Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
J Hazard Mater ; 470: 134228, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626683

RESUMO

Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.


Assuntos
Arsênio , Cádmio , Regulação da Expressão Gênica de Plantas , Lolium , Reguladores de Crescimento de Plantas , Estresse Fisiológico , Cádmio/toxicidade , Lolium/efeitos dos fármacos , Lolium/metabolismo , Lolium/genética , Arsênio/toxicidade , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Ecotoxicol Environ Saf ; 276: 116315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614001

RESUMO

This study explores the role of endogenous indole-3-acetic acid (IAA) in modulating plant responses to pollution stress and its effect on pollutant accumulation, with a focus on fluoranthene (Flu) in ryegrass. To elucidate the mechanism, we employed an IAA promoter (α-aminobutyric acid [α-AB]) and an IAA inhibitor (naphthylphthalamic acid [NPA]) to regulate IAA levels and analyze Flu uptake characteristics. The experimental setup included a Flu treatment group (ryegrass with Flu addition) and a control group (ryegrass without Flu). Our findings demonstrate that Flu treatment enhanced IAA content and plant growth in ryegrass compared to the control. The Flu+AB treatment further enhanced these effects, while the Flu+NPA treatment exhibited a contrasting trend. Moreover, Flu+AB treatment led to increased Flu accumulation, in contrast to the inhibitory effect observed with Flu+NPA treatment. Flu treatment also enhanced the activities of key antioxidant enzymes (SOD, POD, CAT) and increased soluble sugar and protein levels, indicative of enzymatic and nonenzymatic defense responses, respectively. The Flu+AB treatment amplified these responses, whereas the Flu+NPA treatment attenuated them. Significantly, Flu treatment raised H+-ATPase activity compared to the control, an effect further elevated by Flu+AB treatment and diminished by Flu+NPA treatment. A random forest analysis suggested that Flu accumulation dependency varied under different treatments: it relied more on H+-ATPase activity under Flu+AB treatment and more on SOD activity under Flu+NPA treatment. Additionally, Flu+AB treatment boosted the transpiration rate in ryegrass, thereby increasing the Flu translocation factor, a trend reversed by Flu+NPA treatment. This research highlights crucial factors influencing Flu accumulation in ryegrass, offering potential new avenues for controlling the gathering of contaminants within plant systems.


Assuntos
Fluorenos , Ácidos Indolacéticos , Lolium , Superóxido Dismutase , Fluorenos/toxicidade , Lolium/efeitos dos fármacos , Lolium/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Superóxido Dismutase/metabolismo , Poluentes do Solo/toxicidade , Reguladores de Crescimento de Plantas , Antioxidantes/metabolismo
3.
J Agric Food Chem ; 72(18): 10218-10226, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38666644

RESUMO

In this work, a series of pyrrolidinone-containing 2-phenylpyridine derivatives were synthesized and evaluated as novel protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) inhibitors for herbicide development. At 150 g ai/ha, compounds 4d, 4f, and 4l can inhibit the grassy weeds of Echinochloa crus-galli (EC), Digitaria sanguinalis (DS), and Lolium perenne (LP) with a range of 60 to 90%. Remarkably, at 9.375 g ai/ha, these compounds showed 100% inhibition effects against broadleaf weeds of Amaranthus retroflexus (AR) and Abutilon theophrasti (AT), which were comparable to the performance of the commercial herbicides flumioxazin (FLU) and saflufenacil (SAF) and better than that of acifluorfen (ACI). Molecular docking analyses revealed significant hydrogen bonding and π-π stacking interactions between compounds 4d and 4l with Arg98, Asn67, and Phe392, respectively. Additionally, representative compounds were chosen for in vivo assessment of PPO inhibitory activity, with compounds 4d, 4f, and 4l demonstrating excellent inhibitory effects. Notably, compounds 4d and 4l induced the accumulation of reactive oxygen species (ROS) and a reduction in the chlorophyll (Chl) content. Consequently, compounds 4d, 4f, and 4l are promising lead candidates for the development of novel PPO herbicides.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Herbicidas , Simulação de Acoplamento Molecular , Plantas Daninhas , Protoporfirinogênio Oxidase , Pirrolidinonas , Protoporfirinogênio Oxidase/antagonistas & inibidores , Protoporfirinogênio Oxidase/química , Protoporfirinogênio Oxidase/metabolismo , Herbicidas/farmacologia , Herbicidas/química , Herbicidas/síntese química , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Pirrolidinonas/síntese química , Proteínas de Plantas/química , Proteínas de Plantas/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia , Piridinas/síntese química , Amaranthus/efeitos dos fármacos , Amaranthus/química , Echinochloa/efeitos dos fármacos , Echinochloa/enzimologia , Digitaria/efeitos dos fármacos , Digitaria/enzimologia , Digitaria/química , Lolium/efeitos dos fármacos , Lolium/enzimologia , Estrutura Molecular
4.
J Agric Food Chem ; 71(23): 9148-9156, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37253419

