Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(5): e0101321, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34517752

RESUMO

Phage P1 is a temperate phage which makes the lytic or lysogenic decision upon infecting bacteria. During the lytic cycle, progeny phages are produced and the cell lyses, and in the lysogenic cycle, P1 DNA exists as a low-copy-number plasmid and replicates autonomously. Previous studies at the bulk level showed that P1 lysogenization was independent of multiplicity of infection (MOI; the number of phages infecting a cell), whereas lysogenization probability of the paradigmatic phage λ increases with MOI. However, the mechanism underlying the P1 behavior is unclear. In this work, using a fluorescent reporter system, we demonstrated this P1 MOI-independent lysogenic response at the single-cell level. We further observed that the activity of the major repressor of lytic functions (C1) is a determining factor for the final cell fate. Specifically, the repression activity of P1, which arises from a combination of C1, the anti-repressor Coi, and the corepressor Lxc, remains constant for different MOI, which results in the MOI-independent lysogenic response. Additionally, by increasing the distance between phages that infect a single cell, we were able to engineer a λ-like, MOI-dependent lysogenization upon P1 infection. This suggests that the large separation of coinfecting phages attenuates the effective communication between them, allowing them to make decisions independently of each other. Our work establishes a highly quantitative framework to describe P1 lysogeny establishment. This system plays an important role in disseminating antibiotic resistance by P1-like plasmids and provides an alternative to the lifestyle of phage λ. IMPORTANCE Phage P1 has been shown potentially to play an important role in disseminating antibiotic resistance among bacteria during lysogenization, as evidenced by the prevalence of P1 phage-like elements in animal and human pathogens. In contrast to phage λ, a cell fate decision-making paradigm, P1 lysogenization was shown to be independent of MOI. In this work, we built a simple genetic model to elucidate this MOI independency based on the gene-regulatory circuitry of P1. We also proposed that the effective communication between coinfecting phages contributes to the lysis-lysogeny decision-making of P1 and highlighted the significance of spatial organization in the process of cell fate determination in a single-cell environment. Finally, our work provides new insights into different strategies acquired by viruses to interact with their bacterial hosts in different scenarios for their optimal survival.


Assuntos
Bactérias/virologia , Bacteriófago P1/genética , Bacteriófago P1/metabolismo , Regulação Viral da Expressão Gênica , Lisogenia/genética , Interações Microbianas , Proteínas Virais Reguladoras e Acessórias/genética , Bacteriófago P1/química , Lisogenia/fisiologia , Proteínas Virais Reguladoras e Acessórias/metabolismo
2.
Biomolecules ; 11(9)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34572534

RESUMO

A bacteriophage switches between lytic and lysogenic life cycles. The AimR-AimP-AimX communication system is responsible for phage lysis-lysogeny decisions during the infection of Bacillus subtilis. AimX is a regulator biasing phage lysis, AimR is a transcription factor activating AimX expression, and AimP is an arbitrium peptide that determines phage lysogeny by deactivating AimR. A strain-specific mechanism for the lysis-lysogeny decisions is proposed in SPbeta and phi3T phages. That is, the arbitrium peptide of the SPbeta phage stabilizes the SPbeta AimR (spAimR) dimer, whereas the phi3T-derived peptide disassembles the phi3T AimR (phAimR) dimer into a monomer. Here, we find that phAimR does not undergo dimer-to-monomer conversion upon arbitrium peptide binding. Gel-filtration, static light scattering (SLS) and analytical ultracentrifugation (AUC) results show that phAimR is dimeric regardless of the presence of arbitrium peptide. Small-angle X-ray scattering (SAXS) reveals that the arbitrium peptide binding makes an extended dimeric conformation. Single-molecule fluorescence resonance energy transfer (smFRET) analysis reveals that the phAimR dimer fluctuates among two distinct conformational states, and each preexisting state is selectively recognized by the arbitrium peptide or the target DNA, respectively. Collectively, our biophysical characterization of the phAimR dynamics underlying specific target recognition provides new mechanistic insights into understanding lysis-lysogeny decisions in Bacillus phage phi3T.


