Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
1.
PLoS One ; 19(5): e0302742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768144

RESUMO

Zeaxanthin dipalmitate (ZD) is a chemical extracted from wolfberry that protects degenerated photoreceptors in mouse retina. However, the pure ZD is expensive and hard to produce. In this study, we developed a method to enrich ZD from wolfberry on a production line and examined whether it may also protect the degenerated mouse retina. The ZD-enriched wolfberry extract (ZDE) was extracted from wolfberry by organic solvent method, and the concentration of ZD was identified by HPLC. The adult C57BL/6 mice were treated with ZDE or solvent by daily gavage for 2 weeks, at the end of the first week the animals were intraperitoneally injected with N-methyl-N-nitrosourea to induce photoreceptor degeneration. Then optomotor, electroretinogram, and immunostaining were used to test the visual behavior, retinal light responses, and structure. The final ZDE product contained ~30mg/g ZD, which was over 9 times higher than that from the dry fruit of wolfberry. Feeding degenerated mice with ZDE significantly improved the survival of photoreceptors, enhanced the retinal light responses and the visual acuity. Therefore, our ZDE product successfully alleviated retinal morphological and functional degeneration in mouse retina, which may provide a basis for further animal studies for possible applying ZDE as a supplement to treat degenerated photoreceptor in the clinic.


Assuntos
Modelos Animais de Doenças , Lycium , Camundongos Endogâmicos C57BL , Células Fotorreceptoras de Vertebrados , Extratos Vegetais , Degeneração Retiniana , Zeaxantinas , Animais , Lycium/química , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/patologia , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Zeaxantinas/farmacologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Eletrorretinografia , Retina/efeitos dos fármacos , Retina/patologia , Retina/metabolismo , Visão Ocular/efeitos dos fármacos , Masculino , Xantofilas/farmacologia
3.
Fish Shellfish Immunol ; 149: 109573, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636742

RESUMO

This research elucidates the potential of Lycium barbarum residue (LBR), a by-product rich in bioactive substances, as a dietary supplement in aquaculture, especially for herbivorous fish like grass carp. In a detailed 120-day feeding trial, the impacts of varying LBR levels on juvenile grass carp were assessed, focusing on growth performance, survival rate, biochemical markers, and liver health. The study identified a 6% inclusion rate of LBR as optimal for enhancing survival and growth while mitigating hepatic lipid accumulation. Composition analysis of this diet revealed high concentrations of polysaccharides and flavonoids. Notably, the intake of LBR was found to enhance the antioxidant and immune-related enzymatic activities in the liver. Furthermore, it contributed to a reduction in hepatic fat deposition by decreasing the levels of triglycerides (TG) and total cholesterol (T-CHO) both in the liver and serum. Transcriptomic analysis of the liver highlighted LBR's substantial influence on lipid metabolism pathways, including the PPAR signaling pathway, primary bile acid biosynthesis, cholesterol metabolism, bile secretion, fat digestion and absorption, fatty acid degradation and fatty acid biosynthesis. Further, the expression level of genes pinpointed significant downregulation of fasn and dgat2, alongside upregulation of genes like pparda, cpt1b, cpt1ab and abca1b, in response to LBR supplementation. Overall, the findings present LBR as a promising enhancer of growth and survival in grass carp, with significant benefits in promoting fat metabolism and liver health, offering valuable insights for aquacultural nutrition strategies.


Assuntos
Ração Animal , Carpas , Dieta , Suplementos Nutricionais , Fígado , Animais , Carpas/crescimento & desenvolvimento , Carpas/imunologia , Ração Animal/análise , Fígado/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Metabolismo dos Lipídeos/efeitos dos fármacos , Lycium/química
4.
Int J Biol Macromol ; 267(Pt 1): 131316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574908

