Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Exp Mol Med ; 55(6): 1247-1257, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37332046

RESUMO

Sarcomas constitute a heterogeneous group of rare and difficult-to-treat tumors that can affect people of all ages, representing one of the most common forms of cancer in childhood and adolescence. Little is known about the molecular entities involved in sarcomagenesis. Therefore, the identification of processes that lead to the development of the disease may uncover novel therapeutic opportunities. Here, we show that the MEK5/ERK5 signaling pathway plays a critical role in the pathogenesis of sarcomas. By developing a mouse model engineered to express a constitutively active form of MEK5, we demonstrate that the exclusive activation of the MEK5/ERK5 pathway can promote sarcomagenesis. Histopathological analyses identified these tumors as undifferentiated pleomorphic sarcomas. Bioinformatic studies revealed that sarcomas are the tumors in which ERK5 is most frequently amplified and overexpressed. Moreover, analysis of the impact of ERK5 protein expression on overall survival in patients diagnosed with different sarcoma types in our local hospital showed a 5-fold decrease in median survival in patients with elevated ERK5 expression compared with those with low expression. Pharmacological and genetic studies revealed that targeting the MEK5/ERK5 pathway drastically affects the proliferation of human sarcoma cells and tumor growth. Interestingly, sarcoma cells with knockout of ERK5 or MEK5 were unable to form tumors when engrafted into mice. Taken together, our results reveal a role of the MEK5/ERK5 pathway in sarcomagenesis and open a new scenario to be considered in the treatment of patients with sarcoma in which the ERK5 pathway is pathophysiologically involved.


Assuntos
MAP Quinase Quinase 5 , Sarcoma , Animais , Humanos , Camundongos , MAP Quinase Quinase 5/genética , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Prognóstico , Sarcoma/genética
2.
Cells ; 12(8)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37190064

RESUMO

Oxidative stress regulates many physiological and pathological processes. Indeed, a low increase in the basal level of reactive oxygen species (ROS) is essential for various cellular functions, including signal transduction, gene expression, cell survival or death, as well as antioxidant capacity. However, if the amount of generated ROS overcomes the antioxidant capacity, excessive ROS results in cellular dysfunctions as a consequence of damage to cellular components, including DNA, lipids and proteins, and may eventually lead to cell death or carcinogenesis. Both in vitro and in vivo investigations have shown that activation of the mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) pathway is frequently involved in oxidative stress-elicited effects. In particular, accumulating evidence identified a prominent role of this pathway in the anti-oxidative response. In this respect, activation of krüppel-like factor 2/4 and nuclear factor erythroid 2-related factor 2 emerged among the most frequent events in ERK5-mediated response to oxidative stress. This review summarizes what is known about the role of the MEK5/ERK5 pathway in the response to oxidative stress in pathophysiological contexts within the cardiovascular, respiratory, lymphohematopoietic, urinary and central nervous systems. The possible beneficial or detrimental effects exerted by the MEK5/ERK5 pathway in the above systems are also discussed.


Assuntos
Antioxidantes , Proteína Quinase 7 Ativada por Mitógeno , Antioxidantes/metabolismo , MAP Quinase Quinase 5/genética , MAP Quinase Quinase 5/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Animais
3.
Clin Transl Med ; 13(4): e1217, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37029785

RESUMO

BACKGROUND: The dismal prognosis of advanced ovarian cancer calls for the development of novel therapies to improve disease outcome. In this regard, we set out to discover new molecular entities and to assess the preclinical effectiveness of their targeting. METHODS: Cell lines, mice and human ovarian cancer samples were used. Proteome profiling of human phosphokinases, in silico genomic analyses, genetic (shRNA and CRISPR/Cas9) and pharmacological strategies as well as an ex vivo human preclinical model were performed. RESULTS: We identified WNK1 as a highly phosphorylated protein in ovarian cancer and found that its activation or high expression had a negative impact on patients' survival. Genomic analyses showed amplification of WNK1 in human ovarian tumours. Mechanistically, we demonstrate that WNK1 exerted its action through the MEK5-ERK5 signalling module in ovarian cancer. Loss of function, genetic or pharmacological experiments, demonstrated anti-proliferative and anti-tumoural effects of the targeting of the WNK1-MEK5-ERK5 route. Additional studies showed that this pathway modulated the anti-tumoural properties of the MEK1/2 inhibitor trametinib. Thus, treatment with trametinib activated the WNK1-MEK5-ERK5 route, raising the possibility that this effect may limit the therapeutic benefit of ERK1/2 targeting in ovarian cancer. Moreover, in different experimental settings, including an ex vivo patient-derived model consisting of ovarian cancer cells cultured with autologous patient sera, we show that inhibition of WNK1 or MEK5 increased the anti-proliferative and anti-tumour efficacy of trametinib. CONCLUSIONS: The present study uncovers the participation of WNK1-MEK5-ERK5 axis in ovarian cancer pathophysiology, opening the possibility of acting on this pathway with therapeutic purposes. Another important finding of the present study was the activation of that signalling axis by trametinib, bypassing the anti-tumoural efficacy of this drug. That fact should be considered in the context of the use of trametinib in ovarian cancer.


Assuntos
MAP Quinase Quinase 5 , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , MAP Quinase Quinase 5/genética , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
4.
Cell Mol Life Sci ; 79(10): 524, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123565

RESUMO

Endometrial cancer (EC) is the most common type of gynecologic cancer in women of developed countries. Despite surgery combined with chemo-/radiotherapy regimens, overall survival of patients with high-risk EC tumors is poor, indicating a need for novel therapies. The MEK5-ERK5 pathway is activated in response to growth factors and to different stressors, including oxidative stress and cytokines. Previous evidence supports a role for the MEK5-ERK5 pathway in the pathology of several cancers. We investigated the role of ERK5 in EC. In silico analysis of the PanCancer Atlas dataset showed alterations in components of the MEK5-ERK5 pathway in 48% of EC patients. Here, we show that ERK5 inhibition or silencing decreased EGF-induced EC cell proliferation, and that genetic deletion of MEK5 resulted in EC impaired proliferation and reduced tumor growth capacity in nude mice. Pharmacologic inhibition or ERK5 silencing impaired NF-kB pathway in EC cells and xenografts. Furthermore, we found a positive correlation between ERK5 and p65/RELA protein levels in human EC tumor samples. Mechanistically, genetic or pharmacologic impairment of ERK5 resulted in downregulation of NEMO/IKKγ expression, leading to impaired p65/RELA activity and to apoptosis in EC cells and xenografts, which was rescued by NEMO/IKKγ overexpression. Notably, ERK5 inhibition, MEK5 deletion or NF-kB inhibition sensitized EC cells to standard EC chemotherapy (paclitaxel/carboplatin) toxicity, whereas ERK5 inhibition synergized with paclitaxel to reduce tumor xenograft growth in mice. Together, our results suggest that the ERK5-NEMO-NF-κB pathway mediates EC cell proliferation and survival. We propose the ERK5/NF-κB axis as new target for EC treatment.


Assuntos
Neoplasias do Endométrio , NF-kappa B , Animais , Carboplatina , Proliferação de Células , Citocinas/metabolismo , Neoplasias do Endométrio/genética , Fator de Crescimento Epidérmico/metabolismo , Feminino , Humanos , MAP Quinase Quinase 5/genética , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , NF-kappa B/genética , NF-kappa B/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico
5.
J Cancer Res Clin Oncol ; 148(12): 3257-3266, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35713705

RESUMO

PURPOSE: This study was designed to evaluate the role and expression of MEK5 signalling in clear cell renal cell carcinoma (ccRCC) and to determine the relevance of MEK5 and mTOR signalling in ccRCC. METHODS: The expression of MEK5 was compared between ccRCC and normal tissues using the ONCOMINE and TCGA databases. MEK5 expression was evaluated in 14 human ccRCC samples. CCK8, wound-healing, and clone formation assays were performed to examine the cell proliferation, migration, and clone formation abilities of ccRCC cells treated with MEK5 and the inhibitor BIX02189. Furthermore, Western blotting was performed to verify the regulation and influence of MEK5 on the mTOR signalling pathway. Finally, a murine subcutaneous tumour model was constructed, and the effect and safety of BIX02189 were evaluated in vivo. RESULTS: The ONCOMINE and TCGA databases indicated that MEK5 expression in ccRCC was significantly higher than that in normal tissues, which was further confirmed in clinical specimens. MEK5 knockdown markedly inhibited ccRCC cell proliferation, colony formation, and migration, whereas MEK5 overexpression resulted in the opposite results. Western blotting revealed that overexpression of MEK5 could further activate the mTOR signalling pathway. Moreover, the MEK5 inhibitor BIX02189 significantly inhibited cell proliferation, arrested the cell cycle in the G0/G1 phase, induced apoptosis, and effectively inhibited cell migration and clone formation. BIX02189 also showed an excellent antitumor effect and a favourable safety profile in murine models. CONCLUSIONS: MEK5 expression was aberrantly increased in ccRCC, which activated the mTOR signalling pathway and regulated cell proliferation, cell cycle progression, migration, and clone formation in ccRCC. Targeted inhibition of MEK5 represents a promising new strategy in patients with ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MAP Quinase Quinase 5 , Animais , Humanos , Camundongos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Serina-Treonina Quinases TOR/metabolismo , MAP Quinase Quinase 5/metabolismo
6.
Bioengineered ; 13(5): 12888-12898, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35609325

RESUMO

The mitogen-activated protein kinase kinase 5 (MEK5)/extracellular signal-regulated kinase 5 (ERK5) axis has been reported to promote tumorigenesis in breast cancer (BC). Therefore, targeting the MEK5/ERK5 axis is a potential strategy against BC. BAY-885 is a novel inhibitor of ERK5; however, to date, its anti-tumor effects in BC have not been investigated. This study aimed to assess the anti-tumor effects of BAY-885 in BC and identify its underlying mechanisms of action. Unlike other ERK5 inhibitors, which frequently failed to mimic ERK5 genetic ablation phenotypes, the BAY-885 treatment effectively recapitulated ERK5 depletion effects in BC cells. Results revealed that BAY-885 affected the viability and induced apoptosis in BC cells. Moreover, the BAY-885-mediated downregulation of myeloid cell leukemia-1 (Mcl-1) and upregulation of Bim were dependent on ERK5 inhibition. Furthermore, BAY-885 triggered activation of endoplasmic reticulum (ER) stress, which further led to the upregulation of Bim and downregulation of Mcl-1. ER stress was induced in an ERK5 inhibition-dependent manner. These findings suggested that BAY-885 induced apoptosis in BC cells via ER stress/Mcl-1/Bim axis, suggesting that BAY-885 may serve as a therapeutic agent for BC.


Assuntos
Neoplasias da Mama , MAP Quinase Quinase 5 , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/metabolismo , Estresse do Retículo Endoplasmático , Feminino , Humanos , MAP Quinase Quinase 5/genética , MAP Quinase Quinase 5/metabolismo
7.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681917

RESUMO

Malignant melanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. We recently showed that the extracellular signal-regulated kinase 5 (ERK5), encoded by the MAPK7 gene, plays a pivotal role in melanoma by regulating cell functions necessary for tumour development, such as proliferation. Hedgehog-GLI signalling is constitutively active in melanoma and is required for proliferation. However, no data are available in literature about a possible interplay between Hedgehog-GLI and ERK5 pathways. Here, we show that hyperactivation of the Hedgehog-GLI pathway by genetic inhibition of the negative regulator Patched 1 increases the amount of ERK5 mRNA and protein. Chromatin immunoprecipitation showed that GLI1, the major downstream effector of Hedgehog-GLI signalling, binds to a functional non-canonical GLI consensus sequence at the MAPK7 promoter. Furthermore, we found that ERK5 is required for Hedgehog-GLI-dependent melanoma cell proliferation, and that the combination of GLI and ERK5 inhibitors is more effective than single treatments in reducing cell viability and colony formation ability in melanoma cells. Together, these findings led to the identification of a novel Hedgehog-GLI-ERK5 axis that regulates melanoma cell growth, and shed light on new functions of ERK5, paving the way for new therapeutic options in melanoma and other neoplasms with active Hedgehog-GLI and ERK5 pathways.


Assuntos
MAP Quinase Quinase 5/genética , Melanoma/genética , Proteína Quinase 7 Ativada por Mitógeno/genética , Neoplasias Cutâneas/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Imunoprecipitação da Cromatina , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , MAP Quinase Quinase 5/metabolismo , Melanoma/metabolismo , Camundongos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Células NIH 3T3 , Receptor Patched-1/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Melanoma Maligno Cutâneo
8.
Cancer Lett ; 519: 141-149, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34245854

RESUMO

The promising therapeutic efficacy of the third generation EGFR inhibitor, osimertinib (AZD9291), for the treatment of patients with EGFR-mutant non-small cell lung cancer (NSCLC) has been demonstrated in the clinic both as first-line and second line therapy. However, inevitable acquired resistance limits its long-term benefit to patients and is thus a significant clinical challenge. The current study focuses on studying the potential role of targeting MEK5-ERK5 signaling in overcoming acquired resistance to osimertinib. Osimertinib and other third generation EGFR inhibitors exerted a rapid and sustained suppressive effect on ERK5 phosphorylation primarily in EGFR-mutant NSCLC cell lines and lost this activity in some osimertinib-resistant cell lines. Osimertinib combined with either ERK5 or MEK5 inhibitors synergistically decreased the survival of osimertinib-resistant cell lines with enhanced induction of apoptosis primarily via augmenting Bim expression. Moreover, the combination effectively inhibited the growth of osimertinib-resistant xenografts in vivo. Together, these findings suggest the potential role of MEK5-ERK5 signaling in modulating development of acquired resistance to osimertinib and value of targeting this signaling as a potential strategy in overcoming acquired resistance to osimertinib and possibly other third generation EGFR inhibitors.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , MAP Quinase Quinase 5/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299213

RESUMO

The MEK5/ERK5 mitogen-activated protein kinases (MAPK) cascade is a unique signaling module activated by both mitogens and stress stimuli, including cytokines, fluid shear stress, high osmolarity, and oxidative stress. Physiologically, it is mainly known as a mechanoreceptive pathway in the endothelium, where it transduces the various vasoprotective effects of laminar blood flow. However, it also maintains integrity in other tissues exposed to mechanical stress, including bone, cartilage, and muscle, where it exerts a key function as a survival and differentiation pathway. Beyond its diverse physiological roles, the MEK5/ERK5 pathway has also been implicated in various diseases, including cancer, where it has recently emerged as a major escape route, sustaining tumor cell survival and proliferation under drug stress. In addition, MEK5/ERK5 dysfunction may foster cardiovascular diseases such as atherosclerosis. Here, we highlight the importance of the MEK5/ERK5 pathway in health and disease, focusing on its role as a protective cascade in mechanical stress-exposed healthy tissues and its function as a therapy resistance pathway in cancers. We discuss the perspective of targeting this cascade for cancer treatment and weigh its chances and potential risks when considering its emerging role as a protective stress response pathway.


Assuntos
Aterosclerose/fisiopatologia , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Animais , Aterosclerose/metabolismo , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo
10.
Aging (Albany NY) ; 13(12): 16088-16104, 2021 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-34176788

RESUMO

Traumatic brain injury (TBI) is a highly lethal event with a poor prognosis. Recovering residual neuronal function in the intermediate stage of TBI is important for treatment; however, neuroinflammation and neuronal apoptosis impede residual neuronal repair processes. Considering that hyperglycemia influences inflammatory processes and neuronal survival, we examined the effects of high glucose on neuroinflammation and neuronal death during the intermediate phase of TBI. Rat models of type 2 diabetes mellitus and/or TBI were developed and behaviorally assessed. Neurological function and cognitive abilities were impaired in TBI rats and worsened by type 2 diabetes mellitus. Histopathological staining and analyses of serum and hippocampal mRNA and protein levels indicated that neuroinflammation and apoptosis were induced in TBI rats and exacerbated by hyperglycemia. Hyperglycemia inhibited hippocampal mitogen-activated protein kinase kinase 5 (MEK5) phosphorylation in TBI rats. In vitro assays were used to assess inflammatory factor expression, apoptotic protein levels and neuronal survival after MEK5 activation in TBI- and/or high-glucose-treated neurons. MEK5/extracellular signal-regulated kinase 5 (ERK5) pathway activation reduced the inflammation, cleaved caspase-3 expression, Bax/Bcl-2 ratio and apoptosis of TBI neurons, even under high-glucose conditions. Thus, high glucose exacerbated neuroinflammation and apoptosis in the intermediate stage post-TBI by inhibiting the MEK5/ERK5 pathway.


Assuntos
Apoptose/efeitos dos fármacos , Lesões Encefálicas Traumáticas/patologia , Progressão da Doença , Glucose/toxicidade , Inflamação/patologia , Neurônios/patologia , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Sobrevivência Celular , Disfunção Cognitiva/complicações , Disfunção Cognitiva/fisiopatologia , Regulação para Baixo/genética , Hiperglicemia/complicações , Hiperglicemia/fisiopatologia , Mediadores da Inflamação/metabolismo , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Modelos Biológicos , Fosforilação , Ratos Sprague-Dawley , Regulação para Cima/genética
11.
Benef Microbes ; 12(3): 283-293, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030609

RESUMO

Escherichia coli Nissle (EcN), a probiotic bacterium protects against several disorders. Multiple reports have studied the pathways involved in cardiac hypertrophy. However, the effects of probiotic EcN against diabetes-induced cardiac hypertrophy remain to be understood. We administered five weeks old Wistar male (271±19.4 g body weight) streptozotocin-induced diabetic rats with 109 cfu of EcN via oral gavage every day for 24 days followed by subjecting the rats to echocardiography to analyse the cardiac parameters. Overexpressed interleukin (IL)-6 induced the MEK5/ERK5, JAK2/STAT3, and MAPK signalling cascades in streptozotocin-induced diabetic rats. Further, the upregulation of calcineurin, NFATc3, and p-GATA4 led to the elevation of hypertrophy markers, such as atrial and B-type natriuretic peptides. In contrast, diabetic rats supplemented with probiotic EcN exhibited significant downregulated IL-6. Moreover, the MEK5/ERK5 and JAK2/STAT3 cascades involved during eccentric hypertrophy and MAPK signalling, including phosphorylated MEK, ERK, JNK, and p-38, were significantly attenuated in diabetic rats after supplementation of EcN. Western blotting and immunofluorescence revealed the significant downregulation of NFATc3 and downstream mediators, thereby resulting in the impairment of cardiac hypertrophy. Taken together, the findings demonstrate that supplementing probiotic EcN has the potential to show cardioprotective effects by inhibiting diabetes-induced cardiomyopathies.


Assuntos
Cardiomegalia/terapia , Diabetes Mellitus Experimental/terapia , Cardiomiopatias Diabéticas/terapia , Escherichia coli/fisiologia , Interleucina-6/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Probióticos/uso terapêutico , Animais , Calcineurina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , MAP Quinase Quinase 5/metabolismo , Masculino , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Ratos , Ratos Wistar , Fator de Transcrição STAT3/metabolismo , Estreptozocina
12.
J Cell Biochem ; 122(8): 835-850, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33876843

RESUMO

Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. Constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has been linked to chemoresistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT) when cells adopt a motile and invasive phenotype through loss of epithelial markers (CDH1), and acquisition of mesenchymal markers (VIM, CDH2). Although MAPK/ERK1/2 kinase inhibitors (MEKi) are useful antitumor agents in a clinical setting, including the Food and Drug Administration (FDA)-approved MEK1,2 dual inhibitors cobimetinib and trametinib, there are limitations to their clinical utility, primarily adaptation of the BRAF pathway and ocular toxicities. The MEK5 (HGNC: MAP2K5) pathway has important roles in metastatic progression of various cancer types, including those of the prostate, colon, bone and breast, and elevated levels of ERK5 expression in breast carcinomas are linked to a worse prognoses in TNBC patients. The purpose of this study is to explore MEK5 regulation of the EMT axis and to evaluate a novel pan-MEK inhibitor on clinically aggressive TNBC cells. Our results show a distinction between the MEK1/2 and MEK5 cascades in maintenance of the mesenchymal phenotype, suggesting that the MEK5 pathway may be necessary and sufficient in EMT regulation while MEK1/2 signaling further sustains the mesenchymal state of TNBC cells. Furthermore, additive effects on MET induction are evident through the inhibition of both MEK1/2 and MEK5. Taken together, these data demonstrate the need for a better understanding of the individual roles of MEK1/2 and MEK5 signaling in breast cancer and provide a rationale for the combined targeting of these pathways to circumvent compensatory signaling and subsequent therapeutic resistance.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-fos/biossíntese , Neoplasias de Mama Triplo Negativas/metabolismo , Feminino , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase 5/genética , Células MCF-7 , Proteínas Proto-Oncogênicas c-fos/genética , Neoplasias de Mama Triplo Negativas/genética
13.
Trends Mol Med ; 26(4): 394-407, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32277933

RESUMO

Twenty years have passed since extracellular signal-regulated kinase 5 (ERK5) and its upstream activator, mitogen-activated protein kinase 5 (MEK5), first emerged onto the cancer research scene. Although we have come a long way in defining the liaison between dysregulated MEK5-ERK5 signaling and the pathogenesis of epithelial and nonepithelial malignancies, selective targeting of this unique pathway remains elusive. Here, we provide an updated review of the existing evidence for a correlation between aberrant MEK5-ERK5 (phospho)proteomic/transcriptomic profiles, aggressive cancer states, and poor patient outcomes. We then focus on emerging insights from preclinical models regarding the relevance of upregulated ERK5 activity in promoting tumor growth, metastasis, therapy resistance, undifferentiated traits, and immunosuppression, highlighting the opportunities, prospects, and challenges of selectively blocking this cascade for antineoplastic treatment and chemosensitization.


Assuntos
Antineoplásicos/farmacologia , MAP Quinase Quinase 5/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Animais , Humanos , Proteômica/métodos
14.
Cancer Res ; 80(6): 1293-1303, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31969375

RESUMO

Small-cell lung cancer (SCLC) is an aggressive form of lung cancer with dismal survival rates. While kinases often play key roles driving tumorigenesis, there are strikingly few kinases known to promote the development of SCLC. Here, we investigated the contribution of the MAPK module MEK5-ERK5 to SCLC growth. MEK5 and ERK5 were required for optimal survival and expansion of SCLC cell lines in vitro and in vivo. Transcriptomics analyses identified a role for the MEK5-ERK5 axis in the metabolism of SCLC cells, including lipid metabolism. In-depth lipidomics analyses showed that loss of MEK5/ERK5 perturbs several lipid metabolism pathways, including the mevalonate pathway that controls cholesterol synthesis. Notably, depletion of MEK5/ERK5 sensitized SCLC cells to pharmacologic inhibition of the mevalonate pathway by statins. These data identify a new MEK5-ERK5-lipid metabolism axis that promotes the growth of SCLC. SIGNIFICANCE: This study is the first to investigate MEK5 and ERK5 in SCLC, linking the activity of these two kinases to the control of cell survival and lipid metabolism.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Neoplasias Pulmonares/patologia , MAP Quinase Quinase 5/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Animais , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Colesterol/biossíntese , Técnicas de Silenciamento de Genes , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lipidômica , Neoplasias Pulmonares/tratamento farmacológico , MAP Quinase Quinase 5/genética , Sistema de Sinalização das MAP Quinases/genética , Ácido Mevalônico/metabolismo , Camundongos , Proteína Quinase 7 Ativada por Mitógeno/genética , RNA-Seq , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncogene ; 39(12): 2467-2477, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31980741

RESUMO

Radiotherapy is commonly used to treat a variety of solid human tumors, including localized prostate cancer. However, treatment failure often ensues due to tumor intrinsic or acquired radioresistance. Here we find that the MEK5/ERK5 signaling pathway is associated with resistance to genotoxic stress in aggressive prostate cancer cells. MEK5 knockdown by RNA interference sensitizes prostate cancer cells to ionizing radiation (IR) and etoposide treatment, as assessed by clonogenic survival and short-term proliferation assays. Mechanistically, MEK5 downregulation impairs phosphorylation of the catalytic subunit of DNA-PK at serine 2056 in response to IR or etoposide treatment. Although MEK5 knockdown does not influence the initial appearance of radiation- and etoposide-induced γH2AX and 53BP1 foci, it markedly delays their resolution, indicating a DNA repair defect. A cell-based assay shows that nonhomologous end joining (NHEJ) is compromised in cells with ablated MEK5 protein expression. Finally, MEK5 silencing combined with focal irradiation causes strong inhibition of tumor growth in mouse xenografts, compared with MEK5 depletion or radiation alone. These findings reveal a convergence between MEK5 signaling and DNA repair by NHEJ in conferring resistance to genotoxic stress in advanced prostate cancer and suggest targeting MEK5 as an effective therapeutic intervention in the management of this disease.


Assuntos
Antineoplásicos/farmacologia , Reparo do DNA por Junção de Extremidades , DNA de Neoplasias/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , MAP Quinase Quinase 5/genética , Mutagênicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Técnicas de Silenciamento de Genes , Humanos , MAP Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Masculino , Camundongos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Cell Biochem ; 121(2): 1156-1168, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31464004

RESUMO

Triple-negative breast cancers (TNBCs) represent 15% to 20% of all breast cancers and are often associated with poor prognosis. The lack of targeted therapies for TNBCs contributes to higher mortality rates. Aberrations in the phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase pathways have been linked to increased breast cancer proliferation and survival. It has been proposed that these survival characteristics are enhanced through compensatory signaling and crosstalk mechanisms. While the crosstalk between PI3K and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways has been characterized in several systems, new evidence suggests that MEK5/ERK5 signaling is a key component in the proliferation and survival of several aggressive cancers. In this study, we examined the effects of dual inhibition of PI3K/protein kinase B (Akt) and MEK5/ERK5 in the MDA-MB-231, BT-549, and MDA-MB-468 TNBC cell lines. We used the Akt inhibitor ipatasertib, ERK5 inhibitors XMD8-92 and AX15836, and the novel MEK5 inhibitor SC-1-181 to investigate the effects of dual inhibition. Our results indicated that dual inhibition of PI3K/Akt and MEK5/ERK5 signaling was more effective at reducing the proliferation and survival of TNBCs than single inhibition of either pathway alone. In particular, a loss of Bad phosphorylation at two distinct sites was observed with dual inhibition. Furthermore, the inhibition of both pathways led to p21 restoration, decreased cell proliferation, and induced apoptosis. In addition, the dual inhibition strategy was determined to be synergistic in MDA-MB-231 and BT-549 cells and was relatively nontoxic in the nonneoplastic MCF-10 cell line. In summary, the results from this study provide a unique prospective into the utility of a novel dual inhibition strategy for targeting TNBCs.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , MAP Quinase Quinase 5/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Apoptose/efeitos dos fármacos , Benzodiazepinonas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , MAP Quinase Quinase 5/antagonistas & inibidores , Proteína Quinase 7 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Piridonas/farmacologia , Pirimidinas/farmacologia , Pirimidinonas/farmacologia
17.
Food Funct ; 10(11): 7188-7203, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31608342

RESUMO

Epidemiological studies have shown that exposure to ambient fine particulate matter (PM2.5) is associated with an increased risk for cardiopulmonary diseases. The MEK5/ERK5 and NF-κB signaling pathways are closely related to the regulation of acute pulmonary cell injury (APCI) and may play an important role in the underlying pathophysiological mechanisms. Related studies have shown that Biochanin A (BCA) effectively interferes with APCI, but the underlying mechanism through which this occurs is not fully understood. Previously, based on proteomic and bioinformatic research, we found the indispensable role of MEK5 in mediating remission effects of BCA against PM2.5-induced lung toxicity. Therefore, using A549 adenocarcinoma human alveolar basal epithelial cells (A549 cells), we combined western blot and qRT-PCR to study the protective signaling pathways induced by BCA, indicating that MEK5/ERK5 and NF-κB are both involved in mediating APCI in response to PM2.5, and MEK5/ERK5 positively activated NF-κB and its downstream cellular regulatory factors. BCA significantly suppressed PM2.5-induced upregulation of MEK5/ERK5 expression and phosphorylation and activation of NF-κB. Furthermore, due to the specificity of the MEK5/ERK5 protein structure, the binding sites and binding patterns of BCA and MEK5 were analyzed using molecular docking correlation techniques, which showed that there are stable hydrogen bonds between BCA and the PB1 domain of MEK5 as well as its kinase domain. BCA forms a stable complex with MEK5, which has potential effects on MEKK2/3-MEK5-ERK5 ternary interactions, p62/αPKC-mediated NF-κB regulation, and inhibition of MEK5 target protein phosphorylation. Therefore, our study suggests that MEK5 is an important regulator of intracellular signaling of APCI in response to PM2.5 exposure. BCA may exert anti-APCI activity by targeting MEK5 to inhibit activation of the MEK5/ERK5/NF-κB signaling pathway.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Genisteína/farmacologia , MAP Quinase Quinase 5/metabolismo , Material Particulado/toxicidade , Substâncias Protetoras/farmacologia , Células A549 , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Genisteína/química , Humanos , MAP Quinase Quinase 5/química , MAP Quinase Quinase 5/genética , Simulação de Acoplamento Molecular , NF-kappa B/genética , NF-kappa B/metabolismo , Substâncias Protetoras/química , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos
18.
Cancer Res ; 79(9): 2244-2256, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30833419

RESUMO

Combined treatment of metastatic melanoma with BRAF and MEK inhibitors has improved survival, but the emergence of resistance represents an important clinical challenge. Targeting ERK is a suitable strategy currently being investigated in melanoma and other cancers. To anticipate possible resistance to ERK inhibitors (ERKi), we used SCH772984 (SCH) as a model ERKi to characterize resistance mechanisms in two BRAF V600E melanoma cell lines. The ERKi-resistant cells were also resistant to vemurafenib (VMF), trametinib (TMT), and combined treatment with either VMF and SCH or TMT and SCH. Resistance to SCH involved stimulation of the IGF1R-MEK5-Erk5 signaling pathway, which counteracted inhibition of Erk1/2 activation and cell growth. Inhibition of IGF1R with linsitinib blocked Erk5 activation in SCH-resistant cells and decreased their growth in 3D spheroid growth assays as well as in NOD scid gamma (NSG) mice. Cells doubly resistant to VMF and TMT or to VMF and SCH also exhibited downregulated Erk1/2 activation linked to stimulation of the IGF1R-MEK5-Erk5 pathway, which accounted for resistance. In addition, we found that the decreased Erk1/2 activation in SCH-resistant cells involved reduced expression and function of TGFα. These data reveal an escape signaling route that melanoma cells use to bypass Erk1/2 blockade during targeted melanoma treatment and offer several possible targets whose disruption may circumvent resistance. SIGNIFICANCE: Activation of the IGF1R-MEK5-Erk5 signaling pathway opposes pharmacologic inhibition of Erk1/2 in melanoma, leading to the reactivation of cell proliferation and acquired resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indazóis/farmacologia , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/patologia , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Piperazinas/farmacologia , Receptor IGF Tipo 1/metabolismo , Animais , Apoptose , Biomarcadores Tumorais , Proliferação de Células , Feminino , Humanos , MAP Quinase Quinase 5/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Quinase 7 Ativada por Mitógeno/genética , Receptor IGF Tipo 1/genética , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Circ Res ; 124(8): 1240-1252, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30732528

RESUMO

RATIONALE: Aberrant formation of blood vessels precedes a broad spectrum of vascular complications; however, the cellular and molecular events governing vascular malformations are not yet fully understood. OBJECTIVE: Here, we investigated the role of CDC42 (cell division cycle 42) during vascular morphogenesis and its relative importance for the development of cerebrovascular malformations. METHODS AND RESULTS: To avoid secondary systemic effects often associated with embryonic gene deletion, we generated an endothelial-specific and inducible knockout approach to study postnatal vascularization of the mouse brain. Postnatal endothelial-specific deletion of Cdc42 elicits cerebrovascular malformations reminiscent of cerebral cavernous malformations (CCMs). At the cellular level, loss of CDC42 function in brain endothelial cells (ECs) impairs their sprouting, branching morphogenesis, axial polarity, and normal dispersion within the brain tissue. Disruption of CDC42 does not alter EC proliferation, but malformations occur where EC proliferation is the most pronounced during brain development-the postnatal cerebellum-indicating that a high, naturally occurring EC proliferation provides a permissive state for the appearance of these malformations. Mechanistically, CDC42 depletion in ECs elicited increased MEKK3 (mitogen-activated protein kinase kinase kinase 3)-MEK5 (mitogen-activated protein kinase kinase 5)-ERK5 (extracellular signal-regulated kinase 5) signaling and consequent detrimental overexpression of KLF (Kruppel-like factor) 2 and KLF4, recapitulating the hallmark mechanism for CCM pathogenesis. Through genetic approaches, we demonstrate that the coinactivation of Klf4 reduces the severity of vascular malformations in Cdc42 mutant mice. Moreover, we show that CDC42 interacts with CCMs and that CCM3 promotes CDC42 activity in ECs. CONCLUSIONS: We show that endothelial-specific deletion of Cdc42 elicits CCM-like cerebrovascular malformations and that CDC42 is engaged in the CCM signaling network to restrain the MEKK3-MEK5-ERK5-KLF2/4 pathway.


Assuntos
Vasos Sanguíneos/anormalidades , Proliferação de Células , Células Endoteliais/fisiologia , Deleção de Genes , Hemangioma Cavernoso do Sistema Nervoso Central/etiologia , Proteína cdc42 de Ligação ao GTP/genética , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/genética , Encéfalo/irrigação sanguínea , Ciclo Celular/fisiologia , Proteína KRIT1/genética , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , MAP Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 3/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...