Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 378(6626): eadd1884, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36480601

RESUMO

The large diversity of cell types in nervous systems presents a challenge in identifying the genetic mechanisms that encode it. Here, we report that nearly 200 distinct neurons in the Drosophila visual system can each be defined by unique combinations of on average 10 continuously expressed transcription factors. We show that targeted modifications of this terminal selector code induce predictable conversions of neuronal fates that appear morphologically and transcriptionally complete. Cis-regulatory analysis of open chromatin links one of these genes to an upstream patterning factor that specifies neuronal fates in stem cells. Experimentally validated network models describe the synergistic regulation of downstream effectors by terminal selectors and ecdysone signaling during brain wiring. Our results provide a generalizable framework of how specific fates are implemented in postmitotic neurons.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Células-Tronco Neurais , Neurogênese , Neurônios , Lobo Óptico de Animais não Mamíferos , Fatores de Transcrição , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Lobo Óptico de Animais não Mamíferos/metabolismo
2.
Nature ; 589(7840): 88-95, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33149298

RESUMO

Deciphering how neuronal diversity is established and maintained requires a detailed knowledge of neuronal gene expression throughout development. In contrast to mammalian brains1,2, the large neuronal diversity of the Drosophila optic lobe3 and its connectome4-6 are almost completely characterized. However, a molecular characterization of this neuronal diversity, particularly during development, has been lacking. Here we present insights into brain development through a nearly complete description of the transcriptomic diversity of the optic lobes of Drosophila. We acquired the transcriptome of 275,000 single cells at adult and at five pupal stages, and built a machine-learning framework to assign them to almost 200 cell types at all time points during development. We discovered two large neuronal populations that wrap neuropils during development but die just before adulthood, as well as neuronal subtypes that partition dorsal and ventral visual circuits by differential Wnt signalling throughout development. Moreover, we show that the transcriptomes of neurons that are of the same type but are produced days apart become synchronized shortly after their production. During synaptogenesis we also resolved neuronal subtypes that, although differing greatly in morphology and connectivity, converge to indistinguishable transcriptomic profiles in adults. Our datasets almost completely account for the known neuronal diversity of the Drosophila optic lobes, and serve as a paradigm to understand brain development across species.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Neurônios/classificação , Neurônios/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Anatomia Artística , Animais , Apoptose , Atlas como Assunto , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Neurônios/citologia , Pupa/citologia , Pupa/crescimento & desenvolvimento , Análise de Célula Única , Sinapses/metabolismo , Transcriptoma/genética , Vias Visuais , Via de Sinalização Wnt
3.
Dev Biol ; 461(2): 145-159, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32061586

RESUMO

scarecrow (scro) gene encodes a Drosophila homolog of mammalian Nkx2.1 that belongs to an evolutionally conserved NK2 family. Nkx2.1 has been well known for its role in the development of hypothalamus, lung, thyroid gland, and brain. However, little is known about biological roles of scro. To understand scro functions, we generated two types of knock-in mutant alleles, substituting part of either exon-2 or exon-3 for EGFP (or Gal4) by employing the CRISPR/Cas9 genome editing tool. Using these mutations, we characterized spatio-temporal expression patterns of the scro gene and its mutant phenotypes. Homozygous knock-in mutants are lethal during embryonic and early larval development. In developing embryos, scro is exclusively expressed in the pharyngeal primordia and numerous neural clusters in the central nervous system (CNS). In postembryonic stages, the most prominent scro expression is detected in the larval and adult optic lobes, suggesting that scro plays a role for the development and/or function of this tissue type. Notch signaling is the earliest factor known to act for the development of the optic lobe. scro mutants lacked mitotic cells and Delta expression in the optic anlagen, and showed altered expression of several proneural and neurogenic genes including Delta and Notch. Furthermore, scro mutants showed grossly deformed neuroepithelial (NE) cells in the developing optic lobe and severely malformed adult optic lobes, the phenotypes of which are shown in Notch or Delta mutants, suggesting scro acting epistatic to the Notch signaling. From these data together, we propose that scro plays an essential role for the development of the optic lobe, possibly acting as a regional specification factor.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Proteínas de Homeodomínio/fisiologia , Lobo Óptico de Animais não Mamíferos/embriologia , Alelos , Animais , Encéfalo/crescimento & desenvolvimento , Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero , Éxons/genética , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Genes Reporter , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Larva , Proteínas de Membrana/fisiologia , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Receptores Notch/fisiologia
4.
Dev Biol ; 458(1): 32-42, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606342

