Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.903
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 394, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918217

RESUMO

The present study aimed to investigate whether and how non-invasive biocalorimetric measurements could serve for process monitoring of fungal pretreatment during solid-state fermentation (SSF) of lignocellulosic agricultural residues such as wheat straw. Seven filamentous fungi representing different lignocellulose decay types were employed. Water-soluble sugars being immediately available after fungal pretreatment and those becoming water-extractable after enzymatic digestion of pretreated wheat straw with hydrolysing (hemi)cellulases were considered to constitute the total bioaccessible sugar fraction. The latter was used to indicate the success of pretreatments and linked to corresponding species-specific metabolic heat yield coefficients (YQ/X) derived from metabolic heat flux measurements during fungal wheat straw colonisation. An YQ/X range of about 120 to 140 kJ/g was seemingly optimal for pretreatment upon consideration of all investigated fungi and application of a non-linear Gaussian fitting model. Upon exclusion from analysis of the brown-rot basidiomycete Gloeophyllum trabeum, which differs from all other here investigated fungi in employing extracellular Fenton chemistry for lignocellulose decomposition, a linear relationship where amounts of total bioaccessible sugars were suggested to increase with increasing YQ/X values was obtained. It remains to be elucidated whether an YQ/X range being optimal for fungal pretreatment could firmly be established, or if the sugar accessibility for post-treatment generally increases with increasing YQ/X values as long as "conventional" enzymatic, i.e. (hemi)cellulase-based, lignocellulose decomposition mechanisms are operative. In any case, metabolic heat measurement-derived parameters such as YQ/X values may become very valuable tools supporting the assessment of the suitability of different fungal species for pretreatment of lignocellulosic substrates. KEY POINTS: • Biocalorimetry was used to monitor wheat straw pretreatment with seven filamentous fungi. • Metabolic heat yield coefficients (YQ/X) seem to indicate pretreatment success. • YQ/X values may support the selection of suitable fungal strains for pretreatment.


Assuntos
Fungos , Lignina , Triticum , Lignina/metabolismo , Triticum/microbiologia , Triticum/química , Fungos/metabolismo , Fermentação , Hidrólise , Agricultura/métodos
2.
Cells ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38920663

RESUMO

Erysiphe alphitoides is a species of powdery mildew responsible for the major foliar disease of oak trees, including Quercus robur. Infection with E. alphitoides leads to a reduction in the growth of the trees and in their ability to survive. This paper reports on the biochemical changes characteristic of defence responses in oak leaves with different infection area sizes, collected in July, August, and September during three growing seasons. The study highlights the effect of E. alphitoides infection on changes in the ascorbate-glutathione cycle, phenolic compound profile, and metal content (mineral distribution). Visible symptoms of pathogen infection appeared gradually in July, but the most intense biochemical plant responses in oak leaves were detected mainly in August and September. These responses included increased ascorbate-glutathione enzyme activities, phenolic compounds, and metal contents. In addition, microscopic analyses revealed a strong fluorescence signal of lignin in the epidermis of pathogen-infected leaves. The involvement of the studied compounds in the basic defence mechanisms of oak against E. alphitoides infection is discussed in the paper.


Assuntos
Antioxidantes , Ascomicetos , Ácido Ascórbico , Glutationa , Doenças das Plantas , Folhas de Planta , Quercus , Quercus/microbiologia , Quercus/metabolismo , Ácido Ascórbico/metabolismo , Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Antioxidantes/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Glutationa/metabolismo , Interações Hospedeiro-Patógeno , Fenóis/metabolismo , Lignina/metabolismo
3.
Plant Physiol Biochem ; 212: 108794, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850730

