química , Ligas/química , Ligas/farmacocinética , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacocinética , Fenômenos Biomecânicos , Substitutos Ósseos/química , Substitutos Ósseos/farmacocinética , Corrosão , Dureza , Temperatura Alta , Humanos , Teste de Materiais , Resistência à Tração , Difração de Raios X
6.
J Photochem Photobiol B ; 212: 112025, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32977113

RESUMO

In this project, silver­platinum (AgPt) nanoparticles were prepared by using the Crocus sativus L. plant ethanolic extract. The AgPt nanoparticles were characterized by applying the various method as ultraviolet-visible and infrared spectroscopy, electron microscopy, and X-ray diffraction analysis. The morphology structural indicated that the AgPt nanoparticles were spherical particles with diameter about 36.0 nm. The FTIR spectroscopy shows the efficient stabilization of the AgPt nanoparticles by phytoconstituents. The Ag and AgPt nanoparticles have polyphenolic content, lower than the flavonoids and proanthocyanins contents. The AgPt nanoparticles depicted the highest antioxidant properties compared to the Ag nanoparticles and ascorbic acid. The results showed that the AgPt nanoparticles had a high antioxidant properties. In addition, the AgPt nanoparticles demonstrated the substantial antimicrobial and cytotoxic activities against pathogenic microbes and MCF-7 breast cancer cell line. The environmental chemistry analysis depicts that methyl orange can be degraded from water by catalytic degradation process with sodium borohydride. The AgPt nanoparticles were prosperous in catalytic degrading methyl orange following a first order kinetic model.


Assuntos
Ligas/química , Ligas/farmacologia , Crocus/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Platina/química , Prata/química , Ligas/síntese química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Catálise , Técnicas de Química Sintética , Humanos , Células MCF-7
7.
J Vis Exp ; (162)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32894264

RESUMO

Localized surface plasmon resonance (LSPR) in plasmonic nanoparticles (NPs) can accelerate and control the selectivity of a variety of molecular transformations. This opens possibilities for the use of visible or near-IR light as a sustainable input to drive and control reactions when plasmonic nanoparticles supporting LSPR excitation in these ranges are employed as catalysts. Unfortunately, this is not the case for several catalytic metals such as palladium (Pd). One strategy to overcome this limitation is to employ bimetallic NPs containing plasmonic and catalytic metals. In this case, the LSPR excitation in the plasmonic metal can contribute to accelerate and control transformations driven by the catalytic component. The method reported herein focuses on the synthesis of bimetallic silver-palladium (Ag-Pd) NPs supported on ZrO2 (Ag-Pd/ZrO2) that acts as a plasmonic-catalytic system. The NPs were prepared by co-impregnation of corresponding metal precursors on the ZrO2 support followed by simultaneous reduction leading to the formation of bimetallic NPs directly on the ZrO2 support. The Ag-Pd/ZrO2 NPs were then used as plasmonic catalysts for the reduction of nitrobenzene under 425 nm illumination by LED lamps. Using gas chromatography (GC), the conversion and selectivity of the reduction reaction under the dark and light irradiation conditions can be monitored, demonstrating the enhanced catalytic performance and control over selectivity under LSPR excitation after alloying non-plasmonic Pd with plasmonic metal Ag. This technique can be adapted to a wide range of molecular transformations and NPs compositions, making it useful for the characterization of the plasmonic catalytic activity of different types of catalysis in terms of conversion and selectivity.


Assuntos
Ligas/química , Nanopartículas Metálicas/química , Paládio/química , Prata/química , Ligas/síntese química , Catálise , Luz , Nitrobenzenos/química , Oxirredução , Ressonância de Plasmônio de Superfície , Zircônio/química
8.
Mater Sci Eng C Mater Biol Appl ; 115: 110839, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32600675

RESUMO

Titanium (Ti) alloys with Niobium (Nb) and Tin (Sn) were prepared in order to conduct a systematic study on the bulk and surface properties of as-cast c.p.Ti, binary Ti-40Nb and Ti-10Sn, and ternary Ti-10Nb-5Sn (at.%) to ascertain whether Sn content can be used as an enhancer for cell activity. From a metallurgy viewpoint, a range of binary and ternary alloys displaying distinctive Ti phases (i.e. ß, α', α") were achieved at room temperature. Their surface (oxide thickness and composition, roughness, contact angle) and bulk (compressive stiffness, strength, elongation, microhardness, electrical resistance) features were characterised. The same surface roughness was imparted on all the alloys, therefore substrate-cell interactions were evaluated independently from this variable. The physico-mechanical properties of the ternary alloy presented the highest strength to stiffness ratio and thereby proved the most suitable for load-bearing orthopaedic applications. From a cellular response viewpoint, their cytotoxicity, ability to adsorb proteins, to support cell growth and to promote proliferation were studied. Metabolic activity using a mouse model was monitored for a period of 12 days to elucidate the mechanism behind an enhanced proliferation rate observed in the Sn-containing alloys. It was hypothesised that the complex passivating surface oxide layer and the bulk inhomogeneity with two dominant Ti phases were responsible for this phenomenon.


Assuntos
Ligas/síntese química , Nióbio/química , Estanho/química , Titânio/química , Ligas/química , Ligas/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Teste de Materiais , Camundongos , Microscopia Eletrônica de Varredura , Propriedades de Superfície
9.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708351

RESUMO

Metallic alloy nanoparticles are synthesized by combining two or more different metals. Bimetallic or trimetallic nanoparticles are considered more effective than monometallic nanoparticles because of their synergistic characteristics. In this review, we outline the structure, synthesis method, properties, and biological applications of metallic alloy nanoparticles based on their plasmonic, catalytic, and magnetic characteristics.


Assuntos
Ligas/química , Ligas/síntese química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Ligas/uso terapêutico , Catálise , Diagnóstico por Imagem/métodos , Campos Magnéticos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas/uso terapêutico
10.
Molecules ; 25(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717847

RESUMO

Metallic glasses, with their short-range order structure, exhibit unique characteristics that do not exist in the corresponding crystalline alloys with the same compositions. These unusual properties are attributed to the absence of translational periodicity, grain boundaries, and compositional homogeneity. Cobalt (Co)-based metallic glassy alloys have been receiving great attention due to their superior mechanical and magnetic properties. Unluckily, Co-Ti alloys and its based alloys are difficult to be prepared in glassy form, due to their rather poor glass-forming ability. In the present work, the mechanical alloying approach was employed to investigate the possibility of preparing homogeneous (Co75Ti25)100-xBx starting from elemental powders. The feedstock materials with the desired compositions were high-energy ball-milled under argon atmosphere for 50 h. The end products of the powders obtained after milling revealed a short-range order structure with a broad amorphization range (2 at% ≤ B ≤ 25 at%). The behaviors of these glassy systems, characterized by the supercooled liquid region, and reduced glass transition temperature, were improved upon increasing B molar fraction. The results had shown that when B content increased, the saturation magnetization was increased, where coercivity was decreased.


Assuntos
Ligas/síntese química , Cobalto/química , Vidro/química , Titânio/química , Ligas/química , Fenômenos Mecânicos , Nanopartículas Metálicas , Microscopia Eletrônica de Varredura , Pós
11.
J Phys Chem Lett ; 11(14): 5777-5784, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32597652

RESUMO

Hollow gold (Au)-based nanostructures have recently been developed for various applications. However, current nanosynthesis approaches have not yet successfully been implemented for precisely engineering hollow Au-based nanostructures with uniform and well-defined mesoporous shell frameworks. Here, we develop an easy one-pot seedless strategy for fabricating hollow mesoporous AuAg (h-mesoAuAg) nanospheres by combining the galvanic replacement reaction with the surfactant-templated growth. Thiol-terminated multifunctional C22H45N+(CH3)2-C3H6-SH (Cl-) (C22N-SH) as the functional surfactant is the key that facilitates the formation of covalently stable C22N-S-Au(I) and C22N-S-Ag(I) intermediates. Such intermediates template in situ growth of mesoAuAg shell on initially nucleated Ag-rich seeds through the galvanic replacement reaction. Hierarchically hollow/mesoporous nanostructures and corresponding optical responses of h-mesoAuAg are also precisely engineered by tailoring synthetic parameters. With structural and compositional advantages, h-mesoAuAg nanospheres exhibit promising electrochemical performances toward methanol oxidation reaction and nonenzymatic glucose sensor.