RESUMO

Lycium barbarum polysaccharide (LBP) is beneficial for elderly people, but its use is limited in geriatric foods due to the lack of comprehensive information on its preparation strategy and physical property. In this study, the low-ester rhamnogalacturonan-I (RG-I) type pectic polysaccharide-protein complexes with varying physicochemical properties, structural characteristics, proliferative activities on Bacteroides, and immune-enhancing activities on RAW 264.7 cells, were obtained by moderate-temperature acid extraction within adjustment of enzymatic and physical pretreatments. LBP prepared by moderate-temperature acid extraction, namely S1-A, showed the strongest immune-enhancing activity via increasing the phagocytosis capacity and NO release of RAW 264.7 cells by 23 % and 76 %, respectively. S1-A exhibited relatively high viscosity and calcium ion response characteristic with the application potential for thickened liquid foods for the elderly with dysphagia. LBP prepared by composite cellulase and pectinase pretreatment combined with moderate-temperature acid extraction, namely S1-M1, showed the strongest Bacteroides proliferative activity that was equivalent to 0.60-0.97 times of that of inulin. S1-M1 exhibited extremely low viscosity and strong tolerance to food nutrients with high processing applicability for fluid foods. This study provided crucial data for the preparation and application of LBP targeting gut microbiota disorders and immunosenescence for the development of geriatric foods.


Assuntos
Bacteroides , Proliferação de Células , Camundongos , Animais , Células RAW 264.7 , Bacteroides/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Fagocitose/efeitos dos fármacos , Viscosidade , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Lycium/química , Humanos
5.
J Agric Food Chem ; 72(12): 6781-6786, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470138

RESUMO

This Comment critically addresses the article by Gao et al. (Gao, K., et al. J. Agric. Food Chem. 2015, 63, 1067-1075), providing the structural elucidation of three phenolamide dimers (neolignanamides) from the fruits of Lycium barbarum. A more recent article published by Chen et al. (Chen, H., et al. J. Agric. Food Chem. 2023, 71, 11080-11093) incorporates these structures into further research on the bioactivity of these compounds. Although the analytical techniques used by Gao et al. are adequate, in our opinion, the nuclear magnetic resonance (NMR) spectroscopic data have not been interpreted correctly, resulting in incorrect structures for three neolignanamides from the fruits of L. barbarum. In this Comment, an alternative interpretation of the NMR spectroscopic data and the corresponding structures are proposed. The proposed structures feature linkage types that are much more common for neolignanamides than the linkage types in the originally reported structures of these compounds.


Assuntos
Antioxidantes , Lycium , Antioxidantes/química , Lycium/química , Amidas , Frutas/química , Fenóis/química
6.
Int Immunopharmacol ; 130: 111762, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38428146

RESUMO

Drug-induced liver injury (DILI) is a common and severe adverse drug reaction that can result in acute liver failure. Previously, we have shown that Lycium barbarum L. (wolfberry) ameliorated liver damage in acetaminophen (APAP)-induced DILI. Nevertheless, the mechanism needs further clarification. Herein, we utilized APAP-induced DILI mice to investigate how wolfberry impacts the gut-liver axis to mitigate liver damage. We showed that the abundance of Akkermansia muciniphila (A. muciniphila) was decreased, and intestinal microbiota was disrupted, while the expression levels of YAP1 and FXR-mediated CYP7A1 were reduced in the liver of DILI mice. Furthermore, wolfberry increased the abundance of A. muciniphila and the number of goblet cells in the intestines, while decreasing AST, ALT, and total bile acids (TBA) levels in the serum. Interestingly, A. muciniphila promoted YAP1 and FXR expression in hepatocytes, leading to the inhibition of CYP7A1 expression and a decrease in TBA content. Notably, wolfberry did not exert the beneficial effects mentioned above after the removal of intestinal bacteria by antibiotics (ATB)-containing water. Additionally, Yap1 knockout downregulated FXR expression and enhanced CYP7A1 expression in the liver of hepatocyte-specific Yap1 knockout mice. Therefore, wolfberry stimulated YAP1/FXR activation and reduced CYP7A1 expression by promoting the balance of intestinal microbiota, thereby suppressing the overproduction of bile acids.


Assuntos
Acetaminofen , Akkermansia , Ácidos e Sais Biliares , Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Lycium , Proteínas de Ligação a RNA , Proteínas de Sinalização YAP , Animais , Camundongos , Acetaminofen/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/microbiologia , Fígado , Lycium/química , Proteínas de Sinalização YAP/metabolismo , Proteínas de Ligação a RNA/metabolismo , Camundongos Knockout
7.
Zhongguo Zhong Yao Za Zhi ; 49(1): 110-122, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403344