RESUMO

With the increasing occurrence of global warming, drought is becoming a major constraint for plant growth and crop yield. Plant cell walls experience continuous changes during the growth, development, and in responding to stressful conditions. The plant WRKYs play pivotal roles in regulating the secondary cell wall (SCW) biosynthesis and helping plant defend against abiotic stresses. qRT-PCR evidence showed that OsWRKY12 was affected by drought and ABA treatments. Over-expression of OsWRKY12 decreased the drought tolerance of the rice transgenics at the germination stage and the seedling stage. The transcription levels of drought-stress-associated genes as well as those genes participating in the ABA biosynthesis and signaling were significantly different compared to the wild type (WT). Our results also showed that less lignin and cellulose were deposited in the OsWRKY12-overexpressors, and heterogenous expression of OsWRKY12 in atwrky12 could lower the increased lignin and cellulose contents, as well as the improved PEG-stress tolerance, to a similar level as the WT. qRT-PCR results indicated that the transcription levels of all the genes related to lignin and cellulose biosynthesis were significantly decreased in the rice transgenics than the WT. Further evidence from yeast one-hybrid assay and the dual-luciferase reporter system suggested that OsWRKY12 could bind to promoters of OsABI5 (the critical component of the ABA signaling pathway) and OsSWN3/OsSWN7 (the key positive regulators in the rice SCW thickening), and hence repressing their expression. In conclusion, OsWRKY12 mediates the crosstalk between SCW biosynthesis and plant stress tolerance by binding to the promoters of different downstream genes.


Assuntos
Parede Celular , Secas , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Oryza/genética , Oryza/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Lignina/biossíntese , Lignina/metabolismo , Plantas Geneticamente Modificadas , Celulose/biossíntese , Celulose/metabolismo , Ácido Abscísico/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38866721

RESUMO

Biomass degrading thermophiles play an indispensable role in building lignocellulose-based supply chains. They operate at high temperatures to improve process efficiencies and minimize mesophilic contamination, can overcome lignocellulose recalcitrance through their native carbohydrate-active enzyme (CAZyme) inventory, and can utilize a wide range of sugar substrates. However, sugar transport in thermophiles is poorly understood and investigated, as compared to enzymatic lignocellulose deconstruction and metabolic conversion of sugars to value-added chemicals. Here, we review the general modes of sugar transport in thermophilic bacteria and archaea, covering the structural, molecular, and biophysical basis of their high-affinity sugar uptake. We also discuss recent genetic studies on sugar transporter function. With this understanding of sugar transport, we discuss strategies for how sugar transport can be engineered in thermophiles, with the potential to enhance the conversion of lignocellulosic biomass into renewable products. ONE-SENTENCE SUMMARY: Sugar transport is the understudied link between extracellular biomass deconstruction and intracellular sugar metabolism in thermophilic lignocellulose bioprocessing.


Assuntos
Archaea , Bactérias , Lignina , Açúcares , Lignina/metabolismo , Archaea/metabolismo , Archaea/genética , Transporte Biológico , Açúcares/metabolismo , Bactérias/metabolismo , Bactérias/genética , Biomassa , Metabolismo dos Carboidratos , Temperatura Alta
5.
Phys Chem Chem Phys ; 26(25): 17577-17587, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38884162

RESUMO

Using machine learning, molecular dynamics simulations, and density functional theory calculations we gain insight into the selectivity patterns of substrate activation by the cytochromes P450. In nature, the reactions catalyzed by the P450s lead to the biodegradation of xenobiotics, but recent work has shown that fungi utilize P450s for the activation of lignin fragments, such as monomer and dimer units. These fragments often are the building blocks of valuable materials, including drug molecules and fragrances, hence a highly selective biocatalyst that can produce these compounds in good yield with high selectivity would be an important step in biotechnology. In this work a detailed computational study is reported on two reaction channels of two P450 isozymes, namely the O-deethylation of guaethol by CYP255A and the O-demethylation versus aromatic hydroxylation of p-anisic acid by CYP199A4. The studies show that the second-coordination sphere plays a major role in substrate binding and positioning, heme access, and in the selectivity patterns. Moreover, the local environment affects the kinetics of the reaction through lowering or raising barrier heights. Furthermore, we predict a site-selective mutation for highly specific reaction channels for CYP199A4.


