Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.737
Filtrar
1.
Compr Rev Food Sci Food Saf ; 23(3): e13347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38650473

RESUMO

The contribution of dehydration to the growing market of food powders from slurry/liquid matrices is inevitable. To overcome the challenges posed by conventional drying technologies, several innovative approaches have emerged. However, industrial implementation is limited due to insufficient information on the best-suited drying technologies for targeted products. Therefore, this review aimed to compare various conventional and emerging dehydration technologies (such as active freeze, supercritical, agitated thin-film, and vortex chamber drying) based on their fundamental principles, potential applications, and limitations. Additionally, this article reviewed the effects of drying technologies on porosity, which greatly influence the solubility, rehydration, and stability of powder. The comparison between different drying technologies enables informed decision-making in selecting the appropriate one. It was found that active freeze drying is effective in producing free-flowing powders, unlike conventional freeze drying. Vortex chamber drying could be considered a viable alternative to spray drying, requiring a compact chamber than the large tower needed for spray drying. Freeze-dried, spray freeze-dried, and foam mat-dried powders exhibit higher porosity than spray-dried ones, whereas supercritical drying produces nano-porous interconnected powders. Notably, several factors like glass transition temperature, drying technologies, particle aggregation, agglomeration, and sintering impact powder porosity. However, some binders, such as maltodextrin, sucrose, and lactose, could be applied in controlled agglomeration to enhance powder porosity. Further investigation on the effect of emerging technologies on powder properties and their commercial feasibility is required to discover their potential in liquid drying. Moreover, utilizing clean-label drying ingredients like dietary fibers, derived from agricultural waste, presents promising opportunities.


Assuntos
Dessecação , Pós , Porosidade , Pós/química , Dessecação/métodos , Liofilização/métodos , Manipulação de Alimentos/métodos
2.
Int J Pharm ; 656: 124119, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621616

RESUMO

Nowadays, chronic wounds are the major cause of morbidity worldwide and the healthcare costs related to wound care are a billion-dollar issue; chronic wounds involve a non-healing process that makes necessary the application of advanced wound dressings to promote skin integrity recovery. Functionally Graded Scaffolds (FGSs) are currently driving interest as promising candidates in mimicking the skin tissue environment and, thus, in enhancing a faster and more effective wound healing process. Aim of the present work was to design and develop a porous FGS based on κ-carrageenan (κCG) for the management of chronic skin wounds; a freeze-drying process was optimized to obtain in a single-step a three-layered FGS characterized by a pore size gradient functional to mimic the structure of native skin tissue. In addition to κCG, arginine and whey protein isolate were used as multifunctional agents for FGS preparation; these substances can not only intervene in some stages of wound healing but are able to establish non-covalent interactions with κCG, which were responsible for the production of layers with different pore size, water content capability and mechanical properties. Cell migration, adhesion and proliferation within the FGS structure were evaluated in vitro on fibroblasts and FGS wound healing potential was also studied in vivo on a murine model.


Assuntos
Carragenina , Fibroblastos , Liofilização , Cicatrização , Liofilização/métodos , Cicatrização/efeitos dos fármacos , Animais , Porosidade , Camundongos , Carragenina/química , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Alicerces Teciduais , Adesão Celular , Masculino , Pele/metabolismo
3.
Pharm Dev Technol ; 29(4): 371-382, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613468

RESUMO

Baicalin (BG), a natural product, has been used in the prevention and treatment of drug-induced liver injury (DILI); however, its poor solubility and extensive liver metabolism limit its pharmacological use. The aim of the present study was the formulation of fast-dissolving freeze-dried sublingual tablets (FFSTs) to increase BG dissolution, avoid first-pass metabolism, and overcome swallowing difficulties. FFSTs were prepared following a 23 factorial design. The effect of three independent variables namely matrix former, Maltodextrin, concentration (4%, and 6%), binder concentration (2%, and 3%), and binder type (Methocel E5, and Methocel E15) on the FFSTs' in-vitro disintegration time and percentage dissolution was studied along with other tablet characteristics. Differential scanning calorimetry, scanning electron microscopy, in-vitro HepG2 cell viability assay, and in-vivo characterization were also performed. F8 (6% Maltodextrin, 2% Mannitol, 2% Methocel E5), with desirability of 0.852, has been furtherly enhanced using 1%PEG (F10). F10 has achieved an in-vitro disintegration time of 41 secs, and 60.83% in-vitro dissolution after 2 min. Cell viability assay, in-vivo study in rats, and histopathological studies confirmed that pretreatment with F10 has achieved a significant hepatoprotective effect against acetaminophen-induced hepatotoxicity. The outcome of this study demonstrated that FFSTs may present a patient-friendly dosage form against DILI.