RESUMO

The complexity of the nervous system requires the coordination of multiple cellular processes during development. Among them, we find boundary formation, axon guidance, cell migration and cell segregation. Understanding how different cell populations such as glial cells, developing neurons and neural stem cells contribute to the formation of boundaries and morphogenesis in the nervous system is a critical question in neurobiology. Slit is an evolutionary conserved protein essential for the development of the nervous system. For signaling, Slit has to bind to its cognate receptor Robo, a single-pass transmembrane protein. Although the Slit/Robo signaling pathway is well known for its involvement in axon guidance, it has also been associated to boundary formation in the Drosophila visual system. In the optic lobe, Slit is expressed in glial cells, positioned at the boundaries between developing neuropils, and in neurons of the medulla ganglia. Although it has been assumed that glial cells provide Slit to the system, the contribution of the neuronal expression has not been tested. Here, we show that, contrary to what was previously thought, Slit protein provided by medulla neurons is also required for boundary formation and morphogenesis of the optic lobe. Furthermore, tissue specific rescue using modified versions of Slit demonstrates that this protein acts at long range and does not require processing by extracellular proteases. Our data shed new light on our understanding of the cellular mechanisms involved in Slit function in the fly visual system morphogenesis.


Assuntos
Orientação de Axônios/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Neurópilo/fisiologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Elementos Facilitadores Genéticos , Técnicas de Silenciamento de Genes , Genes Reporter , Estudos de Associação Genética , Larva , Morfogênese , Mutação , Proteínas do Tecido Nervoso/genética , Neuroglia/fisiologia , Neurópilo/citologia , Lobo Óptico de Animais não Mamíferos/citologia , Especificidade de Órgãos , Fenótipo , Estimulação Luminosa , Pupa , Interferência de RNA , Receptores Imunológicos/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Transgenes , Proteínas Roundabout
5.
Neurosci Res ; 138: 49-58, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30227165

RESUMO

During neural development, a wide variety of neurons are produced in a highly coordinated manner and form complex and highly coordinated neural circuits. Temporal patterning of neuron type specification plays very important roles in orchestrating the production and wiring of neurons. The fly visual system, which is composed of the retina and the optic lobe of the brain, is an outstanding model system to study temporal patterning and wiring of the nervous system. All of the components of the fly visual system are topographically connected, and each ommatidial unit in the retina corresponds to a columnar unit in the optic lobe. In the retina, the wave of differentiation follows the morphogenetic furrow, which progresses in a posterior-to-anterior direction. At the same time, differentiation of the optic lobe also accompanies the wave of differentiation or temporally coordinated neurogenesis. Thus, temporal patterning plays important roles in establishing topographic connections throughout the fly visual system. In this article, we review how neuronal differentiation and connectivity are orchestrated in the fly visual system by temporal patterning mechanisms.


Assuntos
Drosophila , Vias Neurais/crescimento & desenvolvimento , Neurogênese/fisiologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Retina/crescimento & desenvolvimento , Animais , Fatores de Tempo
6.
PLoS Genet ; 14(4): e1007353, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29677185

RESUMO

The central nervous system develops from monolayered neuroepithelial sheets. In a first step patterning mechanisms subdivide the seemingly uniform epithelia into domains allowing an increase of neuronal diversity in a tightly controlled spatial and temporal manner. In Drosophila, neuroepithelial patterning of the embryonic optic placode gives rise to the larval eye primordium, consisting of two photoreceptor (PR) precursor types (primary and secondary), as well as the optic lobe primordium, which during larval and pupal stages develops into the prominent optic ganglia. Here, we characterize a genetic network that regulates the balance between larval eye and optic lobe precursors, as well as between primary and secondary PR precursors. In a first step the proneural factor Atonal (Ato) specifies larval eye precursors, while the orphan nuclear receptor Tailless (Tll) is crucial for the specification of optic lobe precursors. The Hedgehog and Notch signaling pathways act upstream of Ato and Tll to coordinate neural precursor specification in a timely manner. The correct spatial placement of the boundary between Ato and Tll in turn is required to control the precise number of primary and secondary PR precursors. In a second step, Notch signaling also controls a binary cell fate decision, thus, acts at the top of a cascade of transcription factor interactions to define PR subtype identity. Our model serves as an example of how combinatorial action of cell extrinsic and cell intrinsic factors control neural tissue patterning.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Olho/crescimento & desenvolvimento , Olho/metabolismo , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genes de Insetos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células Neuroepiteliais/metabolismo , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Lobo Óptico de Animais não Mamíferos/metabolismo , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
7.
Dev Neurobiol ; 78(1): 3-14, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29082670

RESUMO

The compound eyes of adult stomatopod crustaceans have two to six ommatidial rows at the equator, called the midband, that are often specialized for color and polarization vision. Beneath the retina, this midband specialization is represented as enlarged optic lobe lamina cartridges and a hernia-like expansion in the medulla. We studied how the optic lobe transforms from the larvae, which possess typical crustacean larval compound eyes without a specialized midband, through metamorphosis into the adults with the midband in a two midband-row species Alima pacifica. Using histological staining, immunolabeling, and 3D reconstruction, we show that the last-stage stomatopod larvae possess double-retina eyes, in which the developing adult visual system forms adjacent to, but separate from, the larval visual system. Beneath the two retinas, the optic lobe also contains two sets of optic neuropils, comprising of a larval lamina, medulla, and lobula, as well as an adult lamina, medulla, and lobula. The larval eye and all larval optic neuropils degenerate and disappear approximately a week after metamorphosis. In stomatopods, the unique adult visual system and all optic neuropils develop alongside the larval system in the eyestalk of last-stage larvae, where two visual systems and two independent visual processing pathways coexist. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 3-14, 2018.


Assuntos
Crustáceos/crescimento & desenvolvimento , Metamorfose Biológica , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Animais , Crustáceos/anatomia & histologia , Olho/anatomia & histologia , Olho/crescimento & desenvolvimento , Imageamento Tridimensional , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Microscopia Confocal , Lobo Óptico de Animais não Mamíferos/anatomia & histologia , Vias Visuais/anatomia & histologia , Vias Visuais/crescimento & desenvolvimento
8.
Nat Commun ; 8(1): 317, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28827667

RESUMO

Astrocytes have diverse, remarkably complex shapes in different brain regions. Their branches closely associate with neurons. Despite the importance of this heterogeneous glial cell type for brain development and function, the molecular cues controlling astrocyte branch morphogenesis and positioning during neural circuit assembly remain largely unknown. We found that in the Drosophila visual system, astrocyte-like medulla neuropil glia (mng) variants acquire stereotypic morphologies with columnar and layered branching patterns in a stepwise fashion from mid-metamorphosis onwards. Using knockdown and loss-of-function analyses, we uncovered a previously unrecognized role for the transmembrane leucine-rich repeat protein Lapsyn in regulating mng development. lapsyn is expressed in mng and cell-autonomously required for branch extension into the synaptic neuropil and anchoring of cell bodies at the neuropil border. Lapsyn works in concert with the fibroblast growth factor (FGF) pathway to promote branch morphogenesis, while correct positioning is essential for mng survival mediated by gliotrophic FGF signaling.How glial cells, such as astrocytes, acquire their characteristic morphology during development is poorly understood. Here the authors describe the morphogenesis of astrocyte-like glia in the Drosophila optic lobe, and through a RNAi screen, they identify a transmembrane LRR protein-Lapsyn-that plays a critical role in this process.


Assuntos
Astrócitos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteínas de Repetições Ricas em Leucina , Microscopia Confocal , Morfogênese , Proteínas do Tecido Nervoso/genética , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
9.
Nature ; 541(7637): 365-370, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28077877

RESUMO

In the Drosophila optic lobes, 800 retinotopically organized columns in the medulla act as functional units for processing visual information. The medulla contains over 80 types of neuron, which belong to two classes: uni-columnar neurons have a stoichiometry of one per column, while multi-columnar neurons contact multiple columns. Here we show that combinatorial inputs from temporal and spatial axes generate this neuronal diversity: all neuroblasts switch fates over time to produce different neurons; the neuroepithelium that generates neuroblasts is also subdivided into six compartments by the expression of specific factors. Uni-columnar neurons are produced in all spatial compartments independently of spatial input; they innervate the neuropil where they are generated. Multi-columnar neurons are generated in smaller numbers in restricted compartments and require spatial input; the majority of their cell bodies subsequently move to cover the entire medulla. The selective integration of spatial inputs by a fixed temporal neuroblast cascade thus acts as a powerful mechanism for generating neural diversity, regulating stoichiometry and the formation of retinotopy.


Assuntos
Padronização Corporal , Diferenciação Celular , Drosophila melanogaster/citologia , Neurogênese , Neurônios/citologia , Lobo Óptico de Animais não Mamíferos/citologia , Animais , Padronização Corporal/genética , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Movimento Celular , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Neurópilo/citologia , Neurópilo/metabolismo , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Lobo Óptico de Animais não Mamíferos/metabolismo , Pupa/citologia , Pupa/genética , Pupa/crescimento & desenvolvimento , Análise Espaço-Temporal , Fatores de Tempo
10.
Curr Biol ; 26(20): R1001-R1009, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27780043

RESUMO

The visual systems of vertebrates and many other bilaterian clades consist of complex neural structures guiding a wide spectrum of behaviors. Homologies at the level of cell types and even discrete neural circuits have been proposed, but many questions of how the architecture of visual neuropils evolved among different phyla remain open. In this review we argue that the profound conservation of genetic and developmental steps generating the eye and its target neuropils in fish and fruit flies supports a homology between some core elements of bilaterian visual circuitries. Fish retina and tectum, and fly optic lobe, develop from a partitioned, unidirectionally proliferating neurectodermal domain that combines slowly dividing neuroepithelial stem cells and rapidly amplifying progenitors with shared genetic signatures to generate large numbers and different types of neurons in a temporally ordered way. This peculiar 'conveyor belt neurogenesis' could play an essential role in generating the topographically ordered circuitry of the visual system.


Assuntos
Evolução Biológica , Drosophila/fisiologia , Peixes/fisiologia , Neurogênese , Animais , Drosophila/crescimento & desenvolvimento , Peixes/crescimento & desenvolvimento , Neurópilo/fisiologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Lobo Óptico de Animais não Mamíferos/fisiologia , Retina/crescimento & desenvolvimento , Retina/fisiologia , Colículos Superiores/crescimento & desenvolvimento , Colículos Superiores/fisiologia
11.
Genes Genet Syst ; 89(1): 9-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24817757

RESUMO

To achieve the precise wiring of axons in the brain required to form a fine architecture, a molecular level interaction between axons and their targets is necessary. The Drosophila visual system has a layered and columnar structure which is often found in the brain of vertebrates. With powerful genetic tools for its analysis, the Drosophila visual system provides a useful framework to examine the molecular mechanisms of axon targeting specificity. The medulla is the second optic ganglion in the Drosophila optic lobe, and is subdivided into ten layers. Among the eight photoreceptor types, R7 and R8 pass through the first optic ganglion lamina and innervate the medulla. In the medulla, R7 and R8 axons grow in a distinct manner to reach their final target layers: M6 and M3, respectively. The axons from R7 and R8 take characteristic steps to extend toward their target layer. In this review, we discuss the formation of the Drosophila optic lobe and the molecular mechanisms of layer specific targeting of R8 axons in the medulla. Fundamental and comprehensive understanding of the crosstalk of growing axons and target regions in the Drosophila optic lobe will elucidate the general principles applicable to more complex nervous systems.