Assuntos
Sistema Enzimático do Citocromo P-450 , Lignina , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/química , Lignina/química , Lignina/metabolismo , Engenharia de Proteínas , Teoria da Densidade Funcional
6.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928203

RESUMO

The morphological architecture of inflorescence influences seed production. The regulatory mechanisms underlying alfalfa (Medicago sativa) inflorescence elongation remain unclear. Therefore, in this study, we conducted a comparative analysis of the transcriptome, proteome, and metabolome of two extreme materials at three developmental stages to explore the mechanisms underlying inflorescence elongation in alfalfa. We observed the developmental processes of long and short inflorescences and found that the elongation capacity of alfalfa with long inflorescence was stronger than that of alfalfa with short inflorescences. Furthermore, integrative analysis of the transcriptome and proteome indicated that the phenylpropanoid biosynthesis pathway was closely correlated with the structural formation of the inflorescence. Additionally, we identified key genes and proteins associated with lignin biosynthesis based on the differential expressed genes and proteins (DEGs and DEPs) involved in phenylpropanoid biosynthesis. Moreover, targeted hormone metabolome analysis revealed that IAA, GA, and CK play an important role in the peduncle elongation of alfalfa inflorescences. Based on omics analysis, we detected key genes and proteins related to plant hormone biosynthesis and signal transduction. From the WGCNA and WPCNA results, we furthermore screened 28 candidate genes and six key proteins that were correlated with lignin biosynthesis, plant hormone biosynthesis, and signaling pathways. In addition, 19 crucial transcription factors were discovered using correlation analysis that might play a role in regulating candidate genes. This study provides insight into the molecular mechanism of inflorescence elongation in alfalfa and establishes a theoretical foundation for improving alfalfa seed production.


Assuntos
Regulação da Expressão Gênica de Plantas , Inflorescência , Lignina , Medicago sativa , Proteínas de Plantas , Transcriptoma , Medicago sativa/genética , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/metabolismo , Inflorescência/crescimento & desenvolvimento , Inflorescência/genética , Inflorescência/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lignina/biossíntese , Lignina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/genética , Proteoma/metabolismo , Perfilação da Expressão Gênica , Proteômica/métodos , Metaboloma , Multiômica
7.
Arch Microbiol ; 206(7): 327, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922442

RESUMO

Lignocellulose biomass raw materials have a high value in energy conversion. Recently, there has been growing interest in using microorganisms to secret a series of enzymes for converting low-cost biomass into high-value products such as biofuels. We previously isolated a strain of Penicillium oxalicun 5-18 with promising lignocellulose-degrading capability. However, the mechanisms of lignocellulosic degradation of this fungus on various substrates are still unclear. In this study, we performed transcriptome-wide profiling and comparative analysis of strain 5-18 cultivated in liquid media with glucose (Glu), xylan (Xyl) or wheat bran (WB) as sole carbon source. In comparison to Glu culture, the number of differentially expressed genes (DEGs) induced by WB and Xyl was 4134 and 1484, respectively, with 1176 and 868 genes upregulated. Identified DEGs were enriched in many of the same pathways in both comparison groups (WB vs. Glu and Xly vs. Glu). Specially, 118 and 82 CAZyme coding genes were highly upregulated in WB and Xyl cultures, respectively. Some specific pathways including (Hemi)cellulose metabolic processes were enriched in both comparison groups. The high upregulation of these genes also confirmed the ability of strain 5-18 to degrade lignocellulose. Co-expression and co-upregulated of genes encoding CE and AA CAZy families, as well as other (hemi)cellulase revealed a complex degradation strategy in this strain. Our findings provide new insights into critical genes, key pathways and enzyme arsenal involved in the biomass degradation of P. oxalicum 5-18.


Assuntos
Perfilação da Expressão Gênica , Lignina , Penicillium , Transcriptoma , Xilanos , Penicillium/genética , Penicillium/metabolismo , Lignina/metabolismo , Xilanos/metabolismo , Biomassa , Glucose/metabolismo , Fibras na Dieta/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
World J Microbiol Biotechnol ; 40(8): 239, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862848

RESUMO

Anaerobic digestion (AD) emerges as a pivotal technique in climate change mitigation, transforming organic materials into biogas, a renewable energy form. This process significantly impacts energy production and waste management, influencing greenhouse gas emissions. Traditional research has largely focused on anaerobic bacteria and methanogens for methane production. However, the potential of anaerobic lignocellulolytic fungi for degrading lignocellulosic biomass remains less explored. In this study, buffalo rumen inocula were enriched and acclimatized to improve lignocellulolytic hydrolysis activity. Two consortia were established: the anaerobic fungi consortium (AFC), selectively enriched for fungi, and the anaerobic lignocellulolytic microbial consortium (ALMC). The consortia were utilized to create five distinct microbial cocktails-AF0, AF20, AF50, AF80, and AF100. These cocktails were formulated based on varying of AFC and ALMC by weights (w/w). Methane production from each cocktail of lignocellulosic biomasses (cassava pulp and oil palm residues) was evaluated. The highest methane yields of CP, EFB, and MFB were obtained at 337, 215, and 54 mL/g VS, respectively. Cocktails containing a mix of anaerobic fungi, hydrolytic bacteria (Sphingobacterium sp.), syntrophic bacteria (Sphaerochaeta sp.), and hydrogenotrophic methanogens produced 2.1-2.6 times higher methane in cassava pulp and 1.1-1.2 times in oil palm empty fruit bunch compared to AF0. All cocktails effectively produced methane from oil palm empty fruit bunch due to its lipid content. However, methane production ceased after 3 days when oil palm mesocarp fiber was used, due to long-chain fatty acid accumulation. Anaerobic fungi consortia showed effective lignocellulosic and starchy biomass degradation without inhibition due to organic acid accumulation. These findings underscore the potential of tailored microbial cocktails for enhancing methane production from diverse lignocellulosic substrates.


Assuntos
Biomassa , Fungos , Lignina , Metano , Consórcios Microbianos , Metano/metabolismo , Anaerobiose , Lignina/metabolismo , Fungos/metabolismo , Fungos/classificação , Animais , Rúmen/microbiologia , Biocombustíveis , Hidrólise , Fermentação , Bactérias/metabolismo , Bactérias/classificação , Resíduos Industriais , Agricultura/métodos
9.
Water Sci Technol ; 89(11): 2907-2920, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877621

RESUMO

In this study, three sequencing batch biofilter granular reactors (SBBGRs) were employed to treat model lignin wastewater containing different lignin models (2,6-dimethoxyphenol, 4-methoxyphenol, and vanillin). After 40 days of cultivation, uniform-shaped aerobic granular sludge (AGS) was successfully developed through nutrient supplementation with synthetic wastewater. During the acclimation stage, the chemical oxygen demand (COD) reduction efficiencies of the three reactors showed a trend of initial decreasing (5-20%) and then recovering to a high reduction efficiency (exceeding 90%) in a short period of time. During the stable operation stage, all three reactors achieved COD reduction efficiencies exceeding 90%. These findings indicated the cultivated AGS's robust resistance to changes in lignin models in water. UV-Vis spectra analysis confirmed the effective degradation of the three lignin models. Microbiological analysis showed that Proteobacteria and Bacteroidetes were always the dominant phyla. At the genus level, while Acinetobacter (15.46%) dominated in the inoculation sludge, Kapabacteriales (7.93%), SBR1031 (11.77%), and Chlorobium (25.37%) were dominant in the three reactors (for 2,6-dimethoxyphenol, 4-methoxyphenol, and vanillin) after degradation, respectively. These findings demonstrate that AGS cultured with SBBGR effectively degrades lignin models, with different dominant strains observed for various lignin models.


Assuntos
Reatores Biológicos , Lignina , Esgotos , Esgotos/microbiologia , Lignina/metabolismo , Lignina/química , Aerobiose , Filtração/métodos , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo
10.
J Hazard Mater ; 474: 134826, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852248

RESUMO

Phenylpropanoid biosynthesis plays crucial roles in the adaptation to cadmium (Cd) stress. Nevertheless, few reports have dabbled in physiological mechanisms of such super pathway regulating Cd accumulation in plants. Herein, by integrating transcriptomic, histological and molecular biology approaches, the present study dedicated to clarify molecular mechanism on how rice adapt to Cd stress via phenylpropanoid biosynthesis. Our analysis identified that the enhancement of phenylpropanoid biosynthesis was as a key response to Cd stress. Intriguingly, POD occupied a significant part in this process, with the number of POD related genes accounted for 26/29 of all upregulated genes in phenylpropanoid biosynthesis. We further used SHAM (salicylhydroxamic acid, the POD inhibitor) to validate that POD exhibited a negative correlation with the Cd accumulation in rice tissues, and proposed two intrinsic molecular mechanisms on POD in contributing to Cd detoxification. One strategy was that POD promoted the formation of lignin and CSs both in endodermis and exodermis for intercepting Cd influx. In detail, inhibited POD induced by external addition of SHAM decreased the content of lignin by 50.98-66.65 % and delayed percentage of the DTIP-CS to root length by 39.17-104.51 %. The other strategy was expression of transporter genes involved in Cd uptake, including OsIRT1, OsIRT2, OsZIP1 and OsZIP, negatively regulated by POD. In a word, our findings firstly draws a direct link between POD activity and the Cd accumulation, which is imperative for the breeding of rice with low-Cd-accumulating capacity in the future.


