Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
1.
Mol Cancer ; 23(1): 92, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715072

RESUMO

Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Imunoterapia/métodos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Animais , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos
2.
Cell Mol Biol Lett ; 29(1): 77, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769475

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) significantly influence the progression, metastasis, and recurrence of esophageal squamous cell carcinoma (ESCC). The aberrant expression of long noncoding RNAs (lncRNAs) in ESCC has been established, yet the role of lncRNAs in TAM reprogramming during ESCC progression remains largely unexplored. METHODS: ESCC TAM-related lncRNAs were identified by intersecting differentially expressed lncRNAs with immune-related lncRNAs and performing immune cell infiltration analysis. The expression profile and clinical relevance of LINC00330 were examined using the TCGA database and clinical samples. The LINC00330 overexpression and interference sequences were constructed to evaluate the effect of LINC00330 on ESCC progression. Single-cell sequencing data, CIBERSORTx, and GEPIA were utilized to analyze immune cell infiltration within the ESCC tumor microenvironment and to assess the correlation between LINC00330 and TAM infiltration. ESCC-macrophage coculture experiments were conducted to investigate the influence of LINC00330 on TAM reprogramming and its subsequent effect on ESCC progression. The interaction between LINC00330 and C-C motif ligand 2 (CCL2) was confirmed through transcriptomic sequencing, subcellular localization analysis, RNA pulldown, silver staining, RNA immunoprecipitation, and other experiments. RESULTS: LINC00330 is significantly downregulated in ESCC tissues and strongly associated with poor patient outcomes. Overexpression of LINC00330 inhibits ESCC progression, including proliferation, invasion, epithelial-mesenchymal transition, and tumorigenicity in vivo. LINC00330 promotes TAM reprogramming, and LINC00330-mediated TAM reprogramming inhibits ESCC progression. LINC00330 binds to the CCL2 protein and inhibits the expression of CCL2 and downstream signaling pathways. CCL2 is critical for LINC00330-mediated TAM reprogramming and ESCC progression. CONCLUSIONS: LINC00330 inhibited ESCC progression by disrupting the CCL2/CCR2 axis and its downstream signaling pathways in an autocrine fashion; and by impeding CCL2-mediated TAM reprogramming in a paracrine manner. The new mechanism of TAM reprogramming mediated by the LINC00330/CCL2 axis may provide potential strategies for targeted and immunocombination therapies for patients with ESCC.


Assuntos
Quimiocina CCL2 , Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Microambiente Tumoral , Macrófagos Associados a Tumor , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genética , Macrófagos Associados a Tumor/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Animais , Camundongos , Feminino , Proliferação de Células/genética
3.
Cancer Immunol Immunother ; 73(6): 115, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693304

RESUMO

In the malignant progression of tumors, there is deposition and cross-linking of collagen, as well as an increase in hyaluronic acid content, which can lead to an increase in extracellular matrix stiffness. Recent research evidence have shown that the extracellular matrix plays an important role in angiogenesis, cell proliferation, migration, immunosuppression, apoptosis, metabolism, and resistance to chemotherapeutic by the alterations toward both secretion and degradation. The clinical importance of tumor-associated macrophage is increasingly recognized, and macrophage polarization plays a central role in a series of tumor immune processes through internal signal cascade, thus regulating tumor progression. Immunotherapy has gradually become a reliable potential treatment strategy for conventional chemotherapy resistance and advanced cancer patients, but the presence of immune exclusion has become a major obstacle to treatment effectiveness, and the reasons for their resistance to these approaches remain uncertain. Currently, there is a lack of exact mechanism on the regulation of extracellular matrix stiffness and tumor-associated macrophage polarization on immune exclusion. An in-depth understanding of the relationship between extracellular matrix stiffness, tumor-associated macrophage polarization, and immune exclusion will help reveal new therapeutic targets and guide the development of clinical treatment methods for advanced cancer patients. This review summarized the different pathways and potential molecular mechanisms of extracellular matrix stiffness and tumor-associated macrophage polarization involved in immune exclusion and provided available strategies to address immune exclusion.