Assuntos
Drosophila/metabolismo , Proteínas do Olho/metabolismo , Neurogênese , Lobo Óptico de Animais não Mamíferos/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas do Olho/genética , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Receptores de Netrina , Netrina-1 , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Células Fotorreceptoras de Invertebrados/citologia , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Dev Cell ; 27(2): 174-187, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24139822

RESUMO

Neuroepithelial cell proliferation must be carefully balanced with the transition to neuroblast (neural stem cell) to control neurogenesis. Here, we show that loss of the Drosophila microRNA mir-8 (the homolog of vertebrate miR-200 family) results in both excess proliferation and ectopic neuroblast transition. Unexpectedly, mir-8 is expressed in a subpopulation of optic-lobe-associated cortex glia that extend processes that ensheath the neuroepithelium, suggesting that glia cells communicate with the neuroepithelium. We provide evidence that miR-8-positive glia express Spitz, a transforming growth factor α (TGF-α)-like ligand that triggers epidermal growth factor receptor (EGFR) activation to promote neuroepithelial proliferation and neuroblast formation. Further, our experiments suggest that miR-8 ensures both a correct glial architecture and the spatiotemporal control of Spitz protein synthesis via direct binding to Spitz 3' UTR. Together, these results establish glial-derived cues as key regulatory elements in the control of neuroepithelial cell proliferation and the neuroblast transition.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Fator de Crescimento Epidérmico/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Regiões 3' não Traduzidas , Animais , Diferenciação Celular/genética , Proliferação de Células , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ativação Enzimática , Receptores ErbB/metabolismo , Células-Tronco Neurais , Células Neuroepiteliais/metabolismo , Neurogênese , Neuroglia/citologia , Neuroglia/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais/genética
13.
J Cell Sci ; 126(Pt 21): 4873-84, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23970418

RESUMO

It is firmly established that interactions between neurons and glia are fundamental across species for the correct establishment of a functional brain. Here, we found that the glia of the Drosophila larval brain display an essential non-autonomous role during the development of the optic lobe. The optic lobe develops from neuroepithelial cells that proliferate by dividing symmetrically until they switch to asymmetric/differentiative divisions that generate neuroblasts. The proneural gene lethal of scute (l'sc) is transiently activated by the epidermal growth factor receptor (EGFR)-Ras signal transduction pathway at the leading edge of a proneural wave that sweeps from medial to lateral neuroepithelium, promoting this switch. This process is tightly regulated by the tissue-autonomous function within the neuroepithelium of multiple signaling pathways, including EGFR-Ras and Notch. This study shows that the Notch ligand Serrate (Ser) is expressed in the glia and it forms a complex in vivo with Notch and Canoe, which colocalize at the adherens junctions of neuroepithelial cells. This complex is crucial for interactions between glia and neuroepithelial cells during optic lobe development. Ser is tissue-autonomously required in the glia where it activates Notch to regulate its proliferation, and non-autonomously in the neuroepithelium where Ser induces Notch signaling to avoid the premature activation of the EGFR-Ras pathway and hence of L'sc. Interestingly, different Notch activity reporters showed very different expression patterns in the glia and in the neuroepithelium, suggesting the existence of tissue-specific factors that promote the expression of particular Notch target genes or/and a reporter response dependent on different thresholds of Notch signaling.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Células Neuroepiteliais/metabolismo , Neuroglia/metabolismo , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Receptores Notch/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Proteínas de Membrana/genética , Lobo Óptico de Animais não Mamíferos/metabolismo , Ligação Proteica , Receptores Notch/genética , Proteínas Serrate-Jagged , Transdução de Sinais
14.
J Comp Neurol ; 521(16): 3716-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23749685