Assuntos
Cádmio , Oryza , Oryza/metabolismo , Oryza/genética , Cádmio/toxicidade , Cádmio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peroxidase/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Lignina/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
11.
Sci Rep ; 14(1): 13446, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862766

RESUMO

Present study concerns the transformation of the agro-industrial by-products olive mill stone waste (OMSW) and walnut shell (WS) to a protein-enriched animal feedstuff utilizing the solid state fermentation (SSF) technique. For this purpose, various mixtures of these by-products were exploited as substrates of the SSF process which was initiated by the P. ostreatus fungus. The respective results indicated that the substrate consisted of 80% WS and 20% OMSW afforded the product with the highest increase in protein content, which accounted the 7.57% of its mass (69.35% increase). In addition, a 26.13% reduction of lignin content was observed, while the most profound effect was observed for their 1,3-1,6 ß-glucans profile, which was increased by 3-folds reaching the 6.94% of substrate's mass. These results are indicative of the OMSW and WS mixtures potential to act as efficient substrate for the development of novel proteinaceous animal feed supplements using the SSF procedure. Study herein contributes to the reintegration of the agro-industrial by-products aiming to confront the problem of proteinaceous animal feed scarcity and reduce in parallel the environmental footprint of the agro-industrial processes within the context of circular economy.


Assuntos
Ração Animal , Fermentação , Resíduos Industriais , Juglans , Olea , Pleurotus , Pleurotus/metabolismo , Juglans/metabolismo , Juglans/química , Olea/metabolismo , Olea/química , Ração Animal/análise , Resíduos Industriais/análise , Lignina/metabolismo , Animais
12.
Theor Appl Genet ; 137(7): 157, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861001

RESUMO

KEY MESSAGE: Through the histological, physiological, and transcriptome-level identification of the abscission zone of Pennisetum alopecuroides 'Liqiu', we explored the structure and the genes related to seed shattering, ultimately revealing the regulatory network of seed shattering in P. alopecuroides. Pennisetum alopecuroides is one of the most representative ornamental grass species of Pennisetum genus. It has unique inflorescence, elegant appearance, and strong stress tolerance. However, the shattering of seeds not only reduces the ornamental effect, but also hinders the seed production. In order to understand the potential mechanisms of seed shattering in P. alopecuroides, we conducted morphological, histological, physiological, and transcriptomic analyses on P. alopecuroides cv. 'Liqiu'. According to histological findings, the seed shattering of 'Liqiu' was determined by the abscission zone at the base of the pedicel. Correlation analysis showed that seed shattering was significantly correlated with cellulase, lignin, auxin, gibberellin, cytokinin and jasmonic acid. Through a combination of histological and physiological analyses, we observed the accumulation of cellulase and lignin during 'Liqiu' seed abscission. We used PacBio full-length transcriptome sequencing (SMRT) combined with next-generation sequencing (NGS) transcriptome technology to improve the transcriptome data of 'Liqiu'. Transcriptomics further identified many differential genes involved in cellulase, lignin and plant hormone-related pathways. This study will provide new insights into the research on the shattering mechanism of P. alopecuroides.


Assuntos
Regulação da Expressão Gênica de Plantas , Pennisetum , Reguladores de Crescimento de Plantas , Sementes , Transcriptoma , Pennisetum/genética , Pennisetum/fisiologia , Pennisetum/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Perfilação da Expressão Gênica , Lignina/metabolismo
13.
World J Microbiol Biotechnol ; 40(8): 242, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869634

RESUMO

Lignocellulosic biomass is a valuable, renewable substrate for the synthesis of polyhydroxybutyrate (PHB), an ecofriendly biopolymer. In this study, bacterial strain E5-3 was isolated from soil in Japan; it was identified as Burkholderia ambifaria strain E5-3 by 16 S rRNA gene sequencing. The strain showed optimal growth at 37 °C with an initial pH of 9. It demonstrated diverse metabolic ability, processing a broad range of carbon substrates, including xylose, glucose, sucrose, glycerol, cellobiose, and, notably, palm oil. Palm oil induced the highest cellular growth, with a PHB content of 65% wt. The strain exhibited inherent tolerance to potential fermentation inhibitors derived from lignocellulosic hydrolysate, withstanding 3 g/L 5-hydroxymethylfurfural and 1.25 g/L acetic acid. Employing a fed-batch fermentation strategy with a combination of glucose, xylose, and cellobiose resulted in PHB production 2.7-times that in traditional batch fermentation. The use of oil palm trunk hydrolysate, without inhibitor pretreatment, in a fed-batch fermentation setup led to significant cell growth with a PHB content of 45% wt, equivalent to 10 g/L. The physicochemical attributes of xylose-derived PHB produced by strain E5-3 included a molecular weight of 722 kDa, a number-average molecular weight of 191 kDa, and a polydispersity index of 3.78. The amorphous structure of this PHB displayed a glass transition temperature of 4.59 °C, while its crystalline counterpart had a melting point of 171.03 °C. This research highlights the potential of lignocellulosic feedstocks, especially oil palm trunk hydrolysate, for PHB production through fed-batch fermentation by B. ambifaria strain E5-3, which has high inhibitor tolerance.


Assuntos
Biomassa , Burkholderia , Fermentação , Hidroxibutiratos , Lignina , Óleo de Palmeira , RNA Ribossômico 16S , Xilose , Lignina/metabolismo , Óleo de Palmeira/metabolismo , Hidroxibutiratos/metabolismo , Burkholderia/metabolismo , Burkholderia/genética , Burkholderia/crescimento & desenvolvimento , Xilose/metabolismo , RNA Ribossômico 16S/genética , Microbiologia do Solo , Glucose/metabolismo , Poliésteres/metabolismo , Concentração de Íons de Hidrogênio , Furaldeído/metabolismo , Furaldeído/análogos & derivados , Celobiose/metabolismo
14.
Int J Biol Macromol ; 271(Pt 2): 132696, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823737

RESUMO

Lignin is a complex polymer found in the cell walls of plants, providing structural support and protection against pathogens. By modifying lignin composition and structure, scientists aim to optimize plant defense responses and increase resistance to pathogens. This can be achieved through various genetic engineering techniques which involve manipulating the genes responsible for lignin synthesis. By either up regulating or down regulating specific genes, researchers can alter the lignin content, composition, or distribution in plant tissues. Reducing lignin content in specific tissues like leaves can improve the effectiveness of defense mechanisms by allowing for better penetration of antimicrobial compounds. Overall, Lignin modification through techniques has shown promising results in enhancing various plants resistance against pathogens. Furthermore, lignin modification can have additional benefits beyond pathogen resistance. It can improve biomass processing for biofuel production by reducing lignin recalcitrance, making the extraction of sugars from cellulose more efficient. The complexity of lignin biosynthesis and its interactions with other plant components make it a challenging target for modification. Additionally, the potential environmental impact and regulatory considerations associated with genetically modified organisms (GMOs) require careful evaluation. Ongoing research aims to further optimize this approach and develop sustainable solutions for crop protection.


Assuntos
Lignina , Doenças das Plantas , Lignina/metabolismo , Lignina/química , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Resistência à Doença/genética , Plantas Geneticamente Modificadas , Plantas/metabolismo , Plantas/genética , Engenharia Genética , Biomassa
15.
Sci Rep ; 14(1): 13350, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858437

RESUMO

Lignin, a heterogeneous aromatic polymer present in plant biomass, is intertwined with cellulose and hemicellulose fibrils, posing challenges to its effective utilization due to its phenolic nature and recalcitrance to degradation. In this study, three lignin utilizing bacteria, Klebsiella sp. LEA1, Pseudomonas sp. LEA2, and Burkholderia sp. LEA3, were isolated from deciduous forest soil samples in Nan province, Thailand. These isolates were capable of growing on alkali lignin and various lignin-associated monomers at 40 °C under microaerobic conditions. The presence of Cu2+ significantly enhanced guaiacol oxidation in Klebsiella sp. LEA1 and Pseudomonas sp. LEA2. Lignin-related monomers and intermediates such as 2,6-dimethoxyphenol, 4-vinyl guaiacol, 4-hydroxybenzoic acid, benzoic acid, catechol, and succinic acid were detected mostly during the late stage of incubation of Klebsiella sp. LEA1 and Pseudomonas sp. LEA2 in lignin minimal salt media via GC-MS analysis. The intermediates identified from Klebsiella sp. LEA1 degradation suggested that conversion and utilization occurred through the ß-ketoadipate (ortho-cleavage) pathway under limited oxygen conditions. The ability of these bacteria to thrive on alkaline lignin and produce various lignin-related intermediates under limited oxygen conditions suggests their potential utility in oxygen-limited processes and the production of renewable chemicals from plant biomass.


