Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.660
Filtrar
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731966

RESUMO

Leukemias are among the most prevalent types of cancer worldwide. Bone marrow mesenchymal stem cells (MSCs) participate in the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases such as leukemias, to a yet unknown extent. Here we described the effect of secretome of bone marrow MSCs obtained from healthy donors and from patients with acute myeloid leukemia (AML) on leukemic cell lineages, sensitive (K562) or resistant (K562-Lucena) to chemotherapy drugs. Cell proliferation, viability and death were evaluated, together with cell cycle, cytokine production and gene expression of ABC transporters and cyclins. The secretome of healthy MSCs decreased proliferation and viability of both K562 and K562-Lucena cells; moreover, an increase in apoptosis and necrosis rates was observed, together with the activation of caspase 3/7, cell cycle arrest in G0/G1 phase and changes in expression of several ABC proteins and cyclins D1 and D2. These effects were not observed using the secretome of MSCs derived from AML patients. In conclusion, the secretome of healthy MSCs have the capacity to inhibit the development of leukemia cells, at least in the studied conditions. However, MSCs from AML patients seem to have lost this capacity, and could therefore contribute to the development of leukemia.


Assuntos
Proliferação de Células , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Células K562 , Apoptose , Secretoma/metabolismo , Pessoa de Meia-Idade , Feminino , Masculino , Células da Medula Óssea/metabolismo , Linhagem da Célula/genética , Sobrevivência Celular , Adulto
3.
JCI Insight ; 9(10)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38713511

RESUMO

While sclerostin-neutralizing antibodies (Scl-Abs) transiently stimulate bone formation by activating Wnt signaling in osteoblast lineage cells, they exert sustained inhibition of bone resorption, suggesting an alternate signaling pathway by which Scl-Abs control osteoclast activity. Since sclerostin can activate platelet-derived growth factor receptors (PDGFRs) in osteoblast lineage cells in vitro and PDGFR signaling in these cells induces bone resorption through M-CSF secretion, we hypothesized that the prolonged anticatabolic effect of Scl-Abs could result from PDGFR inhibition. We show here that inhibition of PDGFR signaling in osteoblast lineage cells is sufficient and necessary to mediate prolonged Scl-Ab effects on M-CSF secretion and osteoclast activity in mice. Indeed, sclerostin coactivates PDGFRs independently of Wnt/ß-catenin signaling inhibition, by forming a ternary complex with LRP6 and PDGFRs in preosteoblasts. In turn, Scl-Ab prevents sclerostin-mediated coactivation of PDGFR signaling and consequent M-CSF upregulation in preosteoblast cultures, thereby inhibiting osteoclast activity in preosteoblast/osteoclast coculture assays. These results provide a potential mechanism explaining the dissociation between anabolic and antiresorptive effects of long-term Scl-Ab.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Reabsorção Óssea , Osteoblastos , Osteoclastos , Receptores do Fator de Crescimento Derivado de Plaquetas , Transdução de Sinais , Animais , Osteoblastos/metabolismo , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Reabsorção Óssea/metabolismo , Osteoclastos/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , Anticorpos Neutralizantes/farmacologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Linhagem da Célula , Osteogênese/efeitos dos fármacos , Diferenciação Celular
4.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713624

RESUMO

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Córtex Cerebral , Receptores ErbB , Proteínas Hedgehog , Proteínas do Tecido Nervoso , Células-Tronco Neurais , Neurogênese , Fator de Transcrição 2 de Oligodendrócitos , Fator de Transcrição PAX6 , Animais , Neurogênese/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Camundongos , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/genética , Neuroglia/metabolismo , Neuroglia/citologia , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Bulbo Olfatório/metabolismo , Bulbo Olfatório/citologia , Linhagem da Célula , Humanos
5.
Dev Cell ; 59(9): 1093-1095, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714156

RESUMO

In this issue of Developmental Cell, Fowler et al. applied genetic lineage-tracing mouse models to support the notion that artery endothelial cells are the predominant source of hematopoietic stem cells. They leveraged this and developed a method capable of efficiently differentiating human pluripotent stem cells into HLF+HOXA+ hematopoietic progenitors.


Assuntos
Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Camundongos , Linhagem da Célula , Células Endoteliais/citologia , Células Endoteliais/metabolismo
6.
BMC Genomics ; 25(1): 464, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741085

RESUMO

Gonad development includes sex determination and divergent maturation of the testes and ovaries. Recent advances in measuring gene expression in single cells are providing new insights into this complex process. However, the underlying epigenetic regulatory mechanisms remain unclear. Here, we profiled chromatin accessibility in mouse gonadal cells of both sexes from embryonic day 11.5 to 14.5 using single-cell assay for transposase accessible chromatin by sequencing (scATAC-seq). Our results showed that individual cell types can be inferred by the chromatin landscape, and that cells can be temporally ordered along developmental trajectories. Integrative analysis of transcriptomic and chromatin-accessibility maps identified multiple putative regulatory elements proximal to key gonadal genes Nr5a1, Sox9 and Wt1. We also uncover cell type-specific regulatory factors underlying cell type specification. Overall, our results provide a better understanding of the epigenetic landscape associated with the progressive restriction of cell fates in the gonad.


Assuntos
Linhagem da Célula , Cromatina , Gônadas , Fatores de Transcrição SOX9 , Análise de Célula Única , Animais , Cromatina/metabolismo , Cromatina/genética , Camundongos , Linhagem da Célula/genética , Feminino , Masculino , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Gônadas/metabolismo , Gônadas/citologia , Gônadas/embriologia , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Testículo/metabolismo , Testículo/citologia , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Ovário/metabolismo , Ovário/citologia
7.
Sci Adv ; 10(19): eadi6770, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718114

RESUMO

Tracking stem cell fate transition is crucial for understanding their development and optimizing biomanufacturing. Destructive single-cell methods provide a pseudotemporal landscape of stem cell differentiation but cannot monitor stem cell fate in real time. We established a metabolic optical metric using label-free fluorescence lifetime imaging microscopy (FLIM), feature extraction and machine learning-assisted analysis, for real-time cell fate tracking. From a library of 205 metabolic optical biomarker (MOB) features, we identified 56 associated with hematopoietic stem cell (HSC) differentiation. These features collectively describe HSC fate transition and detect its bifurcate lineage choice. We further derived a MOB score measuring the "metabolic stemness" of single cells and distinguishing their division patterns. This score reveals a distinct role of asymmetric division in rescuing stem cells with compromised metabolic stemness and a unique mechanism of PI3K inhibition in promoting ex vivo HSC maintenance. MOB profiling is a powerful tool for tracking stem cell fate transition and improving their biomanufacturing from a single-cell perspective.


Assuntos
Biomarcadores , Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas , Biomarcadores/metabolismo , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos , Rastreamento de Células/métodos , Análise de Célula Única/métodos , Microscopia de Fluorescência/métodos , Humanos
8.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722217

RESUMO

Animal evolution is influenced by the emergence of new cell types, yet our understanding of this process remains elusive. This prompts the need for a broader exploration across diverse research organisms, facilitated by recent breakthroughs, such as gene editing tools and single-cell genomics. Essential to our understanding of cell type evolution is the accurate identification of homologous cells. We delve into the significance of considering developmental ontogeny and potential pitfalls when drawing conclusions about cell type homology. Additionally, we highlight recent discoveries in the study of cell type evolution through the application of single-cell transcriptomics and pinpoint areas ripe for further exploration.


Assuntos
Evolução Biológica , Análise de Célula Única , Animais , Análise de Célula Única/métodos , Humanos , Linhagem da Célula/genética , Transcriptoma/genética , Genômica , Edição de Genes
9.
Front Endocrinol (Lausanne) ; 15: 1357594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699384