RESUMO

One novel tri-substituted tetrahydropyran type 8,7'-neolignan and its enantiomer with higher enantiomeric excess were synthesized from all cis-tetra-substituted tetrahydrofuran with an iodomethyl group by a hydride or H2 ring-expansion reaction. The normal hydride reductions of C-I bonds of tetra-substituted tetrahydrofurans bearing iodomethyl groups were observed in other 2,3-cis-stereoisomers of tetra-substituted tetrahydrofurans to give tetra-substituted tetrahydrofurans bearing 7,8-cis and 8,7'-neolignan structures. The phytotoxicities of their synthesized compounds were compared with previously synthesized 7,8-trans-8,7'-neolignans bearing tetra-substituted tetrahydrofurans to find out the highest phytotoxic tri-substituted tetrahydropyran type 8,7'-neolignan.


Assuntos
Lignanas , Lignanas/síntese química , Lignanas/química , Lignanas/farmacologia , Estereoisomerismo , Lolium/efeitos dos fármacos , Lactuca/efeitos dos fármacos
5.
BMC Plant Biol ; 22(1): 68, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35151272

RESUMO

Methyl jasmonate (MeJA) plays a role in improving plant stress tolerance. The molecular mechanisms associated with heat tolerance mediated by MeJA are not fully understood in perennial grass species. The study was designed to explore transcriptomic mechanisms underlying heat tolerance by exogenous MeJA in perennial ryegrass (Lolium perenne L.) using RNA-seq. Transcriptomic profiling was performed on plants under normal temperature (CK), high temperature for 12 h (H), MeJA pretreatment (T), MeJA pretreatment + H (T-H), respectively. The analysis of differentially expressed genes (DEGs) showed that H resulted in the most DEGs and T had the least, compared with CK. Among them, the DEGs related to the response to oxygen-containing compound was higher in CKvsH, while many genes related to photosynthetic system were down-regulated. The DEGs related to plastid components was higher in CKvsT. GO and KEGG analysis showed that exogenous application of MeJA enriched photosynthesis related pathways under heat stress. Exogenous MeJA significantly increased the expression of genes involved in chlorophyll (Chl) biosynthesis and antioxidant metabolism, and decreased the expression of Chl degradation genes, as well as the expression of heat shock transcription factor - heat shock protein (HSF-HSP) network under heat stress. The results indicated that exogenous application of MeJA improved the heat tolerance of perennial ryegrass by mediating expression of genes in different pathways, such as Chl biosynthesis and degradation, antioxidant enzyme system, HSF-HSP network and JAs biosynthesis.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Lolium/genética , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Termotolerância/genética , Acetatos/metabolismo , Antioxidantes/metabolismo , Clorofila/genética , Clorofila/metabolismo , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes , Lolium/efeitos dos fármacos , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reprodutibilidade dos Testes , Termotolerância/efeitos dos fármacos
6.
Genes (Basel) ; 12(11)2021 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34828444

RESUMO

Herbicides that inhibit acetyl-CoA carboxylase (ACCase) are among the few remaining options for the post-emergence control of Lolium species in small grain cereal crops. Here, we determined the mechanism of resistance to ACCase herbicides in a Lolium multiflorum population (HGR) from France. A combined biological and molecular approach detected a novel W2027L ACCase mutation that affects aryloxyphenoxypropionate (FOP) but not cyclohexanedione (DIM) or phenylpyraxoline (DEN) subclasses of ACCase herbicides. Both the wild-type tryptophan and mutant leucine 2027-ACCase alleles could be positively detected in a single DNA-based-derived polymorphic amplified cleaved sequence (dPACS) assay that contained the targeted PCR product and a cocktail of two discriminating restriction enzymes. Additionally, we identified three well-characterised I1781L, I2041T, and D2078G ACCase target site resistance mutations as well as non-target site resistance in HGR. The non-target site component endowed high levels of resistance to FOP herbicides whilst partially impacting on the efficacy of pinoxaden and cycloxydim. This study adequately assessed the contribution of the W2027L mutation and non-target site mechanism in conferring resistance to ACCase herbicides in HGR. It also highlights the versatility and robustness of the dPACS method to simultaneously identify different resistance-causing alleles at a single ACCase codon.