Assuntos
Florestas , Klebsiella , Lignina , Oxigênio , Pseudomonas , Microbiologia do Solo , Lignina/metabolismo , Pseudomonas/metabolismo , Pseudomonas/isolamento & purificação , Oxigênio/metabolismo , Klebsiella/metabolismo , Klebsiella/isolamento & purificação , Burkholderia/metabolismo , Burkholderia/isolamento & purificação , Biodegradação Ambiental
16.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38849297

RESUMO

Biogenic coalbed methane (CBM) is a developing clean energy source. However, it is unclear how the mechanisms of bio-methane production with different sizes of coal. In this work, pulverized coal (PC) and lump coal (LC) were used for methane production by mixed fungi-methanogen microflora. The lower methane production from LC was observed. The aromatic carbon of coal was degraded slightly by 2.17% in LC, while 11.28% in PC. It is attributed to the proportion of lignin-degrading fungi, especially Penicillium, which was reached 67.57% in PC on the 7th day, higher than that of 11.38% in LC. The results suggested that the limited interaction area in LC led to microorganisms hardly utilize aromatics. It also led the accumulation of aromatic organics in the fermentation broth in PC. Increasing the reaction area of coal and facilitating the conversion of aromatic carbon are suggested means to increase methane production in situ.


Assuntos
Biodegradação Ambiental , Carvão Mineral , Fungos , Lignina , Metano , Metano/metabolismo , Carvão Mineral/microbiologia , Fungos/metabolismo , Fungos/classificação , Lignina/metabolismo , Fermentação , Penicillium/metabolismo
17.
Chemosphere ; 361: 142588, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866340

RESUMO

Lignin, a major component of plant biomass, remains underutilized for renewable biofuels due to its complex and heterogeneous structure. Although investigations into depolymerizing lignin using fungi are well-established, studies of microbial pathways that enable anaerobic lignin breakdown linked with methanogenesis are limited. Through an enrichment cultivation approach with inoculation of freshwater sediment, we enriched a microbial community capable of producing methane during anaerobic lignin degradation. We reconstructed the near-complete population genomes of key lignin degraders and methanogens using metagenome-assembled genomes finally selected in this study (MAGs; 92 bacterial and 4 archaeal MAGs affiliated into 45 and 2 taxonomic groups, respectively). This study provides genetic evidence of microbial interdependence in conversion of lignin to methane in a syntrophic community. Metagenomic analysis revealed metabolic linkages, with lignin-hydrolyzing and/or fermentative bacteria such as the genera Alkalibaculum and Propionispora transforming lignin breakdown products into compounds such as acetate to feed methanogens (two archaeal MAGs classified into the genus Methanosarcina or UBA6 of the family Methanomassiliicoccaceae). Understanding the synergistic relationships between microbes that convert lignin could inform strategies for producing renewable bioenergy and treating aromatic-contaminated environments through anaerobic biodegradation processes. Overall, this study offers fundamental insights into complex community-level anaerobic lignin metabolism, highlighting hitherto unknown players, interactions, and pathways in this biotechnologically valuable process.


Assuntos
Archaea , Bactérias , Biodegradação Ambiental , Biocombustíveis , Lignina , Lignina/metabolismo , Anaerobiose , Archaea/metabolismo , Archaea/genética , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Metano/metabolismo , Microbiota , Metagenoma
18.
Nature ; 630(8016): 381-386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811733

RESUMO

Lignocellulose is mainly composed of hydrophobic lignin and hydrophilic polysaccharide polymers, contributing to an indispensable carbon resource for green biorefineries1,2. When chemically treated, lignin is compromised owing to detrimental intra- and intermolecular crosslinking that hampers downstream process3,4. The current valorization paradigms aim to avoid the formation of new C-C bonds, referred to as condensation, by blocking or stabilizing the vulnerable moieties of lignin5-7. Although there have been efforts to enhance biomass utilization through the incorporation of phenolic additives8,9, exploiting lignin's proclivity towards condensation remains unproven for valorizing both lignin and carbohydrates to high-value products. Here we leverage the proclivity by directing the C-C bond formation in a catalytic arylation pathway using lignin-derived phenols with high nucleophilicity. The selectively condensed lignin, isolated in near-quantitative yields while preserving its prominent cleavable ß-ether units, can be unlocked in a tandem catalytic process involving aryl migration and transfer hydrogenation. Lignin in wood is thereby converted to benign bisphenols (34-48 wt%) that represent performance-advantaged replacements for their fossil-based counterparts. Delignified pulp from cellulose and xylose from xylan are co-produced for textile fibres and renewable chemicals. This condensation-driven strategy represents a key advancement complementary to other promising monophenol-oriented approaches targeting valuable platform chemicals and materials, thereby contributing to holistic biomass valorization.


Assuntos
Compostos Benzidrílicos , Biomassa , Fracionamento Químico , Lignina , Fenóis , Compostos Benzidrílicos/química , Compostos Benzidrílicos/metabolismo , Catálise , Celulose/química , Celulose/metabolismo , Fracionamento Químico/métodos , Hidrogenação , Lignina/química , Lignina/metabolismo , Fenóis/química , Fenóis/metabolismo , Madeira/química , Xilanos/química , Xilanos/metabolismo , Xilose/química , Xilose/metabolismo , Combustíveis Fósseis , Têxteis
19.
Biomacromolecules ; 25(6): 3620-3627, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38806062

RESUMO

Lignin is an aromatic polymer that constitutes plant cell walls. The polymerization of lignin proceeds by radical coupling, and this process requires radicalization of the phenolic end of lignin by enzymes. However, due to the steric hindrance between enzymes, lignin, and polysaccharides, the direct oxidation of the phenolic end of lignin by the enzyme would be difficult, and the details of the growth of lignin are still unknown. In this study, enzymatic dehydrogenative polymerization experiments were conducted using coniferyl alcohol (CA) and the deuterium-labeled lignin model compound (D-LM) under a noncontact condition in which horseradish peroxidase cannot directly oxidize D-LM due to separation by a dialysis membrane. Analysis of deuterium-labeled degraded compounds obtained by a combination of methylation and thioacidolysis revealed the formation of the bond between the phenolic end of D-LM and CA, suggesting that membrane-permeable, low-molecular-weight lignols functioned as a redox shuttle mediator.


Assuntos
Lignina , Oxirredução , Polimerização , Lignina/química , Lignina/metabolismo , Fenóis/química , Fenóis/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Peso Molecular , Fenilpropionatos/química , Fenilpropionatos/metabolismo
20.
Bioresour Technol ; 403: 130764, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718903

RESUMO

Abundant renewable resource lignocellulosic biomass possesses tremendous potential for green biomanufacturing, while its efficient utilization by Yarrowia lipolytica, an attractive biochemical production host, is restricted since the presence of inhibitors furfural and acetic acid in lignocellulosic hydrolysate. Given deficient understanding of inherent interactions between inhibitors and cellular metabolism, sufficiently mining relevant genes is necessary. Herein, 14 novel gene targets were discovered using clustered regularly interspaced short palindromic repeats interference library in Y. lipolytica, achieving tolerance to 0.35 % (v/v) acetic acid (the highest concentration reported in Y. lipolytica), 4.8 mM furfural, or a combination of 2.4 mM furfural and 0.15 % (v/v) acetic acid. The tolerance mechanism might involve improvement of cell division and decrease of reactive oxygen species level. Transcriptional repression of effective gene targets still enabled tolerance when xylose was a carbon source. This work forms a robust foundation for improving microbial tolerance to lignocellulose-derived inhibitors and revealing underlying mechanism.


Assuntos
Ácido Acético , Furaldeído , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Furaldeído/farmacologia , Ácido Acético/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Lignina/metabolismo , Genoma Fúngico , Biblioteca Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...