Assuntos
Sobrevivência Celular , Doença Hepática Induzida por Substâncias e Drogas , Flavonoides , Liofilização , Solubilidade , Comprimidos , Animais , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Flavonoides/química , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ratos , Células Hep G2 , Liofilização/métodos , Masculino , Administração Sublingual , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Substâncias Protetoras/farmacologia , Substâncias Protetoras/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ratos Wistar
4.
Int Wound J ; 21(5): e14888, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686514

RESUMO

Allografts derived from live-birth tissue obtained with donor consent have emerged as an important treatment option for wound and soft tissue repairs. Placental membrane derived from the amniotic sac consists of the amnion and chorion, the latter of which contains the trophoblast layer. For ease of cleaning and processing, these layers are often separated with or without re-lamination and the trophoblast layer is typically discarded, both of which can negatively affect the abundance of native biological factors and make the grafts difficult to handle. Thus, a full-thickness placental membrane that includes a fully-intact decellularized trophoblast layer was developed for homologous clinical use as a protective barrier and scaffold in soft tissue repairs. Here, we demonstrate that this full-thickness placental membrane is effectively decellularized while retaining native extracellular matrix (ECM) scaffold and biological factors, including the full trophoblast layer. Following processing, it is porous, biocompatible, supports cell proliferation in vitro, and retains its biomechanical strength and the ability to pass through a cannula without visible evidence of movement or damage. Finally, it was accepted as a natural scaffold in vivo with evidence of host-cell infiltration, angiogenesis, tissue remodelling, and structural layer retention for up to 10 weeks in a murine subcutaneous implant model.


Assuntos
Placenta , Humanos , Feminino , Gravidez , Animais , Camundongos , Alicerces Teciduais , Liofilização/métodos , Matriz Extracelular Descelularizada , Cicatrização/fisiologia
5.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38551918

RESUMO

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Assuntos
Varredura Diferencial de Calorimetria , Excipientes , Liofilização , Poloxâmero , Trealose , Liofilização/métodos , Poloxâmero/química , Excipientes/química , Trealose/química , Varredura Diferencial de Calorimetria/métodos , Sacarose/química , Difração de Raios X , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , Cristalização/métodos , Química Farmacêutica/métodos , Proteínas/química , Composição de Medicamentos/métodos , Congelamento
6.
Int J Pharm ; 653: 123896, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38346602

RESUMO

The therapeutic potential of pharmaceutical cocrystals in intranasal applications remains largely unexplored despite progressive advancements in cocrystal research. We present the application of spray freeze drying (SFD) in successful fabrication of a favipiravir-pyridinecarboxamide cocrystal nasal powder formulation for potential treatment of broad-spectrum antiviral infections. Preliminary screening via mechanochemistry revealed that favipiravir (FAV) can cocrystallize with isonicotinamide (INA), but not nicotinamide (NCT) and picolinamide (PIC) notwithstanding their structural similarity. The cocrystal formation was characterized by differential scanning calorimetry, Fourier-transform infrared spectroscopy, and unit cell determination through Rietveld refinement of powder X-ray analysis. FAV-INA crystalized in a monoclinic space group P21/c with a unit cell volume of 1223.54(3) Å3, accommodating one FAV molecule and one INA molecule in the asymmetric unit. The cocrystal was further reproduced as intranasal dry powders by SFD, of which the morphology, particle size, in vitro drug release, and nasal deposition were assessed. The non-porous flake shaped FAV-INA powders exhibited a mean particle size of 19.79 ± 2.61 µm, rendering its suitability for intranasal delivery. Compared with raw FAV, FAV-INA displayed a 3-fold higher cumulative fraction of drug permeated in Franz diffusion cells at 45 min (p = 0.001). Dose fraction of FAV-INA deposited in the nasal fraction of a customized 3D-printed nasal cast reached over 80 %, whereas the fine particle fraction remained below 6 % at a flow rate of 15 L/min, suggesting high nasal deposition whilst minimal lung deposition. FAV-INA was safe in RPMI 2650 nasal and SH-SY5Y neuroblastoma cells without any in vitro cytotoxicity observed. This study demonstrated that combining the merits of cocrystallization and particle engineering via SFD can propel the development of advanced dry powder formulations for intranasal drug delivery.


Assuntos
Amidas , Química Farmacêutica , Neuroblastoma , Pirazinas , Humanos , Química Farmacêutica/métodos , Pós/química , Liofilização/métodos , Tamanho da Partícula , Inaladores de Pó Seco , Administração por Inalação , Aerossóis
7.
J Food Sci ; 89(4): 2332-2346, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380681

RESUMO

Persimmons contribute positively to human health. Although off-season utilization typically presents a challenge due to permissions' perishable nature, it may become feasible through the implementation of appropriate drying methods. In this study, round sliced samples were dried to assess drying kinetics, modeling potential, color attributes, rehydration capacity, energy consumption (EC), cost index, and thermal properties. The fruits were subjected to distinct drying methodologies including freeze-drying, continuous infrared drying (300, 400, and 500 W), and intermittent infrared drying (PR = 1 [continuous], PR = 2 [30 s on-30 s off], and PR = 3 [20 s on-40 s off]). The duration of the drying process ranged from 40 to 390 min. It was determined that the most suitable models for depicting continuous and infrared drying kinetics of persimmon fruit were the Midilli et al. and Page models, whereas the Logarithmic model was identified as the optimal choice for characterization of freeze-drying kinetics. Assessment of EC revealed that both intermittent and continuous infrared drying methods incurred lower energy expenditure in comparison to the freeze-drying technique. Remarkably, throughout the course of the infrared drying processes, product surface temperatures varied between 106.33 and 22.65°C across different treatments. Despite its high EC, it has been found that high-quality products are produced by freeze-drying. However, infrared and intermittent infrared applications can be a low energy cost and feasible method for drying persimmon with a shorter duration. PRACTICAL APPLICATION: Persimmon is an important fruit with high nutritional value. However, as with many fresh products, they have a short shelf life. Within the scope of this research, three different drying methodologies were employed in the desiccation of persimmon specimens, and the impact of these methodologies on the overall qualitative attributes of the persimmon product was investigated. Despite its elevated energy consumption, the freeze-drying approach was found to yield high-quality products. Moreover, it was discerned that infrared drying represented a viable and expeditious alternative for drying the fruit, particularly when executed intermittently.


Assuntos
Dessecação , Diospyros , Humanos , Dessecação/métodos , Frutas , Liofilização/métodos , Temperatura
8.
Int J Pharm ; 654: 123938, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38408554

RESUMO

The stability of lactate dehydrogenase (LDH) and ß-galactosidase (ß-gal), incorporated in arginine/pullulan (A/P) mixtures at various weight ratios by lyophilization, was determined. The physicochemical characteristics of various A/P mixtures were assessed. With decreasing A/P ratios, the glass transition temperature of the formulations increased. Furthermore, arginine crystallization due to high relative humidity (RH) exposure was prevented at an A/P weight ratio of 4/6 or less. When stored at 0 % RH / 60 °C for 4 weeks, arginine was superior to pullulan as stabilizer. During storage at 43 % RH / 30 ℃ for 4 weeks, the enzymatic activity of LDH was best retained at an A/P weight ratio of 2/8, while ß-gal activity was relatively well-retained at A/P weight ratios of both 8/2 and 2/8. LDH seemed to be more prone to degradation in the rubbery state. In the glassy state, ß-gal degraded faster than LDH. Solid-state nuclear magnetic resonance spectroscopy showed that (labeled) arginine experienced a different interaction in the two protein samples, reflecting a modulation of long-range correlations of the arginine side chain nitrogen atoms (Nε, Nη). In summary, LDH stabilization in the A/P matrix requires vitrification. Further stabilization difference between LDH and ß-gal may be dependent on the interaction with arginine.