RESUMO

In mammals, gonadal somatic cell lineage differentiation determines the development of the bipotential gonad into either the ovary or testis. Sertoli cells, the only somatic cells in the spermatogenic tubules, support spermatogenesis during gonadal development. During embryonic Sertoli cell lineage differentiation, relevant genes, including WT1, GATA4, SRY, SOX9, AMH, PTGDS, SF1, and DMRT1, are expressed at specific times and in specific locations to ensure the correct differentiation of the embryo toward the male phenotype. The dysregulated development of Sertoli cells leads to gonadal malformations and male fertility disorders. Nevertheless, the molecular pathways underlying the embryonic origin of Sertoli cells remain elusive. By reviewing recent advances in research on embryonic Sertoli cell genesis and its key regulators, this review provides novel insights into sex determination in male mammals as well as the molecular mechanisms underlying the genealogical differentiation of Sertoli cells in the male reproductive ridge.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células de Sertoli , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Células de Sertoli/fisiologia , Masculino , Humanos , Animais , Reprodução/fisiologia , Espermatogênese/fisiologia , Processos de Determinação Sexual/fisiologia
10.
Stem Cell Res Ther ; 15(1): 130, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702837

RESUMO

BACKGROUND: Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION: Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.


Assuntos
Diferenciação Celular , Ácido Hialurônico , Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Meios de Cultura Livres de Soro/farmacologia , Linhagem da Célula , Células Cultivadas , Técnicas de Cultura de Células/métodos , Técnicas de Cocultura
11.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38704671

RESUMO

Computational analysis of fluorescent timelapse microscopy images at the single-cell level is a powerful approach to study cellular changes that dictate important cell fate decisions. Core to this approach is the need to generate reliable cell segmentations and classifications necessary for accurate quantitative analysis. Deep learning-based convolutional neural networks (CNNs) have emerged as a promising solution to these challenges. However, current CNNs are prone to produce noisy cell segmentations and classifications, which is a significant barrier to constructing accurate single-cell lineages. To address this, we developed a novel algorithm called Single Cell Track (SC-Track), which employs a hierarchical probabilistic cache cascade model based on biological observations of cell division and movement dynamics. Our results show that SC-Track performs better than a panel of publicly available cell trackers on a diverse set of cell segmentation types. This cell-tracking performance was achieved without any parameter adjustments, making SC-Track an excellent generalized algorithm that can maintain robust cell-tracking performance in varying cell segmentation qualities, cell morphological appearances and imaging conditions. Furthermore, SC-Track is equipped with a cell class correction function to improve the accuracy of cell classifications in multiclass cell segmentation time series. These features together make SC-Track a robust cell-tracking algorithm that works well with noisy cell instance segmentation and classification predictions from CNNs to generate accurate single-cell lineages and classifications.


Assuntos
Algoritmos , Linhagem da Célula , Rastreamento de Células , Análise de Célula Única , Rastreamento de Células/métodos , Análise de Célula Única/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Aprendizado Profundo , Microscopia de Fluorescência/métodos
12.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602479

RESUMO

Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFBs) and a stable but poorly described population of lipid-rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFBs). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single-cell RNA sequencing and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a MyoFB differentiation program that is distinct from other mesenchymal cell types and increases the known repertoire of mesenchymal cell types in the neonatal lung.


Assuntos
Animais Recém-Nascidos , Diferenciação Celular , Pulmão , Miofibroblastos , Animais , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Camundongos , Pulmão/citologia , Pulmão/embriologia , Pulmão/metabolismo , Linhagem da Célula , Organogênese , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
13.
Nature ; 629(8011): 458-466, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658765

RESUMO

Heteroplasmy occurs when wild-type and mutant mitochondrial DNA (mtDNA) molecules co-exist in single cells1. Heteroplasmy levels change dynamically in development, disease and ageing2,3, but it is unclear whether these shifts are caused by selection or drift, and whether they occur at the level of cells or intracellularly. Here we investigate heteroplasmy dynamics in dividing cells by combining precise mtDNA base editing (DdCBE)4 with a new method, SCI-LITE (single-cell combinatorial indexing leveraged to interrogate targeted expression), which tracks single-cell heteroplasmy with ultra-high throughput. We engineered cells to have synonymous or nonsynonymous complex I mtDNA mutations and found that cell populations in standard culture conditions purge nonsynonymous mtDNA variants, whereas synonymous variants are maintained. This suggests that selection dominates over simple drift in shaping population heteroplasmy. We simultaneously tracked single-cell mtDNA heteroplasmy and ancestry, and found that, although the population heteroplasmy shifts, the heteroplasmy of individual cell lineages remains stable, arguing that selection acts at the level of cell fitness in dividing cells. Using these insights, we show that we can force cells to accumulate high levels of truncating complex I mtDNA heteroplasmy by placing them in environments where loss of biochemical complex I activity has been reported to benefit cell fitness. We conclude that in dividing cells, a given nonsynonymous mtDNA heteroplasmy can be harmful, neutral or even beneficial to cell fitness, but that the 'sign' of the effect is wholly dependent on the environment.