Assuntos
Fagos Bacilares/metabolismo , Lisogenia/fisiologia , Multimerização Proteica , Proteínas Virais/química , Proteínas Virais/metabolismo , DNA Viral/metabolismo , Modelos Biológicos , Peptídeos/química , Conformação Proteica , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
3.
Biochem Biophys Res Commun ; 558: 51-56, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33895551

RESUMO

The quorum-sensing (QS) system between the phages and their hosts is important for the phage lysis-lysogeny decision. In Vibrio cholerae, the QS system consists of a LuxR-type receptor VqmA (VqmAVc) and an autoinducer molecule 3,5-dimethylpyrazin-2-ol (DPO). A VqmA homolog encoded by vibriophage VP882 (VqmAPhage) can intervene the host QS system via binding to both the host-produced DPO and its cognate promoter (Pqtip) to induce the phage lysogeny-to-lysis transition, whereas VqmAVc cannot influence the VqmAPhage-induced pathway, suggesting an asymmetry regulation. In this study, we report the crystal structure of VqmAPhage-DPO complex at 2.65 Å and reveal that the mechanism of DPO recognition is conserved in VqmA homologs. Besides, we identify a non-classical palindrome sequence in Pqtip, which can be effectively recognized by VqmAPhage but not VqmAVc. The sequence contains an interval longer than that in the vqmR promoter recognized by VqmAVc. In addition, the two DBD regions in the VqmAPhage dimer exhibit more relaxed architecture than that of the reported VqmAVc, which is likely to be in the conformation that may easily bind to target promoter containing a longer interval. In summary, our findings provide a structural and biochemical basis for the DBD-dependent DNA recognition in different promoter regions in the phage lysogeny-to-lysis decision communication system, and provide clues for developing phage therapies against Vibrio cholerae infection.


Assuntos
Bacteriófagos/genética , Percepção de Quorum/genética , Vibrio cholerae/virologia , Bacteriólise/genética , Bacteriólise/fisiologia , Bacteriófagos/patogenicidade , Bacteriófagos/fisiologia , Cristalografia por Raios X , Regulação Viral da Expressão Gênica , Genes Virais , Humanos , Lisogenia/genética , Lisogenia/fisiologia , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , Percepção de Quorum/fisiologia , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Transativadores/química , Transativadores/genética , Transativadores/fisiologia , Vibrio cholerae/fisiologia
4.
Math Med Biol ; 38(1): 28-58, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32720676

RESUMO

A predator-prey model is used to investigate the interactions between phages and bacteria by considering the lytic and lysogenic life cycles of phages and the prophage induction. We provide answers to the following conflictual research questions: (1) what are conditions under which the presence of phages can purify a bacterial infected environment? (2) Can the presence of phages triggers virulent bacterial outbreaks? We derive the basic offspring number $\mathcal N_0$ that serves as a threshold and the bifurcation parameter to study the dynamics and bifurcation of the system. The model exhibits three equilibria: an unstable environment-free equilibrium, a globally asymptotically stable (GAS) phage-free equilibrium (PFE) whenever $\mathcal N_0<1$, and a locally asymptotically stable environment-persistent equilibrium (EPE) when $\mathcal N_0>1$. The Lyapunov-LaSalle techniques are used to prove the GAS of the PFE and estimate the EPE basin of attraction. Through the center manifold approximation, topological types of the PFE are precised. Existence of transcritical and Hopf bifurcations are established. Precisely, when $\mathcal N_0>1$, the EPE loses its stability and periodic solutions arise. Furthermore, increasing $\mathcal N_0$ can purify an environment where bacteriophages are introduced. Purposely, we prove that for large values of $\mathcal N_0$, the overall bacterial population asymptotically approaches zero, while the phage population sustains. Ecologically, our results show that for small values of $\mathcal N_0$, the existence of periodic solutions could explain the occurrence of repetitive bacteria-borne disease outbreaks, while large value of $\mathcal N_0$ clears bacteria from the environment. Numerical simulations support our theoretical results.


Assuntos
Bactérias/virologia , Bacteriófagos/fisiologia , Modelos Biológicos , Ativação Viral/fisiologia , Bactérias/crescimento & desenvolvimento , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/patogenicidade , Evolução Biológica , Cólera/microbiologia , Cólera/virologia , Ecossistema , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Lisogenia/fisiologia , Conceitos Matemáticos , Dinâmica não Linear , Vibrio cholerae/genética , Vibrio cholerae/patogenicidade , Vibrio cholerae/virologia , Virulência/genética
5.
Viruses ; 12(7)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679656

RESUMO

The lytic and lysogenic life cycles of marine phages are influenced by environmental conditions such as solar radiation, temperature, and host abundance. Temperature can regulate phage infection, but its role is difficult to discern in oligotrophic waters where there is typically low host abundance and high temperatures. Here, we study the temporal variability of viral dynamics and the occurrence of lysogeny using mitomycin C in a eutrophic coastal lagoon in the oligotrophic Red Sea, which showed strong seasonality in terms of temperature (22.1-33.3 °C) and large phytoplankton blooms. Viral abundances ranged from 2.2 × 106 to 1.5 × 107 viruses mL-1 and were closely related to chlorophyll a (chl a) concentration. Observed high virus-to-bacterium ratio (VBR) (4-79; 16 ± 4 (SE)) suggests that phages exerted a tight control of their hosts as indicated by the significant decrease in bacterial abundance with increasing virus concentration. Heterotrophic bacterial abundance also showed a significant decrease with increasing temperature. However, viral abundance was not related to temperature changes and the interaction of water temperature, suggesting an indirect effect of temperature on decreased host abundance, which was observed at the end of the summertime. From the estimated burst size (BS), we observed lysogeny (undetectable to 29.1%) at low percentages of 5.0% ± 1.2 (SE) in half of the incubations with mitomycin C, while it increased to 23.9% ± 2.8 (SE) when the host abundance decreased. The results suggest that lytic phages predominate, switching to a moderate proportion of temperate phages when the host abundance reduces.


Assuntos
Bacteriófagos/fisiologia , Lisogenia/fisiologia , Plâncton/virologia , Citometria de Fluxo , Temperatura Alta , Oceano Índico , Oceanos e Mares , Plâncton/fisiologia , Temperatura
6.
Cell Rep ; 32(4): 107956, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32726621

RESUMO

Some Listeria monocytogenes (Lm) strains harbor a prophage within the comK gene, which renders it inactive. During Lm infection of macrophage cells, the prophage turns into a molecular switch, promoting comK gene expression and therefore Lm intracellular growth. During this process, the prophage does not produce infective phages or cause bacterial lysis, suggesting it has acquired an adaptive behavior suited to the pathogenic lifestyle of its host. In this study, we demonstrate that this non-classical phage behavior, named active lysogeny, relies on a transcriptional response that is specific to the intracellular niche. While the prophage undergoes lytic induction, the process is arrested midway, preventing the transcription of the late genes. Further, we demonstrate key phage factors, such as LlgA transcription regulator and a DNA replicase, that support the phage adaptive behavior. This study provides molecular insights into the adaptation of phages to their pathogenic hosts, uncovering unusual cooperative interactions.


Assuntos
Proteínas de Bactérias/genética , Listeria monocytogenes/metabolismo , Lisogenia/fisiologia , Fatores de Transcrição/genética , Animais , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Feminino , Listeriose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Prófagos/genética , Fatores de Transcrição/metabolismo , Ativação Viral/fisiologia
7.
Viruses ; 12(6)2020 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486377

RESUMO

Burkholderia species have environmental, industrial and medical significance, and are important opportunistic pathogens in individuals with cystic fibrosis (CF). Using a combination of existing and newly determined genome sequences, this study investigated prophage carriage across the species B. vietnamiensis, and also isolated spontaneously inducible prophages from a reference strain, G4. Eighty-one B. vietnamiensis genomes were bioinformatically screened for prophages using PHASTER (Phage Search Tool Enhanced Release) and prophage regions were found to comprise up to 3.4% of total genetic material. Overall, 115 intact prophages were identified and there was evidence of polylysogeny in 32 strains. A novel, inducible Mu-like phage (vB_BvM-G4P1) was isolated from B. vietnamiensis G4 that had lytic activity against strains of five Burkholderia species prevalent in CF infections, including the Boston epidemic B. dolosa strain SLC6. The cognate prophage to vB_BvM-G4P1 was identified in the lysogen genome and was almost identical (>93.5% tblastx identity) to prophages found in 13 other B. vietnamiensis strains (17% of the strain collection). Phylogenomic analysis determined that the G4P1-like prophages were widely distributed across the population structure of B. vietnamiensis. This study highlights how genomic characterization of Burkholderia prophages can lead to the discovery of novel bacteriophages with potential therapeutic or biotechnological applications.


Assuntos
Burkholderia/virologia , Lisogenia , Prófagos/patogenicidade , Burkholderia/genética , Infecções por Burkholderia/microbiologia , Cromossomos Bacterianos/genética , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Genoma Bacteriano/genética , Genoma Viral/genética , Humanos , Lisogenia/fisiologia , Microscopia Eletrônica de Transmissão , Filogenia , Prófagos/genética , Prófagos/fisiologia , Ativação Viral
8.
Sci Rep ; 10(1): 6737, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317653

RESUMO

Bacteriophages are abundant in human biomes and therefore in human clinical samples. Although this is usually not considered, they might interfere with the recovery of bacterial pathogens at two levels: 1) by propagating in the enrichment cultures used to isolate the infectious agent, causing the lysis of the bacterial host and 2) by the detection of bacterial genes inside the phage capsids that mislead the presence of the bacterial pathogen. To unravel these interferences, human samples (n = 271) were analyzed and infectious phages were observed in 11% of blood culture, 28% of serum, 45% of ascitic fluid, 14% of cerebrospinal fluid and 23% of urine samples. The genetic content of phage particles from a pool of urine and ascitic fluid samples corresponded to bacteriophages infecting different bacterial genera. In addition, many bacterial genes packaged in the phage capsids, including antibiotic resistance genes and 16S rRNA genes, were detected in the viromes. Phage interference can be minimized applying a simple procedure that reduced the content of phages up to 3 logs while maintaining the bacterial load. This method reduced the detection of phage genes avoiding the interference with molecular detection of bacteria and reduced the phage propagation in the cultures, enhancing the recovery of bacteria up to 6 logs.


Assuntos
Bactérias/virologia , Inoviridae/classificação , Myoviridae/classificação , Podoviridae/classificação , RNA Ribossômico 16S/genética , Siphoviridae/classificação , Líquido Ascítico/microbiologia , Líquido Ascítico/virologia , Bactérias/classificação , Bactérias/genética , Hemocultura/métodos , Capsídeo/química , Líquido Cefalorraquidiano/microbiologia , Líquido Cefalorraquidiano/virologia , Filtração/métodos , Humanos , Inoviridae/genética , Inoviridae/isolamento & purificação , Lisogenia/fisiologia , Tipagem Molecular/métodos , Myoviridae/genética , Myoviridae/isolamento & purificação , Podoviridae/genética , Podoviridae/isolamento & purificação , Soro/microbiologia , Soro/virologia , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Urina/microbiologia , Urina/virologia
9.
Cell Syst ; 10(3): 254-264.e9, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32191875

RESUMO

Half of the bacteria in the human gut microbiome are lysogens containing integrated prophages, which may activate in stressful immune environments. Although lysogens are likely to be phagocytosed by macrophages, whether prophage activation occurs or influences the outcome of bacterial infection remains unexplored. To study the dynamics of bacteria-phage interactions in living cells-in particular, the macrophage-triggered induction and lysis of dormant prophages in the phagosome-we adopted a tripartite system where murine macrophages engulf E. coli, which are lysogenic with an engineered bacteriophage λ, containing a fluorescent lysis reporter. Pre-induced prophages are capable of lysing the host bacterium and propagating infection to neighboring bacteria in the same phagosome. A non-canonical pathway, mediated by PhoP, is involved with the native λ phage induction inside phagocytosed E. coli. These findings suggest two possible mechanisms by which induced prophages may function to aid the bactericidal activity of macrophages.


Assuntos
Lisogenia/fisiologia , Imagem Molecular/métodos , Ativação Viral/fisiologia , Animais , Bactérias , Bacteriófago lambda/fisiologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Microbioma Gastrointestinal , Engenharia Genética/métodos , Células HEK293 , Humanos , Macrófagos/metabolismo , Camundongos , Prófagos/metabolismo , Prófagos/fisiologia , Células RAW 264.7
10.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121308

RESUMO

The bacterial virus lambda (λ) is a temperate bacteriophage that can lysogenize host Escherichia coli (E. coli) cells. Lysogeny requires λ repressor, the cI gene product, which shuts off transcription of the phage genome. The λ N protein, in contrast, is a transcriptional antiterminator, required for expression of the terminator-distal genes, and thus, λ N mutants are growth-defective. When E. coli is infected with a λ double mutant that is defective in both N and cI (i.e., λN-cI-), at high multiplicities of 50 or more, it forms polylysogens that contain 20-30 copies of the λN-cI- genome integrated in the E. coli chromosome. Early studies revealed that the polylysogens underwent "conversion" to long filamentous cells that form tiny colonies on agar. Here, we report a large set of altered biochemical properties associated with this conversion, documenting an overall degeneration of the bacterial envelope. These properties reverted back to those of nonlysogenic E. coli as the metastable polylysogen spontaneously lost the λN-cI- genomes, suggesting that conversion is a direct result of the multiple copies of the prophage. Preliminary attempts to identify lambda genes that may be responsible for conversion ruled out several candidates, implicating a potentially novel lambda function that awaits further studies.


Assuntos
Bacteriófago lambda/crescimento & desenvolvimento , Lisogenia/fisiologia , Prófagos/crescimento & desenvolvimento , Bacteriófago lambda/efeitos dos fármacos , Bacteriófago lambda/genética , Bacteriófago lambda/ultraestrutura , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Dactinomicina/farmacologia , Escherichia coli/virologia , Genes Virais , Lisogenia/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Modelos Biológicos , Ácido Nalidíxico/farmacologia , Peptidoglicano/metabolismo , Prófagos/efeitos dos fármacos , Prófagos/ultraestrutura , Proteínas Virais/metabolismo
11.
Appl Environ Microbiol ; 86(1)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31676478

RESUMO

The gut microbiota harbors a diverse phage population that is largely derived from lysogens, which are bacteria that contain dormant phages in their genome. While the diversity of phages in gut ecosystems is getting increasingly well characterized, knowledge is limited on how phages contribute to the evolution and ecology of their host bacteria. Here, we show that biologically active prophages are widely distributed in phylogenetically diverse strains of the gut symbiont Lactobacillus reuteri Nearly all human- and rodent-derived strains, but less than half of the tested strains of porcine origin, contain active prophages, suggesting different roles of phages in the evolution of host-specific lineages. To gain insight into the ecological role of L. reuteri phages, we developed L. reuteri strain 6475 as a model to study its phages. After administration to mice, L. reuteri 6475 produces active phages throughout the intestinal tract, with the highest number detected in the distal colon. Inactivation of recA abolished in vivo phage production, which suggests that activation of the SOS response drives phage production in the gut. In conventional mice, phage production reduces bacterial fitness as fewer wild-type bacteria survive gut transit compared to the mutant lacking prophages. However, in gnotobiotic mice, phage production provides L. reuteri with a competitive advantage over a sensitive host. Collectively, we uncovered that the presence of prophages, although associated with a fitness trade-off, can be advantageous for a gut symbiont by killing a competitor strain in its intestinal niche.IMPORTANCE Bacteriophages derived from lysogens are abundant in gut microbiomes. Currently, mechanistic knowledge is lacking on the ecological ramifications of prophage carriage yet is essential to explain the abundance of lysogens in the gut. An extensive screen of the bacterial gut symbiont Lactobacillus reuteri revealed that biologically active prophages are widely distributed in this species. L. reuteri 6475 produces phages throughout the mouse intestinal tract, but phage production is associated with reduced fitness of the lysogen. However, phage production provides a competitive advantage in direct competition with a nonlysogenic strain of L. reuteri that is sensitive to these phages. This combination of increased competition with a fitness trade-off provides a potential explanation for the domination of lysogens in gut ecosystem and how lysogens can coexist with sensitive hosts.


Assuntos
Bacteriófagos , Limosilactobacillus reuteri/virologia , Lisogenia , Interações Microbianas/genética , Prófagos/genética , Animais , Bacteriófagos/genética , Bacteriófagos/fisiologia , Galinhas , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/virologia , Genoma Bacteriano , Genoma Viral , Humanos , Limosilactobacillus reuteri/genética , Lisogenia/genética , Lisogenia/fisiologia , Camundongos , Ratos , Suínos , Ativação Viral/fisiologia
13.
IEEE Trans Nanobioscience ; 18(3): 428-436, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30946673

RESUMO

The lysis-lysogeny switch in E. coli due to infection from lambda phage has been extensively studied and explained by scientists of molecular biology. The bacterium either survives with the viral strand of deoxyribonucleic acid (DNA) or dies producing hundreds of viruses for propagation of infection. Many proteins transcribed after infection by λ phage take part in determining the fate of the bacterium, but two proteins that play a key role in this regard are the cI and cro dimers, which are transcribed off the viral DNA. This paper presents a novel modeling mechanism for the lysis-lysogeny switch, by transferring the interactions of the main proteins, the lambda right operator and promoter regions and the ribonucleic acid (RNA) polymerase, to a finite state machine (FSM), to determine cell fate. The FSM, and thus derived is implemented in field-programmable gate array (FPGA), and simulations have been run in random conditions. A Markov model has been created for the same mechanism. Steady state analysis has been conducted for the transition matrix of the Markov model, and the results have been generated to show the steady state probability of lysis with various model values. In this paper, it is hoped to lay down guidelines to convert biological processes into computing machines.


Assuntos
Bacteriófago lambda , Computadores Moleculares , Lisogenia/fisiologia , Modelos Biológicos , Modelos Estatísticos , Nanotecnologia/métodos , Bacteriófago lambda/química , Bacteriófago lambda/metabolismo , Escherichia coli/virologia , Cadeias de Markov , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-30509943

RESUMO

Bacterial membrane vesicle research has so far focused mainly on Gram-negative bacteria. Only recently have Gram-positive bacteria been demonstrated to produce and release extracellular membrane vesicles (MVs) that contribute to bacterial virulence. Although treatment of bacteria with antibiotics is a well-established trigger of bacterial MV formation, the underlying mechanisms are poorly understood. In this study, we show that antibiotics can induce MVs through different routes in the important human pathogen Staphylococcus aureus DNA-damaging agents and antibiotics inducing the SOS response triggered vesicle formation in lysogenic strains of S. aureus but not in their phage-devoid counterparts. The ß-lactam antibiotics flucloxacillin and ceftaroline increased vesicle formation in a prophage-independent manner by weakening the peptidoglycan layer. We present evidence that the amount of DNA associated with MVs formed by phage lysis is greater than that for MVs formed by ß-lactam antibiotic-induced blebbing. The purified MVs derived from S. aureus protected the bacteria from challenge with daptomycin, a membrane-targeting antibiotic, both in vitro and ex vivo in whole blood. In addition, the MVs protected S. aureus from killing in whole blood, indicating that antibiotic-induced MVs function as a decoy and thereby contribute to the survival of the bacterium.


Assuntos
Antibacterianos/farmacologia , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/virologia , Lisogenia/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/virologia , Bacteriófagos/fisiologia , Cefalosporinas/farmacologia , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/genética , Daptomicina/farmacologia , Floxacilina/farmacologia , Humanos , Lisogenia/genética , Peptidoglicano/efeitos dos fármacos , Ceftarolina
15.
J Basic Microbiol ; 59(2): 123-133, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30485461

RESUMO

Bacteriophages (phages/viruses) need host bacteria to replicate and propagate. Primarily, a bacteriophage contains a head/capsid to encapsidate the genetic material. Some phages contain tails. Phages encode endolysins to hydrolyze bacterial cell wall. The two main classes of phages are lytic or virulent and lysogenic or temperate. In comparison with antibiotics, to deal with bacterial infections, phage therapy is thought to be more effective. In 1921, the use of phages against bacterial infections was first demonstrated. Later on, in humans, phage therapy was used to treat skin infections caused by Pseudomonas species. Furthermore, phages were successfully employed against infections in animals - calves, lambs, and pigs infected with Escherichia coli. In agriculture, for instance, phages have successfully been used e.g., Apple blossom infection, caused by Erwinia amylovora, was effectively catered with the use of bacteriophages. Bacteriophages were also used to control E. coli, Salmonella, Listeria, and Campylobacter contamination in food. Comparatively, phage display is a recently discovered technology, whereby, bacteriophages play a significant role. This review is an effort to collect almost recent and relevant information regarding applications and complications associated with the use of bacteriophages.


Assuntos
Infecções Bacterianas/terapia , Bacteriófagos/fisiologia , Terapia por Fagos , Agricultura , Doenças dos Animais/microbiologia , Doenças dos Animais/terapia , Animais , Antibacterianos/uso terapêutico , Bactérias/patogenicidade , Bactérias/virologia , Bacteriófagos/ultraestrutura , Bovinos , DNA Viral , Contaminação de Alimentos/prevenção & controle , Inocuidade dos Alimentos , História do Século XX , História do Século XXI , Humanos , Lisogenia/fisiologia , Terapia por Fagos/história , Terapia por Fagos/métodos , Terapia por Fagos/tendências , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Ovinos , Suínos
16.
J Biol Chem ; 294(10): 3343-3349, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30242122

RESUMO

Cellular decision-making guides complex development such as cell differentiation and disease progression. Much of our knowledge about decision-making is derived from simple models, such as bacteriophage lambda infection, in which lambda chooses between the vegetative lytic fate and the dormant lysogenic fate. This paradigmatic system is broadly understood but lacking mechanistic details, partly due to limited resolution of past studies. Here, we discuss how modern technologies have enabled high-resolution examination of lambda decision-making to provide new insights and exciting possibilities in studying this classical system. The advent of techniques for labeling specific DNA, RNA, and proteins in cells allows for molecular-level characterization of events in lambda development. These capabilities yield both new answers and new questions regarding how the isolated lambda genetic circuit acts, what biological events transpire among phages in their natural context, and how the synergy of simple phage macromolecules brings about complex behaviors.


Assuntos
Bacteriófago lambda/fisiologia , DNA Viral/metabolismo , Lisogenia/fisiologia , RNA Viral/metabolismo , DNA Viral/genética , RNA Viral/genética
17.
Cell ; 176(1-2): 268-280.e13, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30554875

RESUMO

Vibrio cholerae uses a quorum-sensing (QS) system composed of the autoinducer 3,5-dimethylpyrazin-2-ol (DPO) and receptor VqmA (VqmAVc), which together repress genes for virulence and biofilm formation. vqmA genes exist in Vibrio and in one vibriophage, VP882. Phage-encoded VqmA (VqmAPhage) binds to host-produced DPO, launching the phage lysis program via an antirepressor that inactivates the phage repressor by sequestration. The antirepressor interferes with repressors from related phages. Like phage VP882, these phages encode DNA-binding proteins and partner antirepressors, suggesting that they, too, integrate host-derived information into their lysis-lysogeny decisions. VqmAPhage activates the host VqmAVc regulon, whereas VqmAVc cannot induce phage-mediated lysis, suggesting an asymmetry whereby the phage influences host QS while enacting its own lytic-lysogeny program without interference. We reprogram phages to activate lysis in response to user-defined cues. Our work shows that a phage, causing bacterial infections, and V. cholerae, causing human infections, rely on the same signal molecule for pathogenesis.


Assuntos
Lisogenia/fisiologia , Pirazóis/metabolismo , Percepção de Quorum/fisiologia , Bacteriófagos/metabolismo , Biofilmes , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Percepção de Quorum/genética , Vibrio/metabolismo , Vibrio cholerae/metabolismo , Vibrio cholerae/fisiologia , Virulência , Latência Viral
18.
Science ; 362(6411): 207-212, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309949

RESUMO

Genetic transduction is a major evolutionary force that underlies bacterial adaptation. Here we report that the temperate bacteriophages of Staphylococcus aureus engage in a distinct form of transduction we term lateral transduction. Staphylococcal prophages do not follow the previously described excision-replication-packaging pathway but instead excise late in their lytic program. Here, DNA packaging initiates in situ from integrated prophages, and large metameric spans including several hundred kilobases of the S. aureus genome are packaged in phage heads at very high frequency. In situ replication before DNA packaging creates multiple prophage genomes so that lateral-transducing particles form during normal phage maturation, transforming parts of the S. aureus chromosome into hypermobile regions of gene transfer.


Assuntos
Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/virologia , Transdução Genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/virologia , Empacotamento do DNA , Genoma Bacteriano , Lisogenia/genética , Lisogenia/fisiologia , Prófagos/genética , Prófagos/fisiologia , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética , Ativação Viral/genética , Ativação Viral/fisiologia , Replicação Viral
19.
Sci Rep ; 8(1): 12662, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139986

RESUMO

Staphylococcus aureus is a major opportunistic pathogen that commonly forms biofilms on various biotic and abiotic surfaces. Also, most isolates are known to carry prophages in their genomes. With this in mind, it seems that acquiring a better knowledge of the impact of prophages on the physiology of S. aureus biofilm cells would be useful for developing strategies to eliminate this pathogen. Here, we performed RNA-seq analysis of biofilm cells formed by S. aureus RN450 and two derived strains carrying prophages ϕ11 and ϕ80α. The lysogenic strains displayed increased biofilm formation and production of the carotenoid pigment staphyloxanthin. These phenotypes could be partly explained by the differences in gene expression displayed by prophage-harboring strains, namely an activation of the alternative sigma factor (SigB) regulon and downregulation of genes controlled by the Agr quorum-sensing system, especially the decreased transcription of genes encoding dispersion factors like proteases. Nonetheless, spontaneous lysis of part of the population could also contribute to the increased attached biomass. Interestingly, it appears that the phage CI protein plays a role in orchestrating these phage-host interactions, although more research is needed to confirm this possibility. Likewise, future studies should examine the impact of these two prophages during the infection.


Assuntos
Bacteriófagos/fisiologia , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Lisogenia/genética , Lisogenia/fisiologia , Percepção de Quorum/genética , Percepção de Quorum/fisiologia , Regulon/genética , Fator sigma/genética , Fator sigma/metabolismo , Staphylococcus aureus/virologia
20.
Arch Virol ; 163(9): 2377-2383, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29749589

RESUMO

Phage O4 of Pseudomonas aeruginosa was previously visualized as a short-tailed virus using a transmission electron microscope. In this work, the O4 genome was characterized to be a linear dsDNA molecule comprising 50509 bp with 76 predicted genes located in five clusters. Mass spectrometry showed that the O4 virion contains 6 putative structural proteins, 2 putative enzymes, and 7 hypothetical proteins. By analyzing a Tn5G transposon mutation library, eight genes, wbpR, wbpV, wbpO, wbpT, wbpS, wbpL,  galU, and wzy, were identified and confirmed responsible for the phage-resistant phenotype; all of them are related to the synthesis of O-specific antigen (OSA) of lipopolysaccharide (LPS), indicating that OSA is the receptor for the adsorption of phage O4. Comparative genomic analysis revealed that the phage O4 genome shares little similarity to any known podovirus, indicating that phage O4 is classifiable as a novel member of the Podoviridae family.


Assuntos
Genoma Viral , Lisogenia/fisiologia , Podoviridae/genética , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/virologia , Receptores Virais/metabolismo , Proteínas Virais/genética , DNA/genética , DNA/metabolismo , Elementos de DNA Transponíveis , DNA Viral/genética , DNA Viral/metabolismo , Ontologia Genética , Anotação de Sequência Molecular , Antígenos O/química , Antígenos O/metabolismo , Filogenia , Podoviridae/classificação , Podoviridae/metabolismo , Fagos de Pseudomonas/classificação , Fagos de Pseudomonas/metabolismo , Receptores Virais/química , Análise de Sequência de DNA , Proteínas Virais/metabolismo , Vírion/genética , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...