Assuntos
Arginina , Proteínas , Arginina/química , Proteínas/química , Glucanos , L-Lactato Desidrogenase/química , Liofilização/métodos , Estabilidade de Medicamentos
9.
Nutr. clín. diet. hosp ; 44(1): 201-209, Feb. 2024. tab, graf
Artigo em Espanhol | IBECS | ID: ibc-231322

RESUMO

Introducción: El estudio se centró en obtener pulpa liofi-lizada de maracuyá manteniendo su calidad sensorial y nu-tracéutica. Objetivo: Se evaluaron diferentes concentraciones deaglomerantes en propiedades físico-químicas, solubilidad, co-lor, vitamina C y polifenoles. Material y métodos: Se examinó la cinética de secado porliofilización en un diseño factorial 3x3, los aglomerantes (gomaarábiga, almidón de arroz, pectina) y sus concentraciones im-pactaron fenoles totales, vitamina C, color y solubilidad. Resultados: Destacaron la goma arábiga al 1.5% y la pec-tina al 1.0% para preservar sabor y color, y la pectina al0.75% mostró alta velocidad de secado. Conclusión: La goma arábiga sobresalió en fenoles tota-les, color y solubilidad, mientras que la pectina conservó me-jor la vitamina C.(AU)


Introduction: The study focused on obtaining freeze-dried passion fruit pulp while maintaining its sensorial and nu-tritional quality. Objective: Different concentrations of binders were eval-uated for physical-chemical properties, solubility, color, vita-min C and polyphenols. Methodology: The freeze-drying kinetics were examinedin a 3x3 factorial design, the binders (gum arabic, rice starch,pectin) and their concentrations impacted total phenols, vita-min C, color and solubility. Results: They highlighted gum arabic at 1.5% and pectinat 1.0% to preserve flavor and color, and pectin at 0.75%showed high drying speed. Conclusion: Gum Arabic excels in total phenols, color andsolubility, while pectin preserves vitamin C better.(AU)


Assuntos
Liofilização/métodos , Passiflora , Manipulação de Alimentos , Ácido Ascórbico , Fenóis , Goma Arábica , Ciências da Nutrição , Projetos de Pesquisa , Solubilidade
10.
Mol Pharm ; 21(3): 1015-1026, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38288698

RESUMO

Vaccines have historically faced challenges regarding stability, especially in regions lacking a robust cold chain infrastructure. This review delves into established and emergent techniques to improve the thermostability of vaccines. We discuss the widely practiced lyophilization method, effectively transforming liquid vaccine formulations into a solid powdered state, enhancing storage and transportation ability. However, potential protein denaturation during lyophilization necessitates alternative stabilization methods. Cryoprotectants, namely, starch and sugar molecules, have shown promise in protecting vaccine antigens and adjuvants from denaturation and augmenting the stability of biologics during freeze-drying. Biomineralization, a less studied yet innovative approach, utilizes inorganic or organic-inorganic hybrids to encapsulate biological components of vaccines with a particular emphasis on metal-organic coordination polymers. Encapsulation in organic matrices to form particles or microneedles have also been studied in the context of vaccine thermostability, showing some ability to store outside the cold-chain. Unfortunately, few of these techniques have advanced to clinical trials that evaluate differences in storage conditions. Nonetheless, early trials suggest that alternative storage techniques are viable and emphasize the need for more comprehensive studies. This review underscores the pressing need for heat-stable vaccines, especially in light of the increasing global distribution challenges. Combining traditional methods with novel approaches holds promise for the future adaptability of vaccine distribution and use.


Assuntos
Temperatura Alta , Vacinas , Humanos , Estabilidade de Medicamentos , Composição de Medicamentos/métodos , Vacinação , Liofilização/métodos
11.
Pharm Res ; 41(2): 321-334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38291165

RESUMO

PURPOSES: We previously reported an unexpected phenomenon that shaking stress could cause more protein degradation in freeze-dried monoclonal antibody (mAb) formulations than liquid ones (J Pharm Sci, 2022, 2134). The main purposes of the present study were to investigate the effects of shaking stress on protein degradation and sub-visible particle (SbVP) formation in freeze-dried mAb formulations, and to analyze the factors influencing protein degradation during production and transportation. METHODS: The aggregation behavior of mAb-X formulations during production and transportation was simulated by shaking at a rate of 300 rpm at 25°C for 24 h. The contents of particles and monomers were analyzed by micro-flow imaging, dynamic light scattering, size exclusion chromatography, and ultraviolet - visible (UV-Vis) spectroscopy to compare the protective effects of excipients on the aggregation of mAb-X. RESULTS: Shaking stress could cause protein degradation in freeze-dried mAb-X formulations, while surfactant, appropriate pH, polyol mannitol, and high protein concentration could impact SbVP generation. Water content had little effect on freeze-dried protein degradation during shaking, as far as the water content was controlled in the acceptable range as recommended by mainstream pharmacopoeias (i.e., less than 3%). CONCLUSIONS: Shaking stress can reduce the physical stability of freeze-dried mAb formulations, and the addition of surfactants, polyol mannitol, and a high protein concentration have protective effects against the degradation of model mAb formulations induced by shaking stress. The experimental results provide new insight for the development of freeze-dried mAb formulations.


Assuntos
Anticorpos Monoclonais , Química Farmacêutica , Anticorpos Monoclonais/química , Química Farmacêutica/métodos , Excipientes/química , Liofilização/métodos , Manitol , Água , Estabilidade de Medicamentos
12.
Int J Biol Macromol ; 260(Pt 1): 129448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228204

RESUMO

The acquisition of high quality lyophilized IgY products, characterized by an aesthetically pleasing visage, heightened stability, and a marked preservation of activity, constitutes an indispensable pursuit in augmenting the safety and pragmatic utility of IgY. Within this context, an exploration was undertaken to investigate an innovative modality encompassing microwave freeze-drying (MFD) as a preparatory methodology of IgY. Morphological assessments revealed that both cryogenic freezing and subsequent MFD procedures resulted in aggregation of IgY, with the deleterious influence posed by the MFD phase transcending that of the freezing phase. The composite protective agent comprised of trehalose and mannitol engendered a safeguarding effect on the structural integrity of IgY, thereby attenuating reducing aggregation between IgY during the freeze-drying process. Enzyme-linked immunosorbent assay (ELISA) outcomes demonstrated a discernible correlation between IgY aggregation and a notable reduction in its binding affinity towards the pertinent antigen. Comparative analysis vis-à-vis the control sample delineated that when the trehalose-to-mannitol ratio was upheld at 1:3, a two-fold outcome was achieved: a mitigation of the collapse susceptibility within the final product as well as a deterrence of IgY agglomeration, concomitant with an elevated preservation rate of active antibodies (78.57 %).


Assuntos
Imunoglobulinas , Manitol , Trealose , Congelamento , Trealose/farmacologia , Trealose/química , Manitol/química , Liofilização/métodos
13.
J Pharm Sci ; 113(5): 1275-1284, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38070773

RESUMO

The vial wall thermal conductivity and thickness effect on freeze-drying speed is simulated. A 2D axisymmetric numerical simulation of Mannitol freeze-drying is employed using the boundary element method. The originality of the presented approach lies in the simulation of heat transfer in the vial walls as an additional computational domain in contrast to the typical methodology without a vial wall. The numerical model was validated using our measurements and the measurements from the literature. Increasing the glass vial thickness from 1 mm to 2 mm has been found as the major factor in primary drying time, increasing the gravimetrical Kv up to 20 % for all the simulated chamber pressures. The effect of thermal conductivity was simulated using a polymer and aluminium vial replacing the standard glass vial of the same thickness. The polymer vial's decreased Kv value is 5.6 % at a low chamber pressure of 50 mTorr, and 12.2 % at 400 mTorr, which is in excellent agreement with the experiment. Using higher conductivity materials, for example, aluminium, only 3.7 % and 2.3 % Kv increase were computed for low and high chamber pressures respectively.


Assuntos
Alumínio , Tecnologia Farmacêutica , Tecnologia Farmacêutica/métodos , Liofilização/métodos , Dessecação , Temperatura Alta , Polímeros , Temperatura
14.
Food Chem ; 439: 138137, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061300

RESUMO

The challenge of preserving the quality of thermal-sensitive polymeric materials specifically proteins during a thermal drying process has been a subject of ongoing concern. To address this issue, we investigated the use of ultrasound contact drying (USD) under non-thermal conditions to produce functionalized pea protein powders. The study extensively examined functional and physicochemical properties of pea protein isolate (PPI) in powder forms obtained through three drying methods: USD (30 °C), spray drying (SD), and freeze drying (FD). Additionally, physical attributes such as powder flowability and color, along with morphological properties, were thoroughly studied. The results indicated that the innovative USD method produced powders of comparable quality to FD and significantly outperformed SD. Notably, the USD-PPI exhibited higher solubility across all pH levels compared to both FD-PPI and SD-PPI. Moreover, the USD-PPI samples demonstrated improved emulsifying and foaming properties, a higher percentage of random coil form (56.2 %), increased gel strength, and the highest bulk and tapped densities. Furthermore, the USD-PPI displayed a unique surface morphology with visible porosity and lumpiness. Overall, this study confirms the effectiveness of non-thermal ultrasound contact drying technology in producing superior functionalized plant protein powders, showing its potential in the fields of chemistry and sustainable materials processing.


Assuntos
Proteínas de Ervilha , Pós/química , Ultrassom , Liofilização/métodos , Dessecação/métodos
15.
Acta Biomater ; 174: 428-436, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061679

RESUMO

mRNA therapeutics can be readily designed, manufactured, and brought to scale, as demonstrated by widespread global vaccination against COVID-19. However, mRNA therapies require cold chain shipment and storage from manufacturing to administration, which may limit them to affluent communities. This problem could be addressed by mimicking the known ability of mineralized fossils to durably stabilize nucleic acids under extreme conditions. We synthesized and screened 40 calcium-phosphate minerals for their ability to store and maintain the activity of lyophilized mRNA complexes. The optimal mineral formulation incorporated mRNA complexes with high efficiency (77 %), and increased mRNA transfection efficiency by 5.6-fold. Lyophilized mRNA complexes stored with the optimized mineral formulation for 6 months at 25 °C were 3.2-fold more active than those stored with state-of-the-art excipients, but without a mineral. mRNA complexes stored with minerals at room temperature did not decline in transfection efficacy from 3 days to 6 months of storage, indicating that minerals can durably maintain activity of therapeutic mRNA complexes without cold chain storage. STATEMENT OF SIGNIFICANCE: Therapeutic mRNA, such as mRNA COVID-19 vaccines, require extensive cold chain storage that limits their general application. This work screened a library of minerals to maintain the activity of mRNA complexes with freeze-drying. The optimized mineral was able to maintain mRNA activity up to 6 months of storage at room temperature outperforming current methods of freeze-drying therapeutic mRNA complexes.


Assuntos
Biomimética , Vacinas contra COVID-19 , Humanos , Estabilidade de Medicamentos , Liofilização/métodos , Minerais , Temperatura
16.
Cell Tissue Bank ; 25(1): 305-323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37840108

RESUMO

Amniotic membrane (AM), the innermost layer of the placenta, is an exceptionally effective biomaterial with divers applications in clinical medicine. It possesses various biological functions, including scar reduction, anti-inflammatory properties, support for epithelialization, as well as anti-microbial, anti-fibrotic and angio-modulatory effects. Furthermore, its abundant availability, cost-effectiveness, and ethical acceptability make it a compelling biomaterial in the field of medicine. Given the potential unavailability of fresh tissue when needed, the preservation of AM is crucial to ensure a readily accessible and continuous supply for clinical use. However, preserving the properties of AM presents a significant challenge. Therefore, the establishment of standardized protocols for the collection and preservation of AM is vital to ensure optimal tissue quality and enhance patient safety. Various preservation methods, such as cryopreservation, lyophilization, and air-drying, have been employed over the years. However, identifying a preservation method that effectively safeguards AM properties remains an ongoing endeavor. This article aims to review and discuss different sterilization and preservation procedures for AM, as well as their impacts on its histological, physical, and biochemical characteristics.


Assuntos
Âmnio , Criopreservação , Gravidez , Feminino , Humanos , Âmnio/química , Criopreservação/métodos , Liofilização/métodos , Placenta , Materiais Biocompatíveis/farmacologia
17.
Eur J Pharm Biopharm ; 194: 1-8, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029940

RESUMO

Molecular mobility in form of alpha and beta relaxations is considered crucial for characterization of amorphous lyophilizates and reflected in the transition temperatures Tgα and Tgß. Based on an overview of applied methods to study beta relaxations, Dynamic Mechanical analysis was used to measure Tgα and Tgß in amorphous freeze-dried samples. Lysozyme and trehalose as well as their mixtures in varying ratios were investigated. Three different residual moisture levels, ranging from roughly 0.5-7 % (w/w), were prepared via equilibration of the freeze-dried samples. Known plasticising effects of water on Tgα were confirmed, also via differential scanning calorimetry. In addition and contrary to expectations, an influence of water on the Tgß also was observed. On the other hand, an increasing amount of trehalose lowered Tgα but increased Tgß showing that Tgα and Tgß are not paired. The findings were interpreted with regard to their underlying molecular mechanisms and a correlation with the known influences of water and trehalose on stability. The results provide encouraging hints for future stability studies of freeze-dried protein formulations, which are urgently needed, not least for reasons of sustainability.


Assuntos
Muramidase , Trealose , Muramidase/química , Trealose/química , Água , Liofilização/métodos , Temperatura de Transição , Varredura Diferencial de Calorimetria
18.
Drug Deliv Transl Res ; 14(5): 1111-1153, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37985541

RESUMO

Lyophilization also known as freeze-drying is a technique that has been employed to enhance the long-term durability of nanoparticles (NPs) that are utilized for drug delivery applications. This method is used to prevent their instability in suspension. However, this dehydration process can cause stress to the NPs, which can be alleviated by the incorporation of excipients like cryoprotectants and lyoprotectants. Nevertheless, the freeze-drying of NPs is often based on empirical principles without considering the physical-chemical properties of the formulations and the engineering principles of freeze-drying. For this reason, it is crucial to optimize the formulations and the freeze-drying cycle to obtain a good lyophilizate and ensure the preservation of NPs stability. Moreover, proper characterization of the lyophilizate and NPs is of utmost importance in achieving these goals. This review aims to update the recent advancements, including innovative formulations and novel approaches, contributing to the progress in this field, to obtain the maximum stability of formulations. Additionally, we critically analyze the limitations of lyophilization and discuss potential future directions. It addresses the challenges faced by researchers and suggests avenues for further research to overcome these limitations. In conclusion, this review is a valuable contribution to the understanding of the parameters involved in the freeze-drying of NPs. It will definitely aid future studies in obtaining lyophilized NPs with good quality and enhanced drug delivery and therapeutic benefits.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Liofilização/métodos , Estabilidade de Medicamentos , Nanopartículas/química
19.
J Pharm Sci ; 113(4): 1054-1060, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37863428

RESUMO

Producing solid-state formulations of biologics remains a daunting task despite the prevalent use of lyophilization and spray drying technologies in the biopharmaceutical industry. The challenges include protein stability (temperature stresses), high capital costs, particle design/controllability, shortened processing times and manufacturing considerations (scalability, yield improvements, aseptic operation, etc.). Thus, scientists/engineers are constantly working to improve existing methodologies and exploring novel dehydration/powder-forming technologies. Microglassification™ is a dehydration technology that uses solvent extraction to rapidly dehydrate protein formulations at ambient temperatures, eliminating the temperature stress experienced by biologics in traditional lyophilization and spray drying methods. The process results in microparticles that are spherical, dense, and chemically stable. In this study, we compared the molecular stability of a monoclonal antibody formulation processed by lyophilization to the same formulation processed using Microglassification™. Both powders were placed on stability for 3 months at 40 °C and 6 months at 25 °C. Both dehydration methods showed similar chemical stability, including percent monomer, charge variants, and antigen binding. These results show that Microglassification™ is viable for the production of stable solid-state monoclonal antibody formulations.


Assuntos
Produtos Biológicos , Química Farmacêutica , Humanos , Química Farmacêutica/métodos , Anticorpos Monoclonais/química , Desidratação , Liofilização/métodos , Estabilidade de Medicamentos , Pós
20.
J Pharm Sci ; 113(4): 974-981, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37802368

RESUMO

To ensure the high quality of biopharmaceutical products, it is imperative to implement specialized unit operations that effectively safeguard the structural integrity of large molecules. While lyophilization has long been a reliable process, spray drying has recently garnered attention for its particle engineering capabilities for the pulmonary route of administration. However, maintaining the integrity of biologics during spray drying remains a challenge. To address this issue, we explored a novel dehydration system based on aerosol-assisted room-temperature drying of biological formulations recently developed at Princeton University, called Rapid Room-Temperature Aerosol Dehydration. We compared the quality attributes of the bulk powder of biopharmaceutical products manufactured using this drying technology with that of traditional spray drying. For all the fragment antigen-binding formulations tested, in terms of protein degradation and aerosol performance, we were able to achieve a better product quality using this drying technology compared to the spray drying technique. We also highlight areas for improvement in future prototypes and prospective commercial versions of the system. Overall, the offered dehydration system holds potential for improving the quality and diversity of biopharmaceutical products and may pave the way for more efficient and effective production methods in the biopharma industry.


Assuntos
Produtos Biológicos , Secagem por Atomização , Humanos , Temperatura , Desidratação , Estudos Prospectivos , Aerossóis/química , Liofilização/métodos , Tecnologia , Pós/química , Tamanho da Partícula , Administração por Inalação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...