Assuntos
Acetil-CoA Carboxilase/genética , Resistência a Herbicidas , Lolium/genética , Mutação de Sentido Incorreto , Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/toxicidade , Herbicidas/toxicidade , Lolium/efeitos dos fármacos , Ligação Proteica
7.
Toxins (Basel) ; 13(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34678999

RESUMO

Sophora alopecuroides is known to produce relatively large amounts of alkaloids; however, their ecological consequences remain unclear. In this study, we evaluated the allelopathic potential of the main alkaloids, including aloperine, matrine, oxymatrine, oxysophocarpine, sophocarpine, sophoridine, as well as their mixture both in distilled H2O and in the soil matrix. Our results revealed that all the alkaloids possessed inhibitory activity on four receiver species, i.e., Amaranthus retroflexus, Medicago sativa, Lolium perenne and Setaria viridis. The strength of the phytotoxicity of the alkaloids was in the following order: sophocarpine > aloperine > mixture > sophoridine > matrine > oxysophocarpine > oxymatrine (in Petri dish assays), and matrine > mixture > sophocarpine > oxymatrine > oxysophocarpine > sophoridine > aloperine (in pot experiments). In addition, the mixture of the alkaloids was found to significantly increase the IAA content, MDA content and POD activity of M. sativa seedlings, whereas CTK content, ABA content, SOD activity and CAT activity of M. sativa seedlings decreased markedly. Our results suggest S. alopecuroides might produce allelopathic alkaloids to improve its competitiveness and thus facilitate the establishment of its dominance; the potential value of these alkaloids as environmentally friendly herbicides is also discussed.


Assuntos
Alcaloides/farmacologia , Alelopatia , Amaranthus/efeitos dos fármacos , Lolium/efeitos dos fármacos , Medicago sativa/efeitos dos fármacos , Setaria (Planta)/efeitos dos fármacos , Sophora/química , Alcaloides/química
8.
Nat Commun ; 12(1): 3167, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039966

RESUMO

Ubiquitous use of electronic devices has led to an unprecedented increase in related waste as well as the worldwide depletion of reserves of key chemical elements required in their manufacturing. The use of biodegradable and abundant organic (carbon-based) electronic materials can contribute to alleviate the environmental impact of the electronic industry. The pigment eumelanin is a bio-sourced candidate for environmentally benign (green) organic electronics. The biodegradation of eumelanin extracted from cuttlefish ink is studied both at 25 °C (mesophilic conditions) and 58 °C (thermophilic conditions) following ASTM D5338 and comparatively evaluated with the biodegradation of two synthetic organic electronic materials, namely copper (II) phthalocyanine (Cu-Pc) and polyphenylene sulfide (PPS). Eumelanin biodegradation reaches 4.1% (25 °C) in 97 days and 37% (58 °C) in 98 days, and residual material is found to be without phytotoxic effects. The two synthetic materials, Cu-Pc and PPS, do not biodegrade; Cu-Pc brings about the inhibition of microbial respiration in the compost. PPS appears to be potentially phytotoxic. Finally, some considerations regarding the biodegradation test as well as the disambiguation of "biodegradability" and "bioresorbability" are highlighted.


Assuntos
Biodegradação Ambiental , Equipamentos e Provisões Elétricas , Química Verde/métodos , Poluentes do Solo/química , Animais , Compostagem , Decapodiformes/química , Indóis/química , Lolium/efeitos dos fármacos , Lolium/crescimento & desenvolvimento , Melaninas/química , Melaninas/isolamento & purificação , Microbiota/efeitos dos fármacos , Compostos Organometálicos/química , Polímeros/química , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Microbiologia do Solo , Poluentes do Solo/toxicidade
9.
Sci Rep ; 11(1): 11257, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045631