Assuntos
Divisão Celular , Linhagem da Célula , DNA Mitocondrial , Aptidão Genética , Heteroplasmia , Seleção Genética , Análise de Célula Única , Animais , Feminino , Humanos , Camundongos , Divisão Celular/genética , Linhagem Celular , Linhagem da Célula/genética , DNA Mitocondrial/genética , Edição de Genes , Heteroplasmia/genética , Mitocôndrias/genética , Mutação , Análise de Célula Única/métodos
14.
Nature ; 629(8011): 384-392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600385

RESUMO

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Assuntos
Linhagem da Célula , Neurônios GABAérgicos , Proteínas de Homeodomínio , Mosaicismo , Prosencéfalo , Fatores de Transcrição , Humanos , Prosencéfalo/citologia , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Linhagem da Célula/genética , Masculino , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Neurônios/citologia , Neurônios/metabolismo , Feminino , Hipocampo/citologia , Células Clonais/citologia , Células Clonais/metabolismo , Análise de Célula Única , Lobo Parietal/citologia , Alelos , Neocórtex/citologia , Transcriptoma
15.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653778

RESUMO

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Assuntos
Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Neuroblastoma , Fatores de Transcrição SOXC , Tretinoína , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Linhagem da Célula/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Sistemas CRISPR-Cas , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética
16.
Genome Med ; 16(1): 55, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605363

RESUMO

BACKGROUND: Most primary Triple Negative Breast Cancers (TNBCs) show amplification of the Epidermal Growth Factor Receptor (EGFR) gene, leading to increased protein expression. However, unlike other EGFR-driven cancers, targeting this receptor in TNBC yields inconsistent therapeutic responses. METHODS: To elucidate the underlying mechanisms of this variability, we employ cellular barcoding and single-cell transcriptomics to reconstruct the subclonal dynamics of EGFR-amplified TNBC cells in response to afatinib, a tyrosine kinase inhibitor (TKI) that irreversibly inhibits EGFR. RESULTS: Integrated lineage tracing analysis revealed a rare pre-existing subpopulation of cells with distinct biological signature, including elevated expression levels of Insulin-Like Growth Factor Binding Protein 2 (IGFBP2). We show that IGFBP2 overexpression is sufficient to render TNBC cells tolerant to afatinib treatment by activating the compensatory insulin-like growth factor I receptor (IGF1-R) signalling pathway. Finally, based on reconstructed mechanisms of resistance, we employ deep learning techniques to predict the afatinib sensitivity of TNBC cells. CONCLUSIONS: Our strategy proved effective in reconstructing the complex signalling network driving EGFR-targeted therapy resistance, offering new insights for the development of individualized treatment strategies in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Afatinib/farmacologia , Afatinib/uso terapêutico , Linhagem da Célula , Receptores ErbB , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral
17.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667319

RESUMO

Platelets are the terminal progeny of megakaryocytes, primarily produced in the bone marrow, and play critical roles in blood homeostasis, clotting, and wound healing. Traditionally, megakaryocytes and platelets are thought to arise from multipotent hematopoietic stem cells (HSCs) via multiple discrete progenitor populations with successive, lineage-restricting differentiation steps. However, this view has recently been challenged by studies suggesting that (1) some HSC clones are biased and/or restricted to the platelet lineage, (2) not all platelet generation follows the "canonical" megakaryocytic differentiation path of hematopoiesis, and (3) platelet output is the default program of steady-state hematopoiesis. Here, we specifically investigate the evidence that in vivo lineage tracing studies provide for the route(s) of platelet generation and investigate the involvement of various intermediate progenitor cell populations. We further identify the challenges that need to be overcome that are required to determine the presence, role, and kinetics of these possible alternate pathways.


Assuntos
Plaquetas , Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas , Animais , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Plaquetas/citologia , Plaquetas/metabolismo , Camundongos , Megacariócitos/citologia , Megacariócitos/metabolismo , Hematopoese
18.
Biochem Soc Trans ; 52(2): 603-616, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38572912

RESUMO

ATP dependent chromatin remodelers have pivotal roles in transcription, DNA replication and repair, and maintaining genome integrity. SWI/SNF remodelers were first discovered in yeast genetic screens for factors involved in mating type switching or for using alternative energy sources therefore termed SWI/SNF complex (short for SWItch/Sucrose NonFermentable). The SWI/SNF complexes utilize energy from ATP hydrolysis to disrupt histone-DNA interactions and shift, eject, or reposition nucleosomes making the underlying DNA more accessible to specific transcription factors and other regulatory proteins. In development, SWI/SNF orchestrates the precise activation and repression of genes at different stages, safe guards the formation of specific cell lineages and tissues. Dysregulation of SWI/SNF have been implicated in diseases such as cancer, where they can drive uncontrolled cell proliferation and tumor metastasis. Additionally, SWI/SNF defects are associated with neurodevelopmental disorders, leading to disruption of neural development and function. This review offers insights into recent developments regarding the roles of the SWI/SNF complex in pluripotency and cell lineage primining and the approaches that have helped delineate its importance. Understanding these molecular mechanisms is crucial for unraveling the intricate processes governing embryonic stem cell biology and developmental transitions and may potentially apply to human diseases linked to mutations in the SWI/SNF complex.


Assuntos
Trifosfato de Adenosina , Linhagem da Célula , Montagem e Desmontagem da Cromatina , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Animais , Trifosfato de Adenosina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo
19.
Cancer Cell ; 42(5): 904-914.e9, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38579724

RESUMO

A subset of patients with IDH-mutant glioma respond to inhibitors of mutant IDH (IDHi), yet the molecular underpinnings of such responses are not understood. Here, we profiled by single-cell or single-nucleus RNA-sequencing three IDH-mutant oligodendrogliomas from patients who derived clinical benefit from IDHi. Importantly, the tissues were sampled on-drug, four weeks from treatment initiation. We further integrate our findings with analysis of single-cell and bulk transcriptomes from independent cohorts and experimental models. We find that IDHi treatment induces a robust differentiation toward the astrocytic lineage, accompanied by a depletion of stem-like cells and a reduction of cell proliferation. Furthermore, mutations in NOTCH1 are associated with decreased astrocytic differentiation and may limit the response to IDHi. Our study highlights the differentiating potential of IDHi on the cellular hierarchies that drive oligodendrogliomas and suggests a genetic modifier that may improve patient stratification.


Assuntos
Neoplasias Encefálicas , Diferenciação Celular , Isocitrato Desidrogenase , Mutação , Oligodendroglioma , Oligodendroglioma/genética , Oligodendroglioma/patologia , Oligodendroglioma/tratamento farmacológico , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/antagonistas & inibidores , Humanos , Diferenciação Celular/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem da Célula/efeitos dos fármacos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proliferação de Células/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Camundongos , Análise de Célula Única/métodos
20.
J Invest Dermatol ; 144(5): 936-949, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643988

RESUMO

The epidermis is the body's first line of protection against dehydration and pathogens, continually regenerating the outermost protective skin layers throughout life. During both embryonic development and wound healing, epidermal stem and progenitor cells must respond to external stimuli and insults to build, maintain, and repair the cutaneous barrier. Recent advances in CRISPR-based methods for cell lineage tracing have remarkably expanded the potential for experiments that track stem and progenitor cell proliferation and differentiation over the course of tissue and even organismal development. Additional tools for DNA-based recording of cellular signaling cues promise to deepen our understanding of the mechanisms driving normal skin morphogenesis and response to stressors as well as the dysregulation of cell proliferation and differentiation in skin diseases and cancer. In this review, we highlight cutting-edge methods for cell lineage tracing, including in organoids and model organisms, and explore how cutaneous biology researchers might leverage these techniques to elucidate the developmental programs that support the regenerative capacity and plasticity of the skin.


Assuntos
Diferenciação Celular , Linhagem da Célula , Humanos , Animais , Pele/citologia , Células-Tronco/citologia , Proliferação de Células , Regeneração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...