RESUMO

Olfactory processing has been intensively studied in Drosophila melanogaster. However, we still know little about the descending neural pathways from the higher order processing centers and how these connect with other neural circuits. Here we describe, in detail, the adult projections patterns that arise from a cluster of 78 neurons, defined by the expression of the Odd-skipped transcription factor. We term these neurons Odd neurons. By using expression of genetically encoded axonal and dendritic markers, we show that a subset of the Odd neurons projects dendrites into the calyx of the mushroom body (MB) and axons into the inferior protocerebrum. We exclude the possibility that the Odd neurons are part of the well-known Kenyon cells whose projections form the MB and conclude that the Odd neurons belong to a previously not described class of extrinsic MB neurons. In addition, three of the Odd neurons project into the lobula plate of the optic lobe, and two of these cells extend axons ipsi- and contralaterally in the brain. Anatomically, these cells do not resemble any previously described lobula plate tangential cells (LPTCs) in Drosophila. We show that the Odd neurons are predominantly cholinergic but also include a small number of γ-aminobutyric acid (GABA)ergic neurons. Finally, we provide evidence that the Odd neurons are a hemilineage, suggesting they are born from a defined set of neuroblasts. Our anatomical analysis hints at the possibility that subgroups of Odd neurons could be involved in olfactory and visual processing.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/anatomia & histologia , Corpos Pedunculados/citologia , Neurônios/fisiologia , Olfato/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Neurônios Colinérgicos/metabolismo , Proteínas de Ligação a DNA/genética , Dendritos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/genética , Metamorfose Biológica/fisiologia , Corpos Pedunculados/embriologia , Corpos Pedunculados/crescimento & desenvolvimento , Neurônios/classificação , Neurônios/citologia , Neurotransmissores/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/crescimento & desenvolvimento , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/embriologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Olfato/genética , Fatores de Transcrição/genética , Vias Visuais/citologia
15.
Dev Biol ; 379(2): 182-94, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23628691

RESUMO

The neurons and glial cells of the Drosophila brain are generated by neural stem cell-like progenitors during two developmental phases, one short embryonic phase and one more prolonged postembryonic phase. Like the bulk of the adult-specific neurons, most of glial cells found in the adult central brain are generated postembryonically. Five of the neural stem cell-like progenitors that give rise to glial cells during postembryonic brain development have been identified as type II neuroglioblasts that generate neural and glial progeny through transient amplifying INPs. Here we identify DL1 as a novel multipotent neuroglial progenitor in the central brain and show that this type II neuroblast not only gives rise to neurons that innervate the central complex but also to glial cells that contribute exclusively to the optic lobe. Immediately following their generation in the central brain during the second half of larval development, these DL1 lineage-derived glia migrate into the developing optic lobe, where they differentiate into three identified types of optic lobe glial cells, inner chiasm glia, outer chiasm glia and cortex glia. Taken together, these findings reveal an unexpected central brain origin of optic lobe glial cells and central complex interneurons from one and the same type II neuroglioblast.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neuroglia/fisiologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Animais , Movimento Celular/fisiologia , Imuno-Histoquímica , Larva/crescimento & desenvolvimento , Microscopia de Fluorescência , Células-Tronco Multipotentes/fisiologia , Lobo Óptico de Animais não Mamíferos/citologia
16.
Dev Biol ; 380(1): 1-11, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23603492

RESUMO

Sequential progression of differentiation in a tissue or in multiple tissues in a synchronized manner plays important roles in development. Such waves of differentiation are especially important in the development of the Drosophila visual system, which is composed of the retina and the optic lobe of the brain. All of the components of the fly visual system are topographically connected, and each ommatidial unit in the retina corresponds to a columnar unit in the optic lobe, which is composed of lamina, medulla, lobula and lobula plate. In the developing retina, the wave of differentiation follows the morphogenetic furrow, which progresses in a posterior-to-anterior direction. At the same time, differentiation of the lamina progresses in the same direction, behind the lamina furrow. This is not just a coincidence: differentiated photoreceptor neurons in the retina sequentially send axons to the developing lamina and trigger differentiation of lamina neurons to ensure the progression of the lamina furrow just like the furrow in the retina. Similarly, development of the medulla accompanies a wave of differentiation called the proneural wave. Thus, the waves of differentiation play important roles in establishing topographic connections throughout the fly visual system. In this article, we review how neuronal differentiation and connectivity are orchestrated in the fly visual system by multiple waves of differentiation.


Assuntos
Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Padronização Corporal , Encéfalo/embriologia , Diferenciação Celular , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo , Retina/embriologia , Visão Ocular
17.
J Exp Biol ; 216(Pt 12): 2266-75, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23531812

RESUMO

Insect larvae clearly react to visual stimuli, but the ability of any visual neuron in a newly hatched insect to respond selectively to particular stimuli has not been directly tested. We characterised a pair of neurons in locust larvae that have been extensively studied in adults, where they are known to respond selectively to objects approaching on a collision course: the lobula giant motion detector (LGMD) and its postsynaptic partner, the descending contralateral motion detector (DCMD). Our physiological recordings of DCMD axon spikes reveal that at the time of hatching, the neurons already respond selectively to objects approaching the locust and they discriminate between stimulus approach speeds with differences in spike frequency. For a particular approaching stimulus, both the number and peak frequency of spikes increase with instar. In contrast, the number of spikes in responses to receding stimuli decreases with instar, so performance in discriminating approaching from receding stimuli improves as the locust goes through successive moults. In all instars, visual movement over one part of the visual field suppresses a response to movement over another part. Electron microscopy demonstrates that the anatomical substrate for the selective response to approaching stimuli is present in all larval instars: small neuronal processes carrying information from the eye make synapses both onto LGMD dendrites and with each other, providing pathways for lateral inhibition that shape selectivity for approaching objects.


Assuntos
Locusta migratoria/fisiologia , Locusta migratoria/ultraestrutura , Animais , Eletrofisiologia , Interneurônios/fisiologia , Interneurônios/ultraestrutura , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/ultraestrutura , Locusta migratoria/crescimento & desenvolvimento , Microscopia Eletrônica de Transmissão , Percepção de Movimento , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Lobo Óptico de Animais não Mamíferos/fisiologia , Lobo Óptico de Animais não Mamíferos/ultraestrutura , Estimulação Luminosa , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/fisiologia , Vias Visuais/ultraestrutura
18.
J Neurosci ; 33(7): 2873-88, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407946

RESUMO

Stem cell self-renewal and differentiation must be carefully controlled during development and tissue homeostasis. In the Drosophila optic lobe, neuroepithelial cells first divide symmetrically to expand the stem cell population and then transform into asymmetrically dividing neuroblasts, which generate medulla neurons. The mechanisms underlying this cell fate transition are not well understood. Here, we show a crucial role of some cell cycle regulators in this transition. We find that loss of function in replication protein A (RPA), which consists of three highly conserved protein subunits and functions in DNA replication, leads to disintegration of the optic lobe neuroepithelium and premature differentiation of neuroepithelial cells into medulla neuroblasts. Clonal analyses of RPA loss-of-function alleles indicate that RPA is required to prevent neuroepithelial cells from differentiating into medulla neuroblasts. Inactivation of the core cell cycle regulators, including the G1/S regulators E2F1, Cyclin E, Cdk2, and PCNA, and the G2/M regulators Cyclin A, Cyclin B, and Cdk1, mimic RPA loss-of-function phenotypes, suggesting that cell cycle progression is required for both maintaining neuroepithelial cell identity and suppressing neuroblast formation. We further find that RPA or E2F1 inactivation in the neuroepithelial cells correlates with downregulation of Notch signaling activity, which appears to result from Numb mislocalization. Thus, we have shown that the transition from neuroepithelial cells to neuroblasts is directly regulated by cell cycle regulators and propose a model in which the inhibition of neuroepithelial cell cycle progression downregulates Notch signaling activity through Numb, which leads to the onset of neurogenesis.


Assuntos
Ciclo Celular/fisiologia , Neurogênese/fisiologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Proteína de Replicação A/fisiologia , Animais , Anticorpos/imunologia , Antimetabólitos/uso terapêutico , Bromodesoxiuridina , Moléculas de Adesão Celular/fisiologia , Divisão Celular , Células Cultivadas , Clonagem Molecular , Drosophila , Proteínas de Drosophila/fisiologia , Fator de Transcrição E2F1/genética , Epitélio/metabolismo , Receptores ErbB/fisiologia , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Células Neuroepiteliais/fisiologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Receptores Notch/fisiologia , Proteína de Replicação A/imunologia , Transdução de Sinais/fisiologia
19.
PLoS One ; 7(5): e37303, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615969

RESUMO

Receptors of the Eph family of tyrosine kinases and their Ephrin ligands are involved in developmental processes as diverse as angiogenesis, axon guidance and cell migration. However, our understanding of the Eph signaling pathway is incomplete, and could benefit from an analysis by genetic methods. To this end, we performed a genetic modifier screen for mutations that affect Eph signaling in Drosophila melanogaster. Several dozen loci were identified on the basis of their suppression or enhancement of an eye defect induced by the ectopic expression of Ephrin during development; many of these mutant loci were found to disrupt visual system development. One modifier locus, reph (regulator of eph expression), was characterized in molecular detail and found to encode a putative nuclear protein that interacts genetically with Eph signaling pathway mutations. Reph is an autonomous regulator of Eph receptor expression, required for the graded expression of Eph protein and the establishment of an optic lobe axonal topographic map. These results reveal a novel component of the regulatory pathway controlling expression of eph and identify reph as a novel factor in the developing visual system.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Proteínas de Membrana/genética , Proteínas Nucleares/fisiologia , Lobo Óptico de Animais não Mamíferos/metabolismo , Receptores da Família Eph/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Proteínas de Membrana/metabolismo , Mutação , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Receptores da Família Eph/metabolismo , Transdução de Sinais/genética
20.
Dev Growth Differ ; 54(4): 503-18, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22587328

RESUMO

A large number of cells die via programmed cell death during the normal development of the Drosophila optic lobe. In this study, we report the precise spatial and temporal pattern of cell death in this organ. Cell death in the developing optic lobe occurs in two distinct phases. The first phase extends from the start of metamorphosis to the mid-pupal stage. During this phase, a large number of cells die in the optic lobe as a whole, with a peak of cell death at an early pupal stage in the lamina and medulla cortices and the region of the T2/T3/C neurons, and a smaller number of dead cells observed in the lobula plate cortex. The second phase extends from the mid-pupal stage to eclosion. Throughout this period, a small number of dying cells can be observed, with a small peak at a late pupal stage. Most of the dying cells are neurons. During the first phase, dying cells are distributed in specific patterns in cortices. The lamina cortex contains two distinct clusters of dying cells; the medulla cortex, four clusters; the lobula plate cortex, one cluster; and the region of the T2/T3/C neurons, one cluster. Many of the clusters maintain their distinct positions in the optic lobe but others extend the region they cover during development. The presence of distinct clusters of dying cells at different phases suggests that distinct mechanisms control cell death during different stages of optic lobe development in Drosophila.


Assuntos
Morte Celular , Drosophila/citologia , Neurônios/citologia , Lobo Óptico de Animais não Mamíferos/citologia , Animais , Contagem de Células , Diferenciação Celular , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Larva/citologia , Larva/metabolismo , Células Neuroepiteliais/citologia , Células Neuroepiteliais/metabolismo , Neurogênese , Neurônios/metabolismo , Neurópilo/citologia , Neurópilo/metabolismo , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Lobo Óptico de Animais não Mamíferos/metabolismo , Pupa/citologia , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...