RESUMO

Studying the physicochemical properties and biological activities of Lycium barbarum polysaccharides(LBPs) is of great significance. The previous study had extracted LBPs(LBP-1, LBP-2, LBP-3, LBP-4, and LBP-5) by five different methods(cold water extraction, boiling water reflux extraction of the residue after cold water extraction, ultrasonic extraction with 50% ethanol, ultrasonic extraction with 25% ethanol of the residue after 50% ethanol extraction, and hot water extraction). In this study, the structures of the obtained five LBPs were characterized by UV spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Furthermore, the antioxidant, blood lipid-lowering, nitrosation-inhibting, acetylcholinesterase-inhibiting, and tyrosinase-inhibiting activities of the five LBPs were measured in vitro. The results showed that high-temperature extraction destroyed the polysaccharide structure, while ultrasound-assisted extraction ensured the structural integrity. The thermal stability and degradation behaviors differed among the five LBPs. However, the UV spectroscopic results of the five LBPs did not show significant differences, and all of the five LBPs showed the characteristic absorption peaks of proteins. LBP-3 and LBP-4 exhibited strong antioxidant activity, while LBP-3 had the strongest blood lipid-lowering activity. In addition, LBP-3 outperformed other LBPs in inhibiting nitrosation and acetylcholineste-rase, and LBP-2 showed the strongest inhibitory effect on tyrosinase. This study explored the effects of different extraction methods on the physicochemical properties and biological activities of LBPs, with a view to providing a basis for the selection of suitable extraction methods to obtain LBPs with ideal biological activities.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Lycium/química , Monofenol Mono-Oxigenase , Acetilcolinesterase , Antioxidantes/farmacologia , Antioxidantes/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Lipídeos , Etanol , Água
8.
Food Chem ; 442: 138432, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241991

RESUMO

The fruit of Lycium barbarum (Lb), known as red goji berry, is a "superfruit" due to its abundance of bioactive compounds. Among these compounds, dicaffeoylspermidine derivatives (DCSPDs) have anti-oxidant and anti-Alzheimer's Disease activity. This study employed ultra-high-performance liquid chromatography with tandem mass spectrometry to investigate metabolic changes during the development and ripening stages of red goji berries. Totally 97 compounds, including 51 DCSPDs, were tentatively identified. Correlation analysis of these DCSPDs revealed that glycosyltransferases (GTs) play an important role in the formation of glycosylated DCSPDs. In vitro experiments characterized 3 novel GTs could add a glucosyl moiety to N1-caffeoyl-N10-dihydrocaffeoyl spermidine. Homologous GTs from L. ruthenicum (Lr) exhibited similar activity, despite the absence of abundant glycosylated DCSPDs in Lr. These findings provide insights into the metabolic changes and interconnections among active compounds in red goji berries. The identified GTs hold potential for metabolic engineering of DCSPDs and functional food development.


Assuntos
Lycium , Lycium/química , Frutas/química , Glucosiltransferases/metabolismo , Espectrometria de Massas em Tandem , Antioxidantes/química
9.
Food Chem ; 442: 138489, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38278104

RESUMO

In current work, the effect of ripening stages (I, II, and III) on pulsed vacuum drying (PVD) behavior of goji berry was explored. The shortest drying time of goji berry was observed at stage I (6.99 h) which was 13.95 %, and 28.85 % shorter than those at stages II, and III, respectively. This phenomenon was closely associated with the ripening stage, as contributed by the initial physiochemical differences, ultrastructure alterations, and moisture distribution. In addition, lower maturity suffered more severe browning, primarily due to the enzymatic and non-enzymatic reactions of phenolics, followed by pigment degradation and the Maillard reaction. Additionally, the PVD process promoted the rupture and transformation of the pectin fractions, also causing browning either directly or indirectly through participation in other chemical reactions. These findings suggest that the appropriate ripening stage of goji berry should be considered as having a significant impact on drying behaviors and quality attributes.


Assuntos
Lycium , Lycium/química , Vácuo
10.
Anticancer Agents Med Chem ; 24(2): 132-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37957869

RESUMO

INTRODUCTION: The increasing number of studies have shown that Lycium barbarum polysaccharides possess anti-tumor effects. However, the determination of the active ingredients and their mechanism against melanoma inhibition are still unknown. METHODS: In this study, we aimed to investigate the mechanisms of action of Lycium barbarum active glycopeptide (LBAG) on melanoma. LBAG was extracted and isolated from the fruit of Lycium barbarum using aqueous alcoholic precipitation and identified using ultra-performance liquid chromatography-quadrupole-time of flightmass spectrometry. Various assays including cell apoptosis, cell cycle analysis, colony formation assay, cell scratch test, flow cytometry, and Western blot were performed to evaluate the effects of LBAG on melanoma. RESULTS: The results showed that LBAG has a molecular weight of 10-15 kDa and contains Man, Rha, GlcA, Glc, Gal, and Ara18 amino acids. Treatment with LBAG significantly decreased B16 cell proliferation and induced cell cycle arrest at the G0/G phase, accompanied by the accumulation of reactive oxygen species. Western blot analysis revealed that the phosphorylation of P38-MAPK and AKT, as well as the expression of N-acetyl-Lcysteine, were related to cell apoptosis and cell cycle regulation. In mouse xenografts, LBAG inhibited tumor growth through the P38-MAPK and AKT signaling pathways. CONCLUSION: In conclusion, the anti-melanoma activity of LBAG may induce apoptosis in cancer cells through ROSmediated activation of the P38-MAPK and AKT signaling pathways. These findings provide a foundation for further research on the anti-melanoma potential of LBAG.


Assuntos
Lycium , Melanoma , Masculino , Humanos , Animais , Camundongos , Lycium/química , Lycium/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melanoma/tratamento farmacológico , Transdução de Sinais , Pontos de Checagem do Ciclo Celular , Apoptose
11.
Int J Biol Macromol ; 254(Pt 2): 127970, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944729

RESUMO

Lycium barbarum polysaccharides (LBPs) are the primary bioactive components in fruits of L. barbarum, commonly known as goji berry. Despite significant progress in understanding the chemical structures and health benefits of LBPs, the biosynthesis and regulation of LBPs in goji berry remains largely unknown. In this study, physiological indicators, including LBPs, were monitored in goji berry during fruit development and ripening (FDR), suggesting that pectin might be the major component of LBPs with increased content reaching 235.8 mg/g DW. Proteomic and transcriptomic analysis show that 6410 differentially expressed genes (DEGs) and 2052 differentially expressed proteins (DEPs) were identified with overrepresentation of flavonoids and polysaccharides-related gene ontology (GO) terms and KEGG pathways. Weighted gene co-expression network analysis (WGCNA) showed that LBPs coexpress with genes involved in pectin biosynthesis (LbGALS3, LbGATL5, LbQUA1, LbGAUT1/4/7, LbRGGAT1, LbRRT1/7, and LbRHM2), modification (LbSBT1.7), and regulation (LbAP2, LbGL2 LbTLP2, LbERF4, and LbTTG2), as well as with novel transcription factors (LbSPL9 and LbRIN homologs) and glycosyltransferases. Transgenic hairy roots overexpressing LbRIN validated that LbRIN modulate the expression of WGCNA-predicted regulators, including LbERF4, LbTTG2, and LbSPL9. These findings suggest that the biosynthesis and regulation of LBPs is conserved partially to those in Arabidopsis pectin. Taken together, this study provides valuable insights into the biosynthesis and regulation of LBPs, which can facilitate future studies on synthetic biology applications and genetic improvement of LBPs.


Assuntos
Lycium , Lycium/química , Frutas/química , Proteômica , Polissacarídeos/química , Pectinas/metabolismo
12.
Int J Biol Macromol ; 256(Pt 2): 128282, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008142

RESUMO

The traditional method for isolation and purification of polysaccharides is time-consuming. It often involves toxic solvents that destroy the function and structure of the polysaccharides, thus limiting in-depth research on the essential active ingredient of Lycium barbarum L. Therefore, in this study, high-speed countercurrent chromatography (HSCCC) and aqueous two-phase system (ATPS) were combined for the separation of crude polysaccharides of Lycium barbarum L. (LBPs). Under the optimized HSCCC conditions of PEG1000-K2HPO4-KH2PO4-H2O (12:10:10:68, w/w), 1.0 g of LBPs-ILs was successfully divided into three fractions (126.0 mg of LBPs-ILs-1, 109.9 mg of LBPs-ILs-2, and 65.4 mg of LBPs-ILs-3). Moreover, ATPS was confirmed as an efficient alternative method of pigment removal for LBPs purification, with significantly better decolorization (97.1 %) than the traditional H2O2 method (88.5 %). Then, the different partitioning behavior of LBPs-ILs in the two-phase system of HSCCC was preliminarily explored, which may be related to the difference in monosaccharide composition of polysaccharides. LBPs-ILs-1 exhibited better hypoglycemic activities than LBPs-ILs-2 and LBPs-ILs-3 in vitro. Therefore, HSCCC, combined with aqueous two-phase system, was an efficient separation and purification method with great potential for separating and purifying active polysaccharides in biological samples.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Lycium/química , Distribuição Contracorrente/métodos , Peróxido de Hidrogênio , Solventes/química , Medicamentos de Ervas Chinesas/química , Polissacarídeos/química
13.
J Proteomics ; 290: 105033, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-37879564

RESUMO

In order to better understand the mechanism of betaine accumulation in Lycium barbarum L. (LBL), we used iTRAQ (Isotope relative and absolute quantitative labeling) proteomics to screen and identify differentially abundant proteins (DAPs) at five stages (S1-young fruit stage, S2-green fruit stage, S3-early yellowing stage, S4-late yellowing stage, S5-ripening stage). A total of 1799 DAPs and 171 betaine-related DAPs were identified, and phosphatidylethanolamine N-methyltransferase (NMT), choline monooxygenase (CMO), and betaine aldehyde dehydrogenase (BADH) were found to be the key enzymes related to betaine metabolism. These proteins are mainly involved in carbohydrates, amino acids and their derivatives, fatty acids, carboxylic acids, photosynthesis and photoprotection, isoquinoline alkaloid biosynthesis, peroxisomes, and glycine, serine, and threonine metabolism. Three of the key enzymes were also up- and down-regulated to different degrees at the mRNA level. The study provide new insights into the of mechanism of betaine accumulation in LBL. SIGNIFICANCE: Betaine, a class of naturally occurring, water-soluble alkaloids, has been found to be widespread in animals, higher plants, and microbes. In addition to being an osmotic agent, betaine has biological functions such as hepatoprotection, neuroprotection, and antioxidant activity. Betaine metabolism (synthesis and catabolism) is complexly regulated by developmental and environmental signals throughout the life cycle of plant fruit maturation. As a betaine-accumulating plant, little has been reported about the regulatory mechanisms of betaine metabolism during the growth and development of Lycium barbarum L. (LBL) fruit. Therefore, this study used iTRAQ quantitative proteomics technology to investigate the abundance changes of betaine-related proteins in LBL fruit, screen and analyze the differential abundance proteins related to betaine metabolism, and provide theoretical references for the in-depth study of the mechanism of betaine metabolism in LBL fruit.


Assuntos
Betaína , Lycium , Animais , Betaína/metabolismo , Lycium/química , Lycium/metabolismo , Proteômica , Carboidratos , Ácidos Carboxílicos/metabolismo
14.
Int J Biol Macromol ; 258(Pt 2): 128958, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154707

RESUMO

The level of polysaccharides in the mature Lycium barbarum fruit (LBF) cell wall depends on their metabolism, trafficking, and reassembly within the cell. In this study, we examined the composition, content, and ultrastructure of the cell wall polysaccharides of LBF during maturation, and further analyzed cell wall polysaccharide remodeling using isotope tagging with relative and absolute quantification (iTRAQ)-based proteomics. The results showed that the contents of cellulose and hemicellulose tended to increase in the pre-maturation stage and decrease in the later stage, while pectin level increased before fruit maturing. The differential expression of the 54 proteins involved in the metabolic pathways for glucose, fructose, galactose, galacturonic acid and arabinose was found to be responsible for these alterations. The work provides a biological framework for the reorganization of polysaccharides in the LBF cell wall, and supports the hypothesis that pectic polysaccharide glycosyl donors come from starch, cellulose, hemicellulose and isomorphic pectin.


Assuntos
Lycium , Pectinas , Pectinas/análise , Lycium/química , Frutas/química , Polissacarídeos/química , Celulose/análise , Parede Celular
15.
World J Microbiol Biotechnol ; 40(1): 26, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057589

RESUMO

Lycium barbarum is widely distributed in China and used as a traditional Chinese medicine herb to treat dizziness, abdominal pain, dry cough, headache and fatigue. Several studies have examined the endophytes of L. barbarum from northwest China; however, few have focused on that from eastern China. The objective of this study was to isolate and determine the endophytic fungi of L. barbarum from Shandong province, as well as to obtain and identify active secondary metabolites from the endophytes. In this study, 17 endophytic fungi were isolated from L. barbarum and denoted as GQ-1 to GQ-17, respectively. These fungi were further classified into ten genera based on the morphological and ITS identification. The crude extracts of these fungi were obtained by using liquid fermentation and EtOAc extraction, and their antibacterial, cytotoxic, and antioxidant activities were evaluated. The results showed that GQ-6 and GQ-16 exhibited high inhibitory activity; GQ-6 and GQ-9 showed high cytotoxic activity and GQ-5 exhibited high scavenging capability for DPPH free radicals. Additionally, Cladosporium sp. GQ-6 was used to investigate the secondary metabolites. The crude extracts were purified by using column chromatography, reverse column, and liquid chromatography, and four monomeric compounds were identified, including two known compounds (α-acetylorcinol (1) and cladosporester B (2)) and two new compounds (cladosporacid F (3) and cladosporester D (4)). The anti-fungal and antibacterial activities of these compounds were confirmed, but no cytotoxic activity was observed. In conclusion, endophytic fungi of L. barbarum from eastern China can serve as a potential source of active natural products with antibacterial and antioxidant properties.


Assuntos
Antioxidantes , Lycium , Lycium/química , Lycium/microbiologia , Fungos , Antibacterianos/farmacologia , Misturas Complexas , Endófitos
16.
Molecules ; 28(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138577

RESUMO

As a beneficial nutrient and essential trace element, selenium plays a significant role in plant growth functions and human protein biosynthesis. Plant selenium enrichment is mainly obtained from both natural soil and exogenous selenium supplementation, while human beings consume selenium-enriched foods for the purposes of selenium supplementation. In this study, different types of selenium fertilizers were sprayed onto Lycium barbarum in Ningxia, and transcriptomics and metabolomics techniques were used to explore the effects of selenium on the fruit differentials and differential genes in Lycium barbarum. Taking the "Ning Qiyi No.1" wolfberry as the research object, sodium selenite, nano-selenium, and organic selenium were sprayed at a concentration of 100 mg·L-1 three times from the first fruiting period to the harvesting period, with a control treatment comprising the spraying of clear water. We determined the major metabolites and differential genes of the amino acids and derivatives, flavonoids, and alkaloids in ripe wolfberries. We found that spraying selenium significantly enhanced the Lycium barbarum metabolic differentiators; the most effective spray was the organic selenium, with 129 major metabolic differentiators and 10 common metabolic pathways screened after spraying. Nano-selenium was the next best fertilizer we screened, with 111 major metabolic differentiators, the same number as organic selenium in terms of differential genes and common metabolite pathways. Sodium selenite was the least effective of the three, with only 59 of its major metabolic differentials screened, but its differential genes and metabolites were enriched for five common pathways.


Assuntos
Lycium , Selênio , Humanos , Lycium/química , Selênio/análise , Frutas/química , Selenito de Sódio/farmacologia , Selenito de Sódio/metabolismo , Metabolômica/métodos , Perfilação da Expressão Gênica , Fertilização
17.
J Transl Med ; 21(1): 770, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907930

RESUMO

BACKGROUND: Lycium barbarum polysaccharide (LBP) is an active ingredient extracted from Lycium barbarum that inhibits neuroinflammation, and Lycium barbarum glycopeptide (LbGp) is a glycoprotein with immunological activity that was purified and isolated from LBP. Previous studies have shown that LbGp can regulate the immune microenvironment, but its specific mechanism of action remains unclear. AIMS: In this study, we aimed to explore the mechanism of action of LbGp in the treatment of spinal cord injury through metabolomics and molecular experiments. METHODS: SD male rats were randomly assigned to three experimental groups, and after establishing the spinal cord hemisection model, LbGp was administered orally. Spinal cord tissue was sampled on the seventh day after surgery for molecular and metabolomic experiments. In vitro, LbGp was administered to mimic the inflammatory microenvironment by activating microglia, and its mechanism of action in suppressing neuroinflammation was further elaborated using metabolomics and molecular biology techniques such as western blotting and q-PCR. RESULTS: In vivo and in vitro experiments found that LbGp can improve the inflammatory microenvironment by inhibiting the NF-kB and pyroptosis pathways. Furthermore, LbGp induced the secretion of docosahexaenoic acid (DHA) by microglia, and DHA inhibited neuroinflammation through the MAPK/NF-κB and pyroptosis pathways. CONCLUSIONS: In summary, we hypothesize that LbGp improves the inflammatory microenvironment by regulating the secretion of DHA by microglia and thereby inhibiting the MAPK/NF-κB and pyroptosis pathways and promoting nerve repair and motor function recovery. This study provides a new direction for the treatment of spinal cord injury and elucidates the potential mechanism of action of LbGp.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Traumatismos da Medula Espinal , Animais , Masculino , Ratos , Ácidos Docosa-Hexaenoicos/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Glicopeptídeos , Lycium/química , Lycium/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Piroptose , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico
18.
Ultrason Sonochem ; 101: 106696, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988957

RESUMO

To improve the protein dissolution rate and the quality of fresh Lycium barbarum pulp (LBP), we optimized the slit dual-frequency ultrasound-assisted pulping process, explored the dissolution kinetics of Lycium barbarum protein (LBPr), and established a near-infrared spectroscopy in situ real-time monitoring model for LBPr dissolution through spectral information analysis and chemometric methods. The results showed that under optimal conditions (dual-frequency 28-33 kHz, 300 W, 31 min, 40 °C, interval ratio 5:2 s/s), ultrasonic treatment not only significantly increased LBPr dissolution rate (increased by 71.48 %, p < 0.05), improved other nutrient contents and color, but also reduced the protein particle size, changed the amino acid composition ratio and protein structure, and increased the surface hydrophobicity, zeta potential, and free sulfhydryl content of protein, as well as the antioxidant activity of LBPr. In addition, ultrasonication significantly improved the functional properties of the protein, including thermal stability, foaming, emulsification and oil absorption capacity. Furthermore, the real-time monitoring model of the dissolution process was able to quantitatively predict the dissolution rate of LBPr with good calibration and prediction performance (Rc = 0.9835, RMSECV = 2.174, Rp = 0.9841, RMSEP = 1.206). These findings indicated that dual-frequency ultrasound has great potential to improve the quality of LBP and may provide a theoretical basis for the establishment of an intelligent control system in the industrialized production of LBP and the functional development of LBPr.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Antioxidantes/química , Lycium/química , Lycium/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
19.
Nutrients ; 15(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836464

RESUMO

Lycium ruthenicum Murray (LRM; commonly known as black goji berry or black wolfberry), a plant in the Solanaceae family, grows in the deserts of China's Qinghai-Tibet plateau. LRM is widely consumed in traditional Chinese medicine, and its fruits are frequently used as herbal remedies to treat heart disease, fatigue, inflammation, and other conditions. Many studies have reported that LRM is rich in functional phytochemicals, such as anthocyanins and polysaccharides, and has various pharmacological actions. This article reviews research on the biological and pharmacological effects of the constituents of LRM fruits. LRM has various pharmacological properties, such as antioxidant, anti-inflammatory, anti-radiation, immune-enhancing, anti-tumor, and protective effects. LRM has much promise as a dietary supplement for preventing many types of chronic metabolic disease.


Assuntos
Lycium , Humanos , Lycium/química , Antocianinas/análise , Tibet , Antioxidantes/metabolismo , Inflamação , Frutas/química
20.
Int J Biol Macromol ; 252: 126246, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567520

RESUMO

Root bark (Lycii cortex) of Lycium contains high contents of characteristic bioactive compounds, including kukoamine A (KuA) and kukoamine B (KuB). RIPENING INHIBITOR (RIN) is well known as a master regulator of Solanaceaous fruit ripening. However, the role of RIN in the biosynthetic pathway of KuA in Lycium remains unclear. In this study, integrated transcriptomic, metabolomic analyses and hairy root system are used to characterize the role of RIN in KuA biosynthesis in Lycium. The ultra performance liquid chromatography electrospray ionization tandem mass spectrometry analysis revealed that KuA was significantly induced in LrRIN1 RNAi lines and not detected in overexpression lines. A total of 20,913 differentially expressed genes (DEGs) and 60 differentially accumulated metabolites (DAMs) were detected in LrRIN1 transgenic hairy roots, which were used for weighted gene co-expression network analysis. Our result reveals a high association between KuA and structural genes in the phenolamide pathway, which shows a negative correlation with LrRIN1. In addition, overexpression of the polyamine pathway gene thermospermine synthase LcTSPMS, a potential target gene of Lycium RIN, increased the contents of both KuA and KuB in L. chinense hairy root, indicating that TSPMS is responsible for KuA biosynthesis and is also the common upstream biosynthetic gene for both KuA and KuB. Our results lay a solid foundation for uncovering the biosynthetic pathway of KuA, which will facilitate the molecular breeding and genetic improvement of Lycium species.


Assuntos
Lycium , Lycium/química , Espermina/farmacologia , Perfilação da Expressão Gênica , Frutas , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...