Assuntos
Ligas/síntese química , Nanosferas/química , Tensoativos/química , Técnicas Eletroquímicas/métodos , Glucose/análise , Ouro/química , Metanol/química , Oxirredução , Porosidade , Compostos de Amônio Quaternário/química , Prata/química , Compostos de Sulfidrila/química
12.
Molecules ; 25(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326121

RESUMO

Metallic glassy alloys with their short-range order have received considerable attention since their discovery in 1960's. The worldwide interest in metallic glassy alloys is attributed to their unique mechanical, physical, and chemical properties, which cannot be found together in long-range order alloys of the same compositions. Traditional preparation methods of metallic glasses, such as rapid solidification of melts, always restrict the formation of glassy alloys with large atomic fraction (above 3-5 at%) of high melting point metals (Ta, Mo, W). In this study, (Zr67Cu33)100-xWx(x; 5-30 at%) metallic glassy alloys were fabricated through a mechanical alloying approach, which starts from the elemental powders. This system shows excellent glass forming ability in a wide range of W (0 ≤ x ≥ 30 at%). We have proposed a spark plasma sintering technique to prepare nearly full-dense large sized (20 × 20 mm) bulk metallic glassy alloys. The as-consolidated bulk metallic glassy alloys were seen to possess high thermal stability when compared with the other metallic glassy systems. This is implied by their high glass transition temperature (722-735 K), wide range of supercooled liquid region (39 K to over 100 K), and high values of crystallization temperature (761 K to 823 K). In addition, the fabricated ternary systems have revealed high microhardness values.


Assuntos
Ligas/síntese química , Vidro/química , Fenômenos Mecânicos , Metais/química , Pós/química , Ligas/química , Técnicas de Química Sintética , Estrutura Molecular
13.
Colloids Surf B Biointerfaces ; 189: 110889, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32114284

RESUMO

The demands for high-performance biomaterials are driving the development of new metallic alloys with improved mechanical and biological responses. In this study, a nanocrystalline Ti-Cu intermetallic alloy was prepared by a powder metallurgy route, and its application as an orthopedic material was evaluated by the microstructural, mechanical, corrosion, antibacterial, cytotoxicity and osseointegration examinations. Microstructural characterization revealed the formation of TiCu and Ti2Cu3 as major phases with 23 nm grain size in the structure of the alloy. The synthesized alloy exhibited ultra-high hardness of 10 GPa, acceptable toughness of 8.14 MPam1/2, a ∼98 % anti-bacterial rate against S. aureus and E. coli, excellent cell viability to MG-63 osteosarcoma cells, and high osteoblast formation rate, which indicate a great potential of this alloy for biomedical application.


Assuntos
Ligas/farmacologia , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Nanopartículas/química , Osseointegração/efeitos dos fármacos , Ligas/síntese química , Ligas/química , Antibacterianos/síntese química , Antibacterianos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Propriedades de Superfície
14.
Nanotechnology ; 31(23): 235101, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32097900

RESUMO

Modifications to the compositional, topographical and morphological aspects of bone implants can lead to improved osseointegration, thus increasing the success of bone implant procedures. This study investigates the creation of dual-scale topography on Ti-5Al-5Mo-5V-3Cr (Ti5553), an alloy not presently used in the biomedical field, and compares it to Ti-6Al-4V (Ti64), the most used Ti alloy for bone implants. Dual-scale surface topography was obtained by combining selective laser melting (SLM) and electrochemical anodization, which resulted in micro- and nanoscale surface features, respectively. Ti5553 and Ti64 samples were manufactured by SLM and showed comparable surface topography. Subsequent electrochemical anodization succeeded in forming titania nanotubes (TNTs) on both alloys, with larger nanotubes obtained with Ti5553 at all investigated anodization voltages. At an anodization voltage of 40 V, a minimum time of 20 min was necessary to have nanotube formation on the surface of either alloy, while only nanopores were evident for shorter times. Seeded Saos-2 cells showed ideal interactions with surface-modified structures, with filopodia extending to both surface microparticles characteristic of SLM and to the interior of TNTs. Attractiveness of Ti5553 lies in its lower elastic modulus (E = 72 GPa) compared to Ti64, which should mitigate stress-shielding phenomena in vivo. This, combined with the analogous results obtained in terms of dual-scale surface topography and cell-substrate interaction, could indicate Ti5553 as a promising alternative to the widely-employed Ti64 for bone implant device manufacturing.


Assuntos
Ligas/farmacologia , Osseointegração/efeitos dos fármacos , Titânio/farmacologia , Ligas/síntese química , Ligas/química , Linhagem Celular , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanotubos , Tamanho da Partícula , Próteses e Implantes , Propriedades de Superfície
15.
Mater Sci Eng C Mater Biol Appl ; 107: 110322, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761171

RESUMO

Novel TiZrHfCr0.2Mo and TiZrHfCo0.07Cr0.07Mo high-entropy alloys for metallic biomaterials (bio-HEAs) were developed based on the combination of Ti-Nb-Ta-Zr-Mo alloy system and Co-Cr-Mo alloy system as commercially-used metallic biomaterials. Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo bio-HEAs were designed using (a) a tree-like diagram for alloy development, (b) empirical alloy parameters for solid-solution-phase formation, and (c) thermodynamic calculations focused on solidification. The newly-developed bio-HEAs overcomes the limitation of classical metallic biomaterials by the improvement of (i) mechanical hardness and (ii) biocompatibility all together. The TiZrHfCr0.2Mo and TiZrHfCo0.07Cr0.07Mo bio-HEAs showed superior biocompatibility comparable to that of commercial-purity Ti. The superior biocompatibility, high mechanical hardness and low liquidus temperature for the material processing in TiZrHfCr0.2Mo and TiZrHfCo0.07Cr0.07Mo bio-HEAs compared with the Ti-Nb-Ta-Zr-Mo bio-HEAs gave the authenticity of the application of bio-HEAs for orthopedic implants with multiple functions.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Ligas/síntese química , Animais , Contagem de Células , Células Cultivadas , Entropia , Dureza , Teste de Materiais , Camundongos , Molibdênio/química , Osteoblastos , Temperatura , Termodinâmica , Difração de Raios X
16.
Macromol Rapid Commun ; 40(24): e1900537, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31762154

RESUMO

Mechanically controlled polymerization that employs the mechanical energy to fabricate novel synthetic materials has attracted considerable interest. However, only a few examples have been achieved so far, owing to the limited choices of materials and strategies. Herein, a versatile, liquid metal (LM)-mediated mechanochemical polymerization method (LMMMP) is developed for the air-compatible, robust preparation of polymers in an aqueous solution. This method involves the simultaneous disruption of bulk LMs into micro- and nanodroplets and the combination of monomers into polymers during ultrasonic irradiation. The pristine and reactive LM surface continuously generated by ultrasound endows this polymerization method with excellent oxygen tolerance, high reaction rate, and the ability to produce polymers with high molecular weight from a wide variety of water-soluble monomers. Besides, LM droplets are readily reclaimed and reused for polymerization. The authors envision that the LMMMP promotes the utilization of mechanical energy for the synthesis of functional polymers, constitutes a novel fabrication approach for polymer-LM nanocomposites, and provides new insight into the design of LM-based platforms for polymerization.


Assuntos
Ligas/síntese química , Gálio/química , Índio/química , Ligas/química , Estrutura Molecular , Tamanho da Partícula , Polimerização , Propriedades de Superfície
17.
ACS Comb Sci ; 21(11): 743-752, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614084

RESUMO

Binary alloy nanoparticles were fabricated by two combinatorial methods: (I) cosputtering from elemental targets into the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [Bmim][(Tf)2N] and (II) by mixing elemental nanoparticles after sputtering them separately into [Bmim][(Tf)2N]. Both methods lead to the formation of Au-Cu nanoparticles (2.3 nm for cosputtered, 3.6 nm for mixed), however with different resulting compositions: cosputtered nanoparticles show a composition range of Au80-90Cu20-10; mixing of Au- and Cu-loaded ionic liquids leads to the formation of Au75Cu25 nanoparticles. Annealing the binary nanoparticles at 100 °C shows that the mixed nanoparticles grow to sizes of 4.1 nm, whereas the cosputtered nanoparticles grow only to 3 nm.


Assuntos
Técnicas de Química Combinatória , Líquidos Iônicos/química , Nanopartículas/química , Ligas/síntese química , Cobre/química , Ouro/química , Tamanho da Partícula
18.
J Mater Sci Mater Med ; 30(8): 91, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388766

RESUMO

Customized porous titanium alloys have become the emerging materials for orthopaedic implant applications. In this work, diamond and rhombic dodecahedron porous Ti-33Nb-4Sn scaffolds were fabricated by selective laser melting (SLM). The phase, microstructure and defects characteristics were investigated systematically and correlated to the effects of pore structure, unit cell size and processing parameter on the mechanical properties of the scaffolds. Fine ß phase dendrites were obtained in Ti-33Nb-4Sn scaffolds due to the fast solidification velocity in SLM process. The compressive and bending strength of the scaffolds decrease with the decrease of strut size and diamond structures showed both higher compressive and bending strength than the dodecahedron structures. Diamond Ti-33Nb-4Sn scaffold with compressive strength of 76 MPa, bending strength of 127 MPa and elastic modulus of 2.3 GPa was achieved by SLM, revealing the potential of Ti-33Nb-4Sn scaffolds for applications on orthopaedic implant.


Assuntos
Nióbio/química , Equipamentos Ortopédicos , Próteses e Implantes , Estanho/química , Alicerces Teciduais/química , Titânio/química , Ligas/síntese química , Ligas/química , Materiais Biocompatíveis , Fenômenos Biomecânicos , Força Compressiva , Módulo de Elasticidade , Manufaturas/análise , Teste de Materiais , Ortopedia , Porosidade , Próteses e Implantes/ultraestrutura , Estresse Mecânico , Propriedades de Superfície
19.
J Mater Sci Mater Med ; 30(8): 92, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388767

RESUMO

Having similar properties with natural bone, has made porous NiTi shape memory alloy (SMA) a promising material for biomedical applications. In this study porous NiTi SMA has synthesized with 30 and 40 vol.% green porosity by self propagating high temperature synthesis (SHS) from elemental Ni and Ti powders. After synthesizing, the average porosity of specimens reached to 36.8 and 49.8% for green compacts with 30 and 40 vol.% of green porosity, respectively. Combustion products were characterized by XRD, SEM, EDS and electrochemical polarization test. Although desired B2 (NiTi) phase was the dominant phase, other phases like Ti2Ni, Ni3Ti and Ni4Ti3 are found. Electrochemical polarization analysis in simulated body fluids (SBF) shows that, synthesized porous NiTi has better corrosion resistance than solid one and hydroxy apatite coating on porous NiTi worsen electrochemical corrosion resistance which is because of bioactive behavior of hydroxy apatite.


Assuntos
Ligas/síntese química , Materiais Biocompatíveis/síntese química , Temperatura Alta , Microtecnologia/métodos , Níquel/química , Polimerização , Titânio/química , Ligas/química , Materiais Biocompatíveis/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Porosidade , Pós/síntese química , Pós/química , Espectrometria por Raios X , Propriedades de Superfície , Difração de Raios X
20.
Molecules ; 24(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370373

RESUMO

While the overwhelming number of papers on multi-principal-element alloys (MPEAs) focus on the mechanical and microstructural properties, there has been growing interest in these alloys as solid-state hydrogen stores. We report here the synthesis optimization, the physicochemical and the hydrogen sorption properties of Ti0.325V0.275Zr0.125Nb0.275. This alloy was prepared by two methods, high temperature arc melting and ball milling under Ar, and crystallizes into a single-phase bcc structure. This MPEA shows a single transition from the initial bcc phase to a final bct dihydride and a maximum uptake of 1.7 H/M (2.5 wt%). Interestingly, the bct dihydride phase can be directly obtained by reactive ball milling under hydrogen pressure. The hydrogen desorption properties of the hydrides obtained by hydrogenation of the alloy prepared by arc melting or ball milling and by reactive ball milling have been compared. The best hydrogen sorption properties are shown by the material prepared by reactive ball milling. Despite a fading of the capacity for the first cycles, the reversible capacity of the latter material stabilizes around 2 wt%. To complement the experimental approach, a theoretical investigation combining a random distribution technique and first principle calculation was done to estimate the stability of the hydride.


Assuntos
Ligas/química , Hidrogênio/química , Nanoestruturas/química , Adsorção , Ligas/síntese química , Cristalização , Teste de Materiais , Propriedades de Superfície , Vanádio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...