RESUMO

Soil contamination with heavy metals is a major problem worldwide, due to the increasing impact mainly caused by anthropogenic activities. This research evaluated the phytoremediation capacity of, Lolium perenne for heavy metals such as cadmium (Cd2+) and mercury (Hg2+), and the effects of these metals on morphology, biomass production, and the changes on gene expression. Seeds of L. perenne were exposed to six concentrations of Cd2+ and Hg2+ in the range of 0 to 25 mg L-1, and two mixtures of Cd2+-Hg2. The Non-Observed Effect Level (NOEL) was established with dose response curves and the expression of specific genes was evaluated applying a commercially available quantitative reverse transcription (RT-qPCR) assay. There was no significant effect when exposing the seeds to Hg2+, for Cd2+ the maximum concentration was established in 0.1 mg L-1, and for the two concentrations of mixtures, there was a negative effect. An increase of expression of genes that regulate antioxidant activity and stress was found when the plant was exposed to heavy metals. Given the high tolerance to metals analyzed that was reflected both, the development of the plant and in its molecular response, these results highlight that L. perenne is a plant with phytoremediator potential.


Assuntos
Cádmio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lolium/efeitos dos fármacos , Mercúrio/farmacologia , Poluentes do Solo/farmacologia , Lolium/genética , Lolium/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos
10.
Environ Geochem Health ; 43(6): 2317-2330, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33866466

RESUMO

Toxic metal phytoextraction potential of some higher plants, the white mustard (Sinapis alba L.), perennial rye grass (Lolium perenne L.) and also two cultivated plants, as green pea (Pisum sativum L. var. Rajnai törpe), radish (Raphanus sativus L. var. Szentesi óriás vaj), was studied in a field experiment, along the river Danube in close vicinity of an industrial town, Dunaújváros, Hungary. Soil/sediment and the various plant organs (leaves, stems and roots) were assessed for the contamination with some potentially toxic elements (PTE), such as the cadmium (Cd), nickel (Ni), copper (Cu), and zinc (Zn). It was found that Cd and Ni concentration was below, while the Cu and Zn elements were above the Hungarian permissible limits in each of the studied soil/sediment samples. Bioconcentration factor (BAF) was less than 1 in the shoot biomass of test plant samples and followed the order of Cu > Zn > Cd and Ni. Phytoremediation potential of selected test plants was found to be rather limited. The translocation factor (TF) was more than 1 for Cu and Zn elements, at each test plants. Cadmium was translocated into the leaves in case of the radish, only. Considering of the potential human daily intake of metals (DIM), it was less than 1 both for the adults and for the children. Health risk index (HRI) values of children, however, were higher than 1 for the Cd in case of radish, and for Zn and Cu in case of the pea. Results suggest that consumption of these plants grown in gardens of contaminated sediments can result in some risks for citizens in the industrial town of Dunaújváros. Further studies are required to identify appropriate plants with greater toxic metal phytoextraction potential.


Assuntos
Biodegradação Ambiental , Metais Pesados/isolamento & purificação , Pisum sativum , Raphanus , Poluentes do Solo/isolamento & purificação , Biomassa , Exposição Dietética/efeitos adversos , Contaminação de Alimentos , Sedimentos Geológicos , Hungria , Lolium/química , Lolium/efeitos dos fármacos , Metais Pesados/análise , Metais Pesados/toxicidade , Pisum sativum/química , Pisum sativum/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/química , Brotos de Planta/efeitos dos fármacos , Raphanus/química , Raphanus/efeitos dos fármacos , Rios , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Poluentes Químicos da Água/análise
11.
Ecotoxicol Environ Saf ; 217: 112252, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33930772

RESUMO

Arbuscular mycorrhizal fungi (AMF) are ubiquitous mutualistic plant symbionts that promote plant growth and protect them from abiotic stresses. Studies on AMF-assisted phytoremediation have shown that AMF can increase plant tolerance to the presence of hydrocarbon contaminants by improving plant nutrition status and mitigating oxidative stress. This work aimed to evaluate the impact of single and mixed-species AMF inocula (Funneliformis caledonium, Diversispora varaderana, Claroideoglomus walkeri), obtained from a contaminated environment, on the growth, oxidative stress (DNA oxidation and lipid peroxidation), and activity of antioxidative enzymes (superoxide dismutase, catalase, peroxidase) in Lolium perenne growing on a substrate contaminated with 0/0-30/120 mg phenol/polynuclear aromatic hydrocarbons (PAHs) kg-1. The assessment of AMF tolerance to the presence of contaminants was based on mycorrhizal root colonization, spore production, the level of oxidative stress, and antioxidative activity in AMF spores. In contrast to the mixed-species AMF inoculum, single AMF species significantly enhanced the growth of host plants cultured on the contaminated substrate. The effect of inoculation on the level of oxidative stress and the activity of antioxidative enzymes in plant tissues differed between the AMF species. Changes in the level of oxidative stress and the activity of antioxidative enzymes in AMF spores in response to contamination also depended on AMF species. Although the concentration of phenol and PAHs had a negative effect on the production of AMF spores, low (5/20 mg phenol/PAHs kg-1) and medium (15/60 mg phenol/PAHs kg-1) substrate contamination stimulated the mycorrhizal colonization of roots. Among the studied AMF species, F. caledonium was the most tolerant to phenol and PAHs and showed the highest potential in plant growth promotion. The results presented in this study might contribute to the development of functionally customized AMF-assisted phytoremediation strategies with indigenous AMF, more effective than commercial AMF inocula, as a result of their selection by the presence of contaminants.


Assuntos
Hidrocarbonetos/toxicidade , Lolium/fisiologia , Micorrizas/fisiologia , Poluentes do Solo/toxicidade , Antioxidantes , Biodegradação Ambiental , Fungos , Glomeromycota/fisiologia , Lolium/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Hidrocarbonetos Policíclicos Aromáticos , Simbiose
12.
Plant Cell Environ ; 44(8): 2716-2728, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33721328

RESUMO

Ground-level ozone is a global air pollutant with high toxicity and represents a threat to plants and microorganisms. Although beneficial microorganisms can improve host performance, their role in connecting environmentally induced maternal plant phenotypes to progeny (transgenerational effects [TGE]) is unknown. We evaluated fungal endophyte-mediated consequences of maternal plant exposure to ozone on performance of the progeny under contrasting scenarios of the same factor (high and low) at two stages: seedling and young plant. With no variation in biomass, maternal ozone-induced oxidative damage in the progeny that was lower in endophyte-symbiotic plants. This correlated with an endophyte-mediated higher concentration of proline, a defence compound associated with stress control. Interestingly, ozone-induced TGE was not associated with reductions in plant survival. On the contrary, there was an overall positive effect on seedling survival in the presence of endophytes. The positive effect of maternal ozone increasing young plant survival was irrespective of symbiosis and only expressed under high ozone condition. Our study shows that hereditary microorganisms can modulate the capacity of plants to transgenerationally adjust progeny phenotype to atmospheric change.


Assuntos
Endófitos/fisiologia , Epichloe/fisiologia , Lolium/fisiologia , Ozônio , Biomassa , Lolium/efeitos dos fármacos , Lolium/microbiologia , Ozônio/farmacologia , Plântula/fisiologia , Simbiose
13.
PLoS One ; 16(2): e0246028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33529261

RESUMO

The first step in managing herbicide-resistant weeds is to confirm their resistance status. It is, therefore, crucial to have a rapid, reliable and cost-effective technique to assess samples for herbicide resistance. We designed and evaluated three derived cleaved amplified polymorphic sequence (dCAPS) markers for detecting glyphosate resistance in Lolium perenne. conferred by non-synonymous mutations at codon-106 in the enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. The dCAPS markers involve amplification of the target region, digestion of the amplified products with restriction enzymes and gel-based visualisation of the digested products. The results showed that all three dCAPS markers could successfully detect mutations at codon-106 in the target enzyme. The dCAPS markers can also inform us of the zygosity state of the resistance allele and was confirmed by sequencing the target region of the EPSPS gene. The markers described here are effective quick tests for the monitoring and evaluation of the target-enzyme mechanism of glyphosate resistance in Lolium perenne.


Assuntos
Análise Mutacional de DNA , Resistência a Medicamentos/genética , Glicina/análogos & derivados , Lolium/efeitos dos fármacos , Lolium/genética , Reação em Cadeia da Polimerase , Mapeamento por Restrição , Marcadores Genéticos/genética , Glicina/farmacologia , Polimorfismo de Nucleotídeo Único , Glifosato
14.
Ecotoxicol Environ Saf ; 212: 112002, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529920

RESUMO

Perennial ryegrass (Lolium perenne L.), a grass species with superior tillering capacity, plays a potential role in the phytoremediation of cadmium (Cd)-contaminated soils. Tiller production is inhibited in response to serious Cd stress. However, the regulatory mechanism of Cd stress-induced inhibition of tiller development is not well documented. To address this issue, we investigated the phenotype, the expression levels of genes involved in axillary bud initiation and bud outgrowth, and endogenous hormone biosynthesis and signaling pathways in seedlings of perennial ryegrass under Cd stress. The results showed that the number of tillers and axillary buds in the Cd-treated seedlings decreased by 67% and 21%, respectively. The suppression of tiller production in the Cd-treated seedlings was more closely associated with the inhibition of axillary bud outgrowth than with bud initiation. Cd stress upregulated the expression level of genes related to axillary bud dormancy and downregulated bud activity genes. Additionally, genes involved in strigolactone biosynthesis and signaling, auxin transport and signaling, and cytokinin degradation were upregulated in Cd-treated seedlings, and cytokinin biosynthesis gene expression were decreased by Cd stress. The content of zeatin in the Cd-treated pants was significantly reduced by 69~85% compared to the control plants. The content of indole-3-acetic acid (IAA) remains constant under Cd stress. Overall, Cd stress induced axillary bud dormancy and subsequently inhibited axillary bud outgrowth. The decrease of zeatin content and upregulation of genes involved in strigolactone signaling and bud dormancy might be responsible for the inhibition of axillary bud outgrowth.


Assuntos
Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Lolium/efeitos dos fármacos , Poluentes do Solo/toxicidade , Compostos Heterocíclicos com 3 Anéis/metabolismo , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Lolium/genética , Lolium/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais
15.
ACS Appl Mater Interfaces ; 13(7): 7997-8005, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33577306

RESUMO

Application of natural products as new green agrochemicals with low average lifetime, low concentration doses, and safety is both complex and expensive due to chemical modification required to obtain desirable physicochemical properties. Transport, aqueous solubility, and bioavailability are some of the properties that have been improved using functionalized metal-organic frameworks based on zinc for the encapsulation of bioherbicides (ortho-disulfides). An in situ method has been applied to achieve encapsulation, which, in turn, led to an improvement in water solubility by more than 8 times after 2-hydroxypropyl-ß-cyclodextrin HP-ß-CD surface functionalization. High-resolution high-angle annular dark-field scanning transmission electron microscopy (HR HAADF-STEM) and integrated differential phase contrast (iDPC) imaging techniques were employed to verify the success of the encapsulation procedure and crystallinity of the sample. Inhibition studies on principal weeds that infect rice, corn, and potato crops gave results that exceed those obtained with the commercial herbicide Logran. This finding, along with a short synthesis period, i.e., 2 h at 25 °C, make the product an example of a new generation of natural-product-based herbicides with direct applications in agriculture.


Assuntos
Agroquímicos/farmacologia , Amaranthus/efeitos dos fármacos , Echinochloa/efeitos dos fármacos , Herbicidas/farmacologia , Lolium/efeitos dos fármacos , Estruturas Metalorgânicas/farmacologia , Agroquímicos/síntese química , Agroquímicos/química , Cápsulas/química , Cápsulas/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Herbicidas/síntese química , Herbicidas/química , Estruturas Metalorgânicas/síntese química , Estruturas Metalorgânicas/química , Estrutura Molecular , Tamanho da Partícula , Solubilidade , Propriedades de Superfície , Zinco/química , Zinco/farmacologia
16.
Environ Geochem Health ; 43(4): 1441-1456, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31599372

RESUMO

Biochar (BC) is a porous, carbonaceous material produced by slow pyrolysis of biomass under oxygen-limited conditions. BC production has been attracting research interest because it modifies soil physicochemical characteristics and improves the growth of plants in problem soils. These benefits may be best actualized for soils contaminated by metals, where remediation is hampered by metal toxicity to both plants and soil microbial communities. The objectives of this study were to evaluate the impact of the addition of chicken manure biochar (CMB), oat hull biochar (OHB), or pine bark biochar (PBB) on copper (Cu) bioavailability in a Cu-contaminated soil, the effectiveness of these BCs promoting plant growth, and its effects on soil microbial communities supporting these plants. A sandy soil (338 mg Cu kg-1) was amended with CMB, OHB, and PBB, and the metallophyte Oenothera picensis or the agricultural species Solanum lycopersicum and Lolium perenne were grown for 3 months. The BCs produced an increase in soil pH, reduced the exchangeable Cu, and increased Cu bound to organic matter and residual fractions. All BCs enhanced the quality of contaminated soil and increased the plant biomass production, notably for S. lycopersicum, which grew until 12 times more than plants in non-amended soil. While BC addition reduced the concentration of Cu in soil pore water, the amendment did not reduce the concentrations of Cu in shoot tissues. BC additions also stimulated soil microorganisms, increasing basal respiration and DHA activity and modifying microbial communities, especially in soils supporting L. perenne. These results indicate that BCs represent an effective tool to remediate Cu-contaminated sandy soils.


Assuntos
Carvão Vegetal , Cobre/química , Produtos Agrícolas , Microbiologia do Solo , Poluentes do Solo/química , Animais , Disponibilidade Biológica , Biomassa , Galinhas , Chile , Cobre/análise , Cobre/farmacocinética , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/metabolismo , Concentração de Íons de Hidrogênio , Lolium/efeitos dos fármacos , Lolium/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Esterco , Oenothera/efeitos dos fármacos , Oenothera/metabolismo , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética
17.
Plant J ; 105(1): 79-92, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098711

RESUMO

Rapid and widespread evolution of multiple herbicide resistance in global weed species endowed by increased capacity to metabolize (degrade) herbicides (metabolic resistance) is a great threat to herbicide sustainability and global food production. Metabolic resistance in the economically damaging crop weed species Lolium rigidum is well known but a molecular understanding has been lacking. We purified a metabolic resistant (R) subset from a field evolved R L. rigidum population. The R, the herbicide susceptible (S) and derived F2 populations were used for candidate herbicide resistance gene discovery by RNA sequencing. A P450 gene CYP81A10v7 was identified with higher expression in R vs. S plants. Transgenic rice overexpressing this Lolium CYP81A10v7 gene became highly resistant to acetyl-coenzyme A carboxylase- and acetolactate synthase-inhibiting herbicides (diclofop-methyl, tralkoxydim, chlorsulfuron) and moderately resistant to hydroxyphenylpyruvate dioxygenase-inhibiting herbicide (mesotrione), photosystem II-inhibiting herbicides (atrazine and chlorotoluron) and the tubulin-inhibiting herbicide trifluralin. This wide cross-resistance profile to many dissimilar herbicides in CYP81A10v7 transgenic rice generally reflects what is evident in the R L. rigidum. This report clearly showed that a single P450 gene in a cross-pollinated weed species L. rigidum confers resistance to herbicides of at least five modes of action across seven herbicide chemistries.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Herbicidas , Lolium/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Cicloexanonas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Éteres Difenil Halogenados/metabolismo , Resistência a Herbicidas/genética , Herbicidas/metabolismo , Lolium/enzimologia , Lolium/genética , Lolium/metabolismo , Oryza , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
18.
J Agric Food Chem ; 68(40): 11242-11252, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32936624

RESUMO

The effects of TiO2 and ZnO nanoparticles on soil bacteria and enantioselective transformation of racemic-metalaxyl (rac-metalaxyl) in agricultural soil with or without Lolium perenne were investigated in an outdoor greenhouse. After a 70-day exposure to 2‰ ZnO, microbial biomass carbon decreased by 66% and bacterial community composition significantly changed. Meanwhile, ZnO decreased chlorophyll cumulation in L. perenne by 34%. ZnO also inhibited the enantioselective transformation of metalaxyl enantiomers and changed the enantiomer fraction of metalaxyl. TiO2 showed similar effects but to a lesser extent. L. perenne promoted the transformation of rac-metalaxyl and ingested TiO2 and ZnO. L. perenne changed the bacterial co-occurrence networks and biomarkers in native soil and soil exposed to TiO2 and ZnO. L. perenne reduced the inhibition effects of TiO2 and ZnO on the transformation of rac-metalaxyl. The decrease in the relative abundance of soil keystone taxa such as Acidobacteria and Gemmatimonas might respond to the corresponding slow transformation of rac-metalaxyl in soils exposed to TiO2 and ZnO, regardless of L. perenne. Our results demonstrated the existence of mutual interactions among the impact of engineered nanoparticles on different components (microbes, plants, and coexisting pollutants) in the terrestrial ecosystem.


Assuntos
Alanina/análogos & derivados , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Fungicidas Industriais/metabolismo , Nanopartículas/toxicidade , Titânio/toxicidade , Óxido de Zinco/toxicidade , Alanina/química , Alanina/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Biodegradação Ambiental , Biotransformação , Clorofila/metabolismo , Fungicidas Industriais/química , Lolium/efeitos dos fármacos , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Solo , Microbiologia do Solo , Estereoisomerismo
19.
Ecotoxicol Environ Saf ; 203: 110961, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888621

RESUMO

Cadmium (Cd), which seriously affects plant growth and crop production, is harmful to humans. Previous studies revealed ryegrass (Lolium multiflorum Lam.) exhibits Cd tolerance, and may be useful as a potential hyperaccumulator because of its wide distribution. In this study, the physiological and transcriptional responses of two ryegrass cultivars [i.e., high (LmHC) and low (LmLC) Cd tolerance] to Cd stress were investigated and compared. The Cd tolerance of LmHC was greater than that of LmLC at various Cd concentrations. The uptake of Evans blue dye revealed that Cd-induced root cell mortality was higher in LmLC than in LmHC after a 12-h Cd treatment. Furthermore, the content and influx rate of Cd in LmLC roots were greater than in LmHC roots under Cd stress conditions. The RNA sequencing and quantitative real-time PCR data indicated that the Cd transport regulatory genes (ABCG37, ABCB4, NRAMP4, and HMA5) were differentially expressed between the LmLC and LmHC roots. This expression-level diversity may contribute to the differences in the Cd accumulation and translocation between LmLC and LmHC. These findings may help clarify the physiological and molecular mechanisms underlying ryegrass responses to Cd toxicity. Additionally, ryegrass may be able to hyperaccumulate toxic heavy metals during the phytoremediation of contaminated soil.


Assuntos
Adaptação Biológica , Cádmio/metabolismo , Lolium/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/metabolismo , Transcrição Gênica/efeitos dos fármacos , Adaptação Biológica/efeitos dos fármacos , Adaptação Biológica/genética , Biodegradação Ambiental , Cádmio/análise , Cádmio/toxicidade , Genes de Plantas , Lolium/química , Lolium/genética , Raízes de Plantas/química , Raízes de Plantas/genética , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
20.
J Chem Ecol ; 46(9): 871-880, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32691372

RESUMO

Weeds have been a major threat in agriculture for several generations as they lead to decreases in productivity and cause significant economic losses. Parasitic plants are a specific type of weed causing losses in crops of great relevance. A new strategy has emerged in the fight against parasitic plants, which is called 'suicidal germination' or the 'honey-pot strategy'. Regarding the problem of weed control from an ecological point of view, it is interesting to investigate new natural compounds with allelopathic activity with the aim of developing new natural herbicides that can inhibit the growth of weeds without damaging the environment. Safflower crops have been affected by parasitic plants and weeds and, as a consequence, the secondary metabolites exuded by safflower roots have been studied. The sesquiterpene lactone dehydrocostuslactone was isolated and characterised, and the structurally related costunolide was identified by UHPLC-MS/MS in safflower root exudates. These sesquiterpene lactones have been shown to stimulate germination of Phelipanche ramosa and Orobanche cumana seeds. In addition, these compounds were phytotoxic on three important weeds in agriculture, namely Lolium perenne, Lolium rigidum and Echinochloa crus-galli. The exudation of the strigolactones solanacol and fabacyl acetate have also been confirmed by UHPLC-MS/MS. The study reported here contributes to our knowledge of the ecological role played by some secondary metabolites. Moreover, this knowledge could help identify new models for the development of future agrochemicals based on natural products.


Assuntos
Carthamus tinctorius/parasitologia , Germinação/efeitos dos fármacos , Raízes de Plantas/parasitologia , Plantas Daninhas/efeitos dos fármacos , Controle de Plantas Daninhas/métodos , Alelopatia , Cromatografia Líquida , Lactonas/isolamento & purificação , Lactonas/farmacologia , Lolium/efeitos dos fármacos , Lolium/crescimento & desenvolvimento , Orobanche/efeitos dos fármacos , Orobanche/crescimento & desenvolvimento , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Exsudatos de Plantas/isolamento & purificação , Exsudatos de Plantas/farmacologia , Raízes de Plantas/química , Sementes/efeitos dos fármacos , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...