Assuntos
Matriz Extracelular , Neoplasias , Macrófagos Associados a Tumor , Humanos , Matriz Extracelular/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/terapia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Animais , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo
4.
Breast Cancer Res ; 26(1): 75, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720366

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) are a prominent immune subpopulation in the tumor microenvironment that could potentially serve as therapeutic targets for breast cancer. Thus, it is important to characterize this cell population across different tumor subtypes including patterns of association with demographic and prognostic factors, and breast cancer outcomes. METHODS: We investigated CD163+ macrophages in relation to clinicopathologic variables and breast cancer outcomes in the Women's Circle of Health Study and Women's Circle of Health Follow-up Study populations of predominantly Black women with breast cancer. We evaluated 611 invasive breast tumor samples (507 from Black women, 104 from White women) with immunohistochemical staining of tissue microarray slides followed by digital image analysis. Multivariable Cox proportional hazards models were used to estimate hazard ratios for overall survival (OS) and breast cancer-specific survival (BCSS) for 546 cases with available survival data (median follow-up time 9.68 years (IQR: 7.43-12.33). RESULTS: Women with triple-negative breast cancer showed significantly improved OS in relation to increased levels of tumor-infiltrating CD163+ macrophages in age-adjusted (Q3 vs. Q1: HR = 0.36; 95% CI 0.16-0.83) and fully adjusted models (Q3 vs. Q1: HR = 0.30; 95% CI 0.12-0.73). A similar, but non-statistically significant, association was observed for BCSS. Macrophage infiltration in luminal and HER2+ tumors was not associated with OS or BCSS. In a multivariate regression model that adjusted for age, subtype, grade, and tumor size, there was no significant difference in CD163+ macrophage density between Black and White women (RR = 0.88; 95% CI 0.71-1.10). CONCLUSIONS: In contrast to previous studies, we observed that higher densities of CD163+ macrophages are independently associated with improved OS and BCSS in women with invasive triple-negative breast cancer. Trial registration Not applicable.


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Receptores de Superfície Celular , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Humanos , Feminino , Microambiente Tumoral/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Pessoa de Meia-Idade , Receptores de Superfície Celular/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Seguimentos , Prognóstico , Adulto , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Idoso , Biomarcadores Tumorais/metabolismo , Modelos de Riscos Proporcionais
5.
J Transl Med ; 22(1): 442, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730286

RESUMO

INTRODUCTION: Lung cancer is a prevalent malignancy globally, and immunotherapy has revolutionized its treatment. However, resistance to immunotherapy remains a challenge. Abnormal cholinesterase (ChE) activity and choline metabolism are associated with tumor oncogenesis, progression, and poor prognosis in multiple cancers. Yet, the precise mechanism underlying the relationship between ChE, choline metabolism and tumor immune microenvironment in lung cancer, and the response and resistance of immunotherapy still unclear. METHODS: Firstly, 277 advanced non-small cell lung cancer (NSCLC) patients receiving first-line immunotherapy in Sun Yat-sen University Cancer Center were enrolled in the study. Pretreatment and the alteration of ChE after 2 courses of immunotherapy and survival outcomes were collected. Kaplan-Meier survival and cox regression analysis were performed, and nomogram was conducted to identify the prognostic and predicted values. Secondly, choline metabolism-related genes were screened using Cox regression, and a prognostic model was constructed. Functional enrichment analysis and immune microenvironment analysis were also conducted. Lastly, to gain further insights into potential mechanisms, single-cell analysis was performed. RESULTS: Firstly, baseline high level ChE and the elevation of ChE after immunotherapy were significantly associated with better survival outcomes for advanced NSCLC. Constructed nomogram based on the significant variables from the multivariate Cox analysis performed well in discrimination and calibration. Secondly, 4 choline metabolism-related genes (MTHFD1, PDGFB, PIK3R3, CHKB) were screened and developed a risk signature that was found to be related to a poorer prognosis. Further analysis revealed that the choline metabolism-related genes signature was associated with immunosuppressive tumor microenvironment, immune escape and metabolic reprogramming. scRNA-seq showed that MTHFD1 was specifically distributed in tumor-associated macrophages (TAMs), mediating the differentiation and immunosuppressive functions of macrophages, which may potentially impact endothelial cell proliferation and tumor angiogenesis. CONCLUSION: Our study highlights the discovery of ChE as a prognostic marker in advanced NSCLC, suggesting its potential for identifying patients who may benefit from immunotherapy. Additionally, we developed a prognostic signature based on choline metabolism-related genes, revealing the correlation with the immunosuppressive microenvironment and uncovering the role of MTHFD1 in macrophage differentiation and endothelial cell proliferation, providing insights into the intricate workings of choline metabolism in NSCLC pathogenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Colina , Células Endoteliais , Neoplasias Pulmonares , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Colina/metabolismo , Masculino , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Pessoa de Meia-Idade , Prognóstico , Imunoterapia , Terapia de Imunossupressão , Estimativa de Kaplan-Meier , Nomogramas , Reprogramação Metabólica
6.
Int J Oncol ; 64(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695252

RESUMO

Tumor­associated macrophages (TAMs) are essential components of the tumor microenvironment (TME) and display phenotypic heterogeneity and plasticity associated with the stimulation of bioactive molecules within the TME. TAMs predominantly exhibit tumor­promoting phenotypes involved in tumor progression, such as tumor angiogenesis, metastasis, immunosuppression and resistance to therapies. In addition, TAMs have the potential to regulate the cytotoxic elimination and phagocytosis of cancer cells and interact with other immune cells to engage in the innate and adaptive immune systems. In this context, targeting TAMs has been a popular area of research in cancer therapy, and a comprehensive understanding of the complex role of TAMs in tumor progression and exploration of macrophage­based therapeutic approaches are essential for future therapeutics against cancers. The present review provided a comprehensive and updated overview of the function of TAMs in tumor progression, summarized recent advances in TAM­targeting therapeutic strategies and discussed the obstacles and perspectives of TAM­targeting therapies for cancers.


Assuntos
Progressão da Doença , Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neovascularização Patológica/imunologia , Animais , Terapia de Alvo Molecular/métodos
7.
J Cell Mol Med ; 28(10): e18395, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774995

RESUMO

Tumour-associated macrophages (TAMs), encompassing M1 and M2 subtypes, exert significant effects on osteosarcoma (OS) progression and immunosuppression. However, the impacts of TAM-derived biomarkers on the progression of OS remains limited. The GSE162454 profile was subjected to single-cell RNA (scRNA) sequencing analysis to identify crucial mediators between TAMs and OS cells. The clinical features, effects and mechanisms of these mediators on OS cells and tumour microenvironment were evaluated via biological function experiments and molecular biology experiments. Phosphodiesterase 4C (PDE4C) was identified as a pivotal mediator in the communication between M2 macrophages and OS cells. Elevated levels of PDE4C were detected in OS tissues, concomitant with M2 macrophage level, unfavourable prognosis and metastasis. The expression of PDE4C was observed to increase during the conversion process of THP-1 cells to M2 macrophages, which transferred the PDE4C mRNA to OS cells through exosome approach. PDE4C increased OS cell proliferation and mobility via upregulating the expression of collagens. Furthermore, a positive correlation was observed between elevated levels of PDE4C and increased TIDE score, decreased response rate following immune checkpoint therapy, reduced TMB and diminished PDL1 expression. Collectively, PDE4C derived from M2 macrophages has the potential to enhance the proliferation and mobility of OS cells by augmenting collagen expression. PDE4C may serve as a valuable biomarker for prognosticating patient outcomes and response rates following immunotherapy.


Assuntos
Neoplasias Ósseas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Imunoterapia , Macrófagos , Osteossarcoma , Microambiente Tumoral , Osteossarcoma/patologia , Osteossarcoma/imunologia , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/terapia , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Prognóstico , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Masculino , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Metástase Neoplásica , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Movimento Celular
8.
Cancer Immunol Immunother ; 73(7): 128, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743074

RESUMO

The majority of the immune cell population in the tumor microenvironment (TME) consists of tumor-associated macrophages (TAM), which are the main players in coordinating tumor-associated inflammation. TAM has a high plasticity and is divided into two main phenotypes, pro-inflammatory M1 type and anti-inflammatory M2 type, with tumor-suppressive and tumor-promoting functions, respectively. Considering the beneficial effects of M1 macrophages for anti-tumor and the high plasticity of macrophages, the conversion of M2 TAM to M1 TAM is feasible and positive for tumor treatment. This study sought to evaluate whether the glycopeptide derived from simulated digested Codonopsis pilosula extracts could regulate the polarization of M2-like TAM toward the M1 phenotype and the potential regulatory mechanisms. The results showed that after glycopeptide dCP1 treatment, the mRNA relative expression levels of some M2 phenotype marker genes in M2-like TAM in simulated TME were reduced, and the relative expression levels of M1 phenotype marker genes and inflammatory factor genes were increased. Analysis of RNA-Seq of M2-like TAM after glycopeptide dCP1 intervention showed that the gene sets such as glycolysis, which is associated with macrophage polarization in the M1 phenotype, were significantly up-regulated, whereas those of gene sets such as IL-6-JAK-STAT3 pathway, which is associated with polarization in the M2 phenotype, were significantly down-regulated. Moreover, PCA analysis and Pearson's correlation also indicated that M2-like TAM polarized toward the M1 phenotype at the transcriptional level after treatment with the glycopeptide dCP1. Lipid metabolomics was used to further explore the efficacy of the glycopeptide dCP1 in regulating the polarization of M2-like TAM to the M1 phenotype. It was found that the lipid metabolite profiles in dCP1-treated M2-like TAM showed M1 phenotype macrophage lipid metabolism profiles compared with blank M2-like TAM. Analysis of the key differential lipid metabolites revealed that the interconversion between phosphatidylcholine (PC) and diacylglycerol (DG) metabolites may be the central reaction of the glycopeptide dCP1 in regulating the conversion of M2-like TAM to the M1 phenotype. The above results suggest that the glycopeptide dCP1 has the efficacy to regulate the polarization of M2-like TAM to M1 phenotype in simulated TME.


Assuntos
Codonopsis , Fenótipo , Microambiente Tumoral , Macrófagos Associados a Tumor , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Humanos , Glicopeptídeos/metabolismo , Glicopeptídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/imunologia
9.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690738

RESUMO

Targeting tumor-associated macrophages (TAMs) is an emerging approach being tested in multiple clinical trials. TAMs, depending on their differentiation state, can exhibit pro- or antitumorigenic functions. For example, the M2-like phenotype represents a protumoral state that can stimulate tumor growth, angiogenesis, metastasis, therapy resistance, and immune evasion by expressing immune checkpoint proteins. In this issue of the JCI, Vaccaro and colleagues utilized an innovative drug screen approach to demonstrate that targeting driver oncogenic signaling pathways concurrently with anti-CD47 sensitizes tumor cells, causing them to undergo macrophage-induced phagocytosis. The combination treatment altered expression of molecules on the tumor cells that typically limit phagocytosis. It also reprogrammed macrophages to an M1-like antitumor state. Moreover, the approach was generalizable to tumor cells with different oncogenic pathways, opening the door to precision oncology-based rationale combination therapies that have the potential to improve outcomes for patients with oncogene-driven lung cancers and likely other cancer types.


Assuntos
Antígeno CD47 , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Antígeno CD47/metabolismo , Antígeno CD47/antagonistas & inibidores , Animais , Fagocitose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo
10.
PLoS One ; 19(5): e0302780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713738

RESUMO

Reticulocalbin 1 (RCN1) is a calcium-binding protein involved in the regulation of calcium homeostasis in the endoplasmic reticulum. The aim of this study was to explore the clinical value and biological role of RCN1 in esophageal squamous cell carcinoma (ESCC). In addition, we investigated the effect of RCN1 on the polarization of tumor-associated macrophages (TAMs). The GSE53625 dataset from the Gene Expression Omnibus database was used to analyze the expression of RCN1 mRNA and its relationship with clinical value and immune cell infiltration. Immunohistochemistry was used to validate the expression of RCN1 and its correlation with clinicopathological characteristics. Subsequently, transwell and cell scratch assays were conducted to evaluate the migration and invasion abilities of ESCC cells. The expression levels of epithelial-mesenchymal transition (EMT)-related proteins were evaluated by western blot, while apoptosis was detected by flow cytometry and western blot. Additionally, qRT‒PCR was utilized to evaluate the role of RCN1 in macrophage polarization. RCN1 was significantly upregulated in ESCC tissues and was closely associated with lymphatic metastasis and a poor prognosis, and was an independent prognostic factor for ESCC in patients. Knockdown of RCN1 significantly inhibited the migration, invasion, and EMT of ESCC cells, and promoted cell apoptosis. In addition, RCN1 downregulation inhibited M2 polarization. RCN1 is upregulated in ESCC patients and is negatively correlated with patient prognosis. Knocking down RCN1 inhibits ESCC progression and M2 polarization. RCN1 can serve as a potential diagnostic and prognostic indicator for ESCC, and targeting RCN1 is a very promising therapeutic strategy.


Assuntos
Proteínas de Ligação ao Cálcio , Regulação para Baixo , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Feminino , Masculino , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Movimento Celular/genética , Progressão da Doença , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Apoptose , Prognóstico , Macrófagos/metabolismo
11.
Cancer Immunol Immunother ; 73(7): 122, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714539

RESUMO

Neuroblastoma (NB) is the most common and deadliest extracranial solid tumor in children. Targeting tumor-associated macrophages (TAMs) is a strategy for attenuating tumor-promoting states. The crosstalk between cancer cells and TAMs plays a pivotal role in mediating tumor progression in NB. The overexpression of Hexokinase-3 (HK3), a pivotal enzyme in glucose metabolism, has been associated with poor prognosis in NB patients. Furthermore, it correlates with the infiltration of M2-like macrophages within NB tumors, indicating its significant involvement in tumor progression. Therefore, HK3 not only directly regulates the malignant biological behaviors of tumor cells, such as proliferation, migration, and invasion, but also recruits and polarizes M2-like macrophages through the PI3K/AKT-CXCL14 axis in neuroblastoma. The secretion of lactate and histone lactylation alterations within tumor cells accompanies this interaction. Additionally, elevated expression of HK3 in M2-TAMs was found at the same time. Modulating HK3 within M2-TAMs alters the biological behavior of tumor cells, as demonstrated by our in vitro studies. This study highlights the pivotal role of HK3 in the progression of NB malignancy and its intricate regulatory network with M2-TAMs. It establishes HK3 as a promising dual-functional biomarker and therapeutic target in combating neuroblastoma.


Assuntos
Hexoquinase , Neuroblastoma , Macrófagos Associados a Tumor , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Humanos , Hexoquinase/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Quimiocinas CXC/metabolismo , Animais , Microambiente Tumoral/imunologia
12.
Cancer Cell ; 42(5): 815-832.e12, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38640932

RESUMO

Monocyte-derived tumor-associated macrophages (Mo-TAMs) intensively infiltrate diffuse gliomas with remarkable heterogeneity. Using single-cell transcriptomics, we chart a spatially resolved transcriptional landscape of Mo-TAMs across 51 patients with isocitrate dehydrogenase (IDH)-wild-type glioblastomas or IDH-mutant gliomas. We characterize a Mo-TAM subset that is localized to the peri-necrotic niche and skewed by hypoxic niche cues to acquire a hypoxia response signature. Hypoxia-TAM destabilizes endothelial adherens junctions by activating adrenomedullin paracrine signaling, thereby stimulating a hyperpermeable neovasculature that hampers drug delