Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Mol Genet Genomics ; 299(1): 20, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424265

RESUMO

To understand the lifespan of higher organisms, including humans, it is important to understand lifespan at the cellular level as a prerequisite. So, fission yeast is a good model organism for the study of lifespan. To identify the novel factors involved in longevity, we are conducting a large-scale screening of long-lived mutant strains that extend chronological lifespan (cell survival in the stationary phase) using fission yeast. One of the newly acquired long-lived mutant strains (No.98 mutant) was selected for analysis and found that the long-lived phenotype was due to a missense mutation (92Phe → Ile) in the plb1+ gene. plb1+ gene in fission yeast is a nonessential gene encoding a homolog of phospholipase B, but its functions under normal growth conditions, as well as phospholipase B activity, remain unresolved. Our analysis of the No.98 mutant revealed that the plb1 mutation reduces the integrity of the cellular membrane and cell wall and activates Sty1 via phosphorylation.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Longevidade/genética , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Mutação , Regulação Fúngica da Expressão Gênica
2.
Proc Natl Acad Sci U S A ; 121(8): e2320262121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349879

RESUMO

The human malaria parasite Plasmodium falciparum requires exogenous fatty acids to support its growth during the pathogenic, asexual erythrocytic stage. Host serum lysophosphatidylcholine (LPC) is a significant fatty acid source, yet the metabolic processes responsible for the liberation of free fatty acids from exogenous LPC are unknown. Using an assay for LPC hydrolysis in P. falciparum-infected erythrocytes, we have identified small-molecule inhibitors of key in situ lysophospholipase activities. Competitive activity-based profiling and generation of a panel of single-to-quadruple knockout parasite lines revealed that two enzymes of the serine hydrolase superfamily, termed exported lipase (XL) 2 and exported lipase homolog (XLH) 4, constitute the dominant lysophospholipase activities in parasite-infected erythrocytes. The parasite ensures efficient exogenous LPC hydrolysis by directing these two enzymes to distinct locations: XL2 is exported to the erythrocyte, while XLH4 is retained within the parasite. While XL2 and XLH4 were individually dispensable with little effect on LPC hydrolysis in situ, loss of both enzymes resulted in a strong reduction in fatty acid scavenging from LPC, hyperproduction of phosphatidylcholine, and an enhanced sensitivity to LPC toxicity. Notably, growth of XL/XLH-deficient parasites was severely impaired when cultured in media containing LPC as the sole exogenous fatty acid source. Furthermore, when XL2 and XLH4 activities were ablated by genetic or pharmacologic means, parasites were unable to proliferate in human serum, a physiologically relevant fatty acid source, revealing the essentiality of LPC hydrolysis in the host environment and its potential as a target for anti-malarial therapy.


Assuntos
Malária Falciparum , Parasitos , Animais , Humanos , Plasmodium falciparum , Lisofosfatidilcolinas/metabolismo , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Malária Falciparum/parasitologia , Eritrócitos/metabolismo , Parasitos/metabolismo , Ácidos Graxos/metabolismo , Lipase/metabolismo , Proteínas de Protozoários/metabolismo
3.
Mol Microbiol ; 121(3): 497-512, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38130174

RESUMO

Legionella pneumophila, the causative agent of a life-threatening pneumonia, intracellularly replicates in a specialized compartment in lung macrophages, the Legionella-containing vacuole (LCV). Secreted proteins of the pathogen govern important steps in the intracellular life cycle including bacterial egress. Among these is the type II secreted PlaA which, together with PlaC and PlaD, belongs to the GDSL phospholipase family found in L. pneumophila. PlaA shows lysophospholipase A (LPLA) activity which increases after secretion and subsequent processing by the zinc metalloproteinase ProA within a disulfide loop. Activity of PlaA contributes to the destabilization of the LCV in the absence of the type IVB-secreted effector SdhA. We here present the 3D structure of PlaA which shows a typical α/ß-hydrolase fold and reveals that the uncleaved disulfide loop forms a lid structure covering the catalytic triad S30/D278/H282. This leads to reduction of substrate access before activation; however, the catalytic site gets more accessible when the disulfide loop is processed. After structural modeling, a similar activation process is suggested for the GDSL hydrolase PlaC, but not for PlaD. Furthermore, the size of the PlaA substrate-binding site indicated preference toward phospholipids comprising ~16 carbon fatty acid residues which was verified by lipid hydrolysis, suggesting a molecular ruler mechanism. Indeed, mutational analysis changed the substrate profile with respect to fatty acid chain length. In conclusion, our analysis revealed the structural basis for the regulated activation and substrate preference of PlaA.


Assuntos
Legionella pneumophila , Lisofosfolipase , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Proteínas de Bactérias/metabolismo , Dissulfetos/metabolismo , Vacúolos/metabolismo , Ácidos Graxos/metabolismo , Relação Estrutura-Atividade
4.
Cell Rep ; 42(4): 112251, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37015228

RESUMO

Phospholipid metabolism is crucial for membrane biogenesis and homeostasis of Plasmodium falciparum. To generate such phospholipids, the parasite extensively scavenges, recycles, and reassembles host lipids. P. falciparum possesses an unusually large number of lysophospholipases, whose roles and importance remain to be elucidated. Here, we functionally characterize one P. falciparum lysophospholipase, PfLPL3, to reveal its key role in parasite propagation during asexual blood stages. PfLPL3 displays a dynamic localization throughout asexual stages, mainly localizing in the host-parasite interface. Inducible knockdown of PfLPL3 disrupts parasite development from trophozoites to schizont, inducing a drastic reduction in merozoite progenies. Detailed lipidomic analyses show that PfLPL3 generates fatty acids from scavenged host lipids to generate neutral lipids. These are then timely mobilized to allow schizogony and merozoite formation. We then identify inhibitors of PfLPL3 from Medicine for Malaria Venture (MMV) with potent antimalarial activity, which could also serve as pertinent chemical tools to study parasite lipid synthesis.


Assuntos
Malária Falciparum , Parasitos , Animais , Plasmodium falciparum , Parasitos/metabolismo , Ácidos Graxos/metabolismo , Lisofosfolipase/metabolismo , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Proteínas de Protozoários/metabolismo
5.
Biomolecules ; 13(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36979406

RESUMO

The in vivo roles of lysophospholipase, which cleaves a fatty acyl ester of lysophospholipid, remained unclear. Recently, we have unraveled a previously unrecognized physiological role of the lysophospholipase PNPLA7, a member of the Ca2+-independent phospholipase A2 (iPLA2) family, as a key regulator of the production of glycerophosphocholine (GPC), a precursor of endogenous choline, whose methyl groups are preferentially fluxed into the methionine cycle in the liver. PNPLA7 deficiency in mice markedly decreases hepatic GPC, choline, and several metabolites related to choline/methionine metabolism, leading to various symptoms reminiscent of methionine shortage. Overall metabolic alterations in the liver of Pnpla7-null mice in vivo largely recapitulate those in methionine-deprived hepatocytes in vitro. Reduction of the methyl donor S-adenosylmethionine (SAM) after methionine deprivation decreases the methylation of the PNPLA7 gene promoter, relieves PNPLA7 expression, and thereby increases GPC and choline levels, likely as a compensatory adaptation. In line with the view that SAM prevents the development of liver cancer, the expression of PNPLA7, as well as several enzymes in the choline/methionine metabolism, is reduced in human hepatocellular carcinoma. These findings uncover an unexplored role of a lysophospholipase in hepatic phospholipid catabolism coupled with choline/methionine metabolism.


Assuntos
Colina , Lisofosfolipase , Animais , Humanos , Camundongos , Colina/metabolismo , Glicerilfosforilcolina/metabolismo , Fígado/metabolismo , Lisofosfolipase/metabolismo , Metionina/metabolismo , S-Adenosilmetionina/metabolismo
6.
mBio ; 14(2): e0264022, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786559

RESUMO

Cryptococcus neoformans (Cn) is an opportunistic, encapsulated, yeast-like fungus that causes severe meningoencephalitis, especially in countries with high HIV prevalence. In addition to its well-known polysaccharide capsule, Cn has other virulence factors such as phospholipases, a heterogeneous group of enzymes that hydrolyze ester linkages in glycerophospholipids. Phospholipase B (PLB1) has been demonstrated to play a key role in Cn pathogenicity. In this study, we used a PLB1 mutant (plb1) and its reconstituted strain (Rec1) to assess the importance of this enzyme on Cn brain infection in vivo and in vitro. Mice infected with the plb1 strain survive significantly longer, have lower peripheral and central nervous system (CNS) fungal loads, and have fewer and smaller cryptococcomas or biofilm-like brain lesions compared to H99- and Rec1-infected animals. PLB1 causes extensive brain tissue damage and changes microglia morphology during cryptococcal disease, observations which can have important implications in patients with altered mental status or dementia as these manifestations are related to poorer survival outcomes. plb1 cryptococci are significantly more phagocytosed and killed by NR-9460 microglia-like cells. plb1 cells have altered capsular polysaccharide biophysical properties which impair their ability to stimulate glial cell responses or morphological changes. Here, we provide significant evidence demonstrating that Cn PLB1 is an important virulence factor for fungal colonization of and survival in the CNS as well as in the progression of cryptococcal meningoencephalitis. These findings may potentially help fill in a gap of knowledge in our understanding of cerebral cryptococcosis and provide novel research avenues in Cn pathogenesis. IMPORTANCE Cryptococcal meningoencephalitis (CME) is a serious disease caused by infection by the neurotropic fungal pathogen Cryptococcus neoformans. Due to the increasing number of cases in HIV-infected individuals, as well as the limited therapies available, investigation into potential targets for new therapeutics has become critical. Phospholipase B is an enzyme synthesized by Cn that confers virulence to the fungus through capsular enlargement, immunomodulation, and intracellular replication. In this study, we examined the properties of PLB1 by comparing infection of a Cn PLB1 mutant strain with both the wild-type and a PLB1-reconstituted strain. We show that PLB1 augments the survival and proliferation of the fungus in the CNS and strengthens virulence by modulating the immune response and enhancing specific biophysical properties of the fungus. PLB1 expression causes brain tissue damage and impacts glial cell functions, which may be responsible for the dementia observed in patients which may persist even after resolving from CME. The implications of PLB1 inhibition reveal its involvement in Cn infection and suggest that it may be a possible molecular target in the development of antifungal therapies. The results of this study support additional investigation into the mechanism of PLB1 to further understand the intricacies of cerebral Cn infection.


Assuntos
Criptococose , Cryptococcus neoformans , Demência , Infecções por HIV , Meningoencefalite , Animais , Camundongos , Cryptococcus neoformans/metabolismo , Lisofosfolipase/metabolismo , Criptococose/microbiologia , Sistema Nervoso Central/patologia , Meningoencefalite/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Infecções por HIV/complicações
7.
Autophagy ; 19(9): 2443-2463, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36803235

RESUMO

Mitophagy, which selectively eliminates the dysfunctional and excess mitochondria by autophagy, is crucial for cellular homeostasis under stresses such as hypoxia. Dysregulation of mitophagy has been increasingly linked to many disorders including neurodegenerative disease and cancer. Triple-negative breast cancer (TNBC), a highly aggressive breast cancer subtype, is reported to be characterized by hypoxia. However, the role of mitophagy in hypoxic TNBC as well as the underlying molecular mechanism is largely unexplored. Here, we identified GPCPD1 (glycerophosphocholine phosphodiesterase 1), a key enzyme in choline metabolism, as an essential mediator in hypoxia-induced mitophagy. Under the hypoxic condition, we found that GPCPD1 was depalmitoylated by LYPLA1, which facilitated the relocating of GPCPD1 to the outer mitochondrial membrane (OMM). Mitochondria-localized GPCPD1 could bind to VDAC1, the substrate for PRKN/PARKIN-dependent ubiquitination, thus interfering with the oligomerization of VDAC1. The increased monomer of VDAC1 provided more anchor sites to recruit PRKN-mediated polyubiquitination, which consequently triggered mitophagy. In addition, we found that GPCPD1-mediated mitophagy exerted a promotive effect on tumor growth and metastasis in TNBC both in vitro and in vivo. We further determined that GPCPD1 could serve as an independent prognostic indicator in TNBC. In conclusion, our study provides important insights into a mechanistic understanding of hypoxia-induced mitophagy and elucidates that GPCPD1 could act as a potential target for the future development of novel therapy for TNBC patients.Abbreviations: ACTB: actin beta; 5-aza: 5-azacytidine; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; ChIP: chromatin immunoprecipitation; co-IP: co-immunoprecipitation; CQ: chloroquine; CsA: cyclosporine; DOX: doxorubicin; FIS1: fission, mitochondrial 1; FUNDC1: FUN14 domain containing 1; GPCPD1: glycerophosphocholine phosphodiesterase 1; HAM: hydroxylamine; HIF1A: hypoxia inducible factor 1 subunit alpha; HRE: hypoxia response element; IF: immunofluorescence; LB: lysis buffer; LC3B/MAP1LC3B: microtubule associated protein 1 light chain 3 beta; LC-MS: liquid chromatography-mass spectrometry; LYPLA1: lysophospholipase 1; LYPLA2: lysophospholipase 2; MDA231: MDA-MB-231; MDA468: MDA-MB-468; MFN1: mitofusin 1; MFN2: mitofusin 2; MKI67: marker of proliferation Ki-67; OCR: oxygen consumption rate; OMM: outer mitochondrial membrane; OS: overall survival; PalmB: palmostatin B; PBS: phosphate-buffered saline; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; SDS: sodium dodecyl sulfate; TOMM20: translocase of outer mitochondrial membrane 20; TNBC: triple-negative breast cancer; VBIT-4: VDAC inhibitor; VDAC1: voltage dependent anion channel 1; WT: wild type.


Assuntos
Doenças Neurodegenerativas , Neoplasias de Mama Triplo Negativas , Humanos , Autofagia , Lisofosfolipase/metabolismo , Lisofosfolipase/farmacologia , Mitofagia , Fosfolipases/metabolismo , Fosfolipases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Canal de Ânion 1 Dependente de Voltagem/metabolismo
8.
Mycoses ; 66(6): 467-476, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36680377

RESUMO

BACKGROUND: Trichosporon asahii is an opportunistic pathogenic yeast-like fungus. Phospholipase B1 (PLB1) is an important virulence factor of pathogenic fungi such as Candida albicans and Cryptococcus neoformans, and there are few studies on the role of PLB1 in the pathogenicity of T. asahii. OBJECTIVES: To investigate the role of PLB1 in the pathogenicity of T. asahii. METHODS: A strain with low secretion of PLB1 (4848) was screened, a PLB1 overexpression strain (PLB1OX ) was constructed, and the differences in histopathology, fungal load of organ, survival time of mice, the levels of IL-6, IL-10, TNF-α, and GM-GSF in the serum and organs caused by the two strains were compared. RESULTS: Histopathology showed that spores and hyphae were observed in both groups, and PLB1OX led to more fungal invasion. The fungal loads in the kidney, lung, spleen and liver in the PLB1OX group were significantly higher than those in the 4848 group, and the survival time of mice was significantly lower than that in the 4848 group. The levels of TNF-α in the serum, liver, spleen, lung and kidney of the PLB1OX group were lower than those of the 4848 group, while the level of IL-10 in the serum was higher than that of the 4848 group. CONCLUSIONS: These results suggest that PLB1 can enhance the invasive function of T. asahii and affect the secretion of TNF-α and IL-10 which may affect the host antifungal immune response, providing evidence that PLB1 plays a role in the pathogenic infection of T. asahii.


Assuntos
Interleucina-10 , Trichosporon , Animais , Camundongos , Fosfolipases , Trichosporon/genética , Fator de Necrose Tumoral alfa , Virulência , Lisofosfolipase/metabolismo
9.
Cell Rep ; 42(2): 111940, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36719796

RESUMO

Choline supplies methyl groups for regeneration of methionine and the methyl donor S-adenosylmethionine in the liver. Here, we report that the catabolism of membrane phosphatidylcholine (PC) into water-soluble glycerophosphocholine (GPC) by the phospholipase/lysophospholipase PNPLA8-PNPLA7 axis enables endogenous choline stored in hepatic PC to be utilized in methyl metabolism. PNPLA7-deficient mice show marked decreases in hepatic GPC, choline, and several metabolites related to the methionine cycle, accompanied by various signs of methionine insufficiency, including growth retardation, hypoglycemia, hypolipidemia, increased energy consumption, reduced adiposity, increased fibroblast growth factor 21 (FGF21), and an altered histone/DNA methylation landscape. Moreover, PNPLA8-deficient mice recapitulate most of these phenotypes. In contrast to wild-type mice fed a methionine/choline-deficient diet, both knockout strains display decreased hepatic triglyceride, likely via reductions of lipogenesis and GPC-derived glycerol flux. Collectively, our findings highlight the biological importance of phospholipid catabolism driven by PNPLA8/PNPLA7 in methyl group flux and triglyceride synthesis in the liver.


Assuntos
Fígado , Lisofosfolipase , Metionina , Fosfatidilcolinas , Animais , Camundongos , Colina/metabolismo , Glicerilfosforilcolina/metabolismo , Fígado/metabolismo , Metionina/metabolismo , Racemetionina/metabolismo , S-Adenosilmetionina/metabolismo , Triglicerídeos/metabolismo , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Fosfatidilcolinas/metabolismo
10.
Toxicol In Vitro ; 86: 105509, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336212

RESUMO

Neuropathy target esterase (NTE) has been proven to act as a lysophospholipase (LysoPLA) and phospholipase B (PLB) in mammalian cells. In this study, we took human neuroblastoma SK-N-SH cells as the research object and explored the effect of NTE on phospholipid homeostasis. The results showed that phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) levels significantly increased (> 40%), while glycerophosphocholine (GPC) decreased (below 60%) after NTE gene was knockdown in the cells (NTE < 30% of control), which were prepared by gene silencing with dsRNA-NTE. However, in the NTE-overexpressed cells (NTE > 50% of control), which were prepared by expressing recombinant catalytic domain of NTE, LPC remarkably decreased (below 80%) and GPC enhanced (> 40%). Mipafox, a neuropathic organophosphorus compound (OP), significantly inhibited NTE-LysoPLA and NTE-PLB activities (> 95-99% inhibition at 50 µM), which was accompanied with a decreased GPC level (below 40%) although no change of the PC and LPC levels was observed; while paraoxon, a non-neuropathic OP, suppresses neither the activities of NTE-phospholipases nor the levels of PC, LPC, and GPC. Thus, we concluded that both the stable up- or down-regulated expression of NTE gene and the loss of NTE-LysoPLA/PLB activities disrupts phospholipid homeostasis in the cells although the inhibition of NTE activity only decreased GPC content without altering PC and LPC levels.


Assuntos
Neuroblastoma , Fosfolipídeos , Humanos , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Homeostase , Lisofosfatidilcolinas/farmacologia , Lisofosfatidilcolinas/metabolismo , Lisofosfolipase/metabolismo , Lisofosfolipase/farmacologia , Mamíferos/metabolismo , Compostos Organofosforados/farmacologia , Fosfatidilcolinas/farmacologia
11.
Food Chem ; 406: 134506, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36463594

RESUMO

Enzymatic degumming is an essential refining process to improve oil quality. In this study, a monoacylglycerol lipase GMGL was derived from marine Geobacillus sp., and was found that not only took monoacylglycerol (MAG) as substrate, but also had activity toward lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE) and glycerolphosphatidylcholine (GPC). Binding free energy showed LPC and LPE could bind with enzyme stably as MAG. It presented great potential in the field of enzymatic degumming. The phosphorus content in crude soybean oil decreased from 680.50 to 2.01 mg/kg and the yield of oil reached to 98.80 % after treating with phospholipase A1 (Lecitase Ultra) combined with lipase GMGL. An ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was developed to identify 21 differential phospholipids between crude soybean oil and enzymatic treatment. This work might shed some light on understanding the catalytic mechanism of monoacylglycerol lipase and provide an effective strategy for enzymatic degumming.


Assuntos
Geobacillus , Óleo de Soja , Óleo de Soja/química , Lisofosfolipase/metabolismo , Monoacilglicerol Lipases , Lisofosfatidilcolinas , Glycine max/metabolismo
12.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499308

RESUMO

Lysophosphatidylcholine (LPC) is a bioactive lipid that modulates macrophage polarization during immune responses, inflammation, and tissue remodeling. Patatin-like phospholipase domain containing protein 7 (PNPLA7) is a lysophospholipase with a preference for LPC. However, the role of PNPLA7 in macrophage polarization as an LPC hydrolase has not been explored. In the current study, we found that PNPLA7 is highly expressed in naïve macrophages and downregulated upon lipopolysaccharide (LPS)-induced polarization towards the classically activated (M1) phenotype. Consistently, overexpression of PNPLA7 suppressed the expression of proinflammatory M1 marker genes, including interleukin 1ß (IL-1ß), IL-6, inducible nitric oxide synthase (iNOS), and tumor necrosis factor α (TNF-α), whereas knockdown of PNPLA7 augmented the inflammatory gene expression in LPS-challenged macrophages. PNPLA7 overexpression and knockdown increased and decreased Sirtuin1 (SIRT1) mRNA and protein levels, respectively, and affected the acetylation of the nuclear factor-kappa B (NF-κB) p65 subunit, a key transcription factor in M1 polarization. In addition, the levels of phosphorylated p38 mitogen-activated protein kinase (MAPK) were suppressed and enhanced by PNPLA7 overexpression and knockdown, respectively. Taken together, these findings suggest that PNPLA7 suppresses M1 polarization of LPS-challenged macrophages by modulating SIRT1/NF-κB- and p38 MAPK-dependent pathways.


Assuntos
Lisofosfolipase , Ativação de Macrófagos , NF-kappa B , Sirtuína 1 , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sirtuína 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lisofosfolipase/metabolismo
13.
Toxins (Basel) ; 14(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36287984

RESUMO

Envenoming by Macrovipera lebetina subspecies causes severe life-threatening difficulties for people living in North Africa and the Middle East. To better understand the pathophysiology of envenoming and improve patient management, knowledge about the venom components of the subspecies is essential. Here, the venom proteomes of Macrovipera lebetina lebetina from Cyprus and Macrovipera lebetina cernovi from Iran were characterized using RP-HPLC separation of the crude venom proteins, SDS-PAGE of fractionated proteins, and LC-MS/MS of peptides obtained from in-gel tryptic digestion of protein bands. Moreover, we also used high-resolution shot-gun proteomics to gain more reliable identification, where the whole venom proteomes were subjected directly to in-solution digestion before LC-HR-MS/MS. The data revealed that both venoms consisted of at least 18 protein families, of which snake venom Zn2+-dependent metalloprotease (SVMP), serine protease, disintegrin, phospholipase A2, C-type lectin-like, and L-amino acid oxidase, together accounted for more than 80% of the venoms' protein contents. Although the two viper venoms shared mostly similar protein classes, the relative occurrences of these toxins were different in each snake subspecies. For instance, P-I class of SVMP toxins were found to be more abundant than P-III class in the venoms of M. l. cernovi compared to M. l. lebetina, which gives hints at a more potent myonecrotic effect and minor systemic hemorrhage following envenoming by M. l. cernovi than M. l. lebetina. Moreover, single-shot proteomics also revealed many proteins with low abundance (<1%) within the venoms, such as aminopeptidase, hyaluronidase, glutaminyl-peptide cyclotransferase, cystatin, phospholipase B, and vascular endothelial growth factor. Our study extends the in-depth understanding of the venom complexity of M. lebetina subspecies, particularly regarding toxin families associated with envenoming pathogenesis and those hard-detected protein classes expressed in trace amounts.


Assuntos
Proteômica , Viperidae , Animais , Humanos , Aminopeptidases/metabolismo , Cromatografia Líquida , Desintegrinas/metabolismo , Hialuronoglucosaminidase/metabolismo , Irã (Geográfico) , L-Aminoácido Oxidase/metabolismo , Lectinas Tipo C/metabolismo , Lisofosfolipase/metabolismo , Metaloproteases/metabolismo , Proteoma/metabolismo , Serina Proteases/metabolismo , Espectrometria de Massas em Tandem , Fator A de Crescimento do Endotélio Vascular/metabolismo , Venenos de Víboras/química , Viperidae/metabolismo
14.
Curr Genet ; 68(5-6): 661-674, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36112198

RESUMO

The phospholipase B homolog Plb1 and the cAMP-dependent protein kinase (PKA) pathway are required by fission yeast, also known as to Schizosaccharomyces pombe, to grow under KCl-stress conditions. Here, we report the relative contributions of Plb1 and the cAMP/PKA pathway during the hypertonic stress response. We show that the plb1∆, cyr1∆, and pka1∆ single mutants are sensitive to high concentrations of KCl but insensitive to sorbitol-induced osmotic stress. In contrast, the plb1∆ cyr1∆ and plb1∆ pka1∆ double mutants are hypersensitive to KCl and sorbitol. The cyr1∆ pka1∆ double mutants showed the same phenotype of each single mutant. Growth inhibition due to hypertonic stress in the plb1∆, plb1∆ cyr1∆, and plb1∆ pka1∆ strains was partially rescued by cgs1 deletion-cgs1∆ has constitutively active Pka1-or by the deletion of transcription factor Rst2, which is negatively regulated by Pka1. Pka1-GFP localized in the nucleus and cytoplasm in plb1∆, whereas it is localized only in the cytoplasm in cyr1∆, indicating that Plb1 does not regulate Pka1 localization. Glucose limitation downregulates the PKA pathway, and it was accordingly observed that glucose limitation in plb1∆ further increased the strain's sensitivity to KCl. Growth inhibition by KCl in plb1∆ under glucose-limited conditions was significantly rescued by cgs1∆ and slightly rescued by rst2∆. These findings indicate that, in fission yeast, Plb1 and the glucose-sensing cAMP/PKA pathway play a synergistic role in responding to hypertonic stress.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Pressão Osmótica , Lisofosfolipase/metabolismo , Glucose/metabolismo , Sorbitol/metabolismo , Fatores de Transcrição/metabolismo
16.
Nano Lett ; 22(6): 2350-2357, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35274950

RESUMO

Protein crystallization is a prevalent phenomenon existing in the formation of intricate protein-assembled structures in living cells. Whether the crystallization of a protein would exert a specific biological function, however, remains poorly understood. Here, we reconstructed a recombinant galectin-10 (gal-10) protein and artificially engineered a gal-10 protein assembly in two distinguishable states: i.e., an insoluble crystalline state and a soluble state. The potency of the gal-10 protein in either the crystalline state or the soluble state to induce chemokine or cytokine release in the primary human nasal epithelial cells and nasal polyps derived from chronic rhinosinusitis patients with nasal polyps was investigated. The crystalline gal-10 upregulated the gene expression of chemokines or cytokines, including IL-1ß, IL-6, IL-8, TNF-α, and GM-CSF, in patient-derived primary cells and nasal polyps. In contrast, soluble gal-10 displayed a diminished potency to induce inflammation. Our results demonstrate that the gal-10 protein potency of activating inflammation is correlated with its crystalline state.


Assuntos
Glicoproteínas , Inflamação , Lisofosfolipase , Pólipos Nasais , Sinusite , Cristalização , Citocinas , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lisofosfolipase/química , Lisofosfolipase/metabolismo , Pólipos Nasais/metabolismo , Pólipos Nasais/patologia , Sinusite/metabolismo
17.
Autophagy ; 18(10): 2459-2480, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35220880

RESUMO

Massive infiltrated and enriched decidual macrophages (dMφ) have been widely regarded as important regulators of maternal-fetal immune tolerance and trophoblast invasion, contributing to normal pregnancy. However, the characteristics of metabolic profile and the underlying mechanism of dMφ residence remain largely unknown. Here, we observe that dMφ display an active glycerophospholipid metabolism. The activation of ENPP2-lysophosphatidic acid (LPA) facilitates the adhesion and retention, and M2 differentiation of dMφ during normal pregnancy. Mechanistically, this process is mediated through activation of the LPA receptors (LPAR1 and PPARG/PPARγ)-DDIT4-macroautophagy/autophagy axis, and further upregulation of multiple adhesion factors (e.g., cadherins and selectins) in a CLDN7 (claudin 7)-dependent manner. Additionally, poor trophoblast invasion and placenta development, and a high ratio of embryo loss are observed in Enpp2±, lpar1-/- or PPARG-blocked pregnant mice. Patients with unexplained spontaneous abortion display insufficient autophagy and cell residence of dMφ. In therapeutic studies, supplementation with LPA or the autophagy inducer rapamycin significantly promotes dMφ autophagy and cell residence, and improves embryo resorption in Enpp2± and spontaneous abortion mouse models, which should be dependent on the activation of DDIT4-autophagy-CLDN7-adhesion molecules axis. This observation reveals that inactivation of ENPP2-LPA metabolism and insufficient autophagy of dMφ result in resident obstacle of dMφ and further increase the risk of spontaneous abortion, and provides potential therapeutic strategies to prevent spontaneous abortion.Abbreviations: ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; Atg5: autophagy related 5; ATG13: autophagy related 13; BECN1: beclin 1; CDH1/E-cadherin: cadherin 1; CDH5/VE-cadherin: cadherin 5; CFSE: carboxyfluorescein succinimidyl ester; CLDN7: claudin 7; CSF1/M-CSF: colony stimulating factor 1; CSF2/GM-CSF: colony stimulating factor 2; Ctrl: control; CXCL10/IP-10: chemokine (C-X-C) ligand 10; DDIT4: DNA damage inducible transcript 4; dMφ: decidual macrophage; DSC: decidual stromal cells; ENPP2/ATX: ectonucleotide pyrophosphatase/phosphodiesterase 2; Enpp2±: Enpp2 heterozygous knockout mouse; ENPP2i/PF-8380: ENPP2 inhibitor; EPCAM: epithelial cell adhesion molecule; ESC: endometrial stromal cells; FGF2/b-FGF: fibroblast growth factor 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GPCPD1: glycerophosphocholine phosphodiesterase 1; HE: heterozygote; HIF1A: hypoxia inducible factor 1 subunit alpha; HNF4A: hepatocyte nuclear factor 4 alpha; HO: homozygote; ICAM2: intercellular adhesion molecule 2; IL: interleukin; ITGAV/CD51: integrin subunit alpha V; ITGAM/CD11b: integrin subunit alpha M; ITGAX/CD11b: integrin subunit alpha X; ITGB3/CD61: integrin subunit beta 3; KLRB1/NK1.1: killer cell lectin like receptor B1; KRT7/cytokeratin 7: keratin 7; LPA: lysophosphatidic acid; LPAR: lysophosphatidic acid receptor; lpar1-/-: lpar1 homozygous knockout mouse; LPAR1i/AM966: LPAR1 inhibitor; LY6C: lymphocyte antigen 6 complex, locus C1; LYPLA1: lysophospholipase 1; LYPLA2: lysophospholipase 2; Lyz2: lysozyme 2; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MARVELD2: MARVEL domain containing 2; 3-MA: 3-methyladenine; MBOAT2: membrane bound O-acyltransferase domain containing 2; MGLL: monoglyceride lipase; MRC1/CD206: mannose receptor C-type 1; MTOR: mechanistic target of rapamycin kinase; NP: normal pregnancy; PDGF: platelet derived growth factor; PLA1A: phospholipase A1 member A; PLA2G4A: phospholipase A2 group IVA; PLPP1: phospholipid phosphatase 1; pMo: peripheral blood monocytes; p-MTOR: phosphorylated MTOR; PPAR: peroxisome proliferator activated receptor; PPARG/PPARγ: peroxisome proliferator activated receptor gamma; PPARGi/GW9662: PPARG inhibitor; PTPRC/CD45: protein tyrosine phosphatase receptor type, C; Rapa: rapamycin; RHEB: Ras homolog, mTORC1 binding; SA: spontaneous abortion; SELE: selectin E; SELL: selectin L; siCLDN7: CLDN7-silenced; STAT: signal transducer and activator of transcription; SQSTM1: sequestosome 1; TJP1: tight junction protein 1; VCAM1: vascular cell adhesion molecule 1; WT: wild type.


Assuntos
Aborto Espontâneo , Autofagia , Aborto Espontâneo/genética , Aborto Espontâneo/metabolismo , Actinas/metabolismo , Aciltransferases/metabolismo , Animais , Autofagia/genética , Proteína Beclina-1/metabolismo , Caderinas/metabolismo , Quimiocina CXCL10/metabolismo , Claudinas/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Ésteres/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glicerofosfolipídeos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fosfolipases A2 do Grupo IV/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Integrinas/metabolismo , Queratina-7/metabolismo , Ligantes , Lisofosfolipase/metabolismo , Lisofosfolipídeos/metabolismo , Proteína 2 com Domínio MARVEL , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Monoacilglicerol Lipases/metabolismo , Muramidase/metabolismo , PPAR gama/metabolismo , Fosfolipases , Fosfolipases A1/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Gravidez , Pirofosfatases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores Semelhantes a Lectina de Células NK/metabolismo , Selectinas/metabolismo , Proteína Sequestossoma-1/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/metabolismo , Tioléster Hidrolases
18.
Artigo em Inglês | MEDLINE | ID: mdl-35063652

RESUMO

Pseudomonas aeruginosa is a severe threat to immunocompromised patients due to its numerous virulence factors and biofilm-mediated multidrug resistance. It produces and secretes various toxins with hydrolytic activities including phospholipases. However, the function of intracellular phospholipases for bacterial virulence has still not been established. Here, we demonstrate that the hypothetical gene pa2927 of P. aeruginosa encodes a novel phospholipase B named PaPlaB. At reaction equilibrium, PaPlaB purified from detergent-solubilized membranes of E. coli released fatty acids (FAs) from sn-1 and sn-2 positions of phospholipids at the molar ratio of 51:49. PaPlaB in vitro hydrolyzed P. aeruginosa phospholipids reconstituted in detergent micelles and phospholipids reconstituted in vesicles. Cellular localization studies indicate that PaPlaB is a cell-bound PLA of P. aeruginosa and that it is peripherally bound to both membranes in E. coli, yet the active form was predominantly associated with the cytoplasmic membrane of E. coli. Decreasing the concentration of purified and detergent-stabilized PaPlaB leads to increased enzymatic activity, and at the same time triggers oligomer dissociation. We showed that the free FA profile, biofilm amount and architecture of the wild type and ΔplaB differ. However, it remains to be established how the PLB activity of PaPlaB is regulated by homooligomerisation and how it relates to the phenotype of the P. aeruginosa ΔplaB. This novel putative virulence factor contributes to our understanding of phospholipid degrading enzymes and might provide a target for new therapeutics against P. aeruginosa biofilms.


Assuntos
Lisofosfolipase , Pseudomonas aeruginosa , Biofilmes , Detergentes/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Lisofosfolipase/metabolismo , Fosfolipases/genética , Fosfolipases/metabolismo , Fosfolipídeos/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
20.
Commun Biol ; 4(1): 340, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727677

RESUMO

Fatty acid biosynthesis (FAB) is an essential and highly conserved metabolic pathway. In bacteria, this process is mediated by an elaborate network of protein•protein interactions (PPIs) involving a small, dynamic acyl carrier protein that interacts with dozens of other partner proteins (PPs). These PPIs have remained poorly characterized due to their dynamic and transient nature. Using a combination of solution-phase NMR spectroscopy and protein-protein docking simulations, we report a comprehensive residue-by-residue comparison of the PPIs formed during FAB in Escherichia coli. This technique describes and compares the molecular basis of six discrete binding events responsible for E. coli FAB and offers insights into a method to characterize these events and those in related carrier protein-dependent pathways.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos/biossíntese , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Acetiltransferases/metabolismo , Oxirredutases do Álcool/metabolismo , Sítios de Ligação , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Lisofosfolipase/metabolismo , Simulação de Acoplamento Molecular , Proteínas Periplásmicas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Espectroscopia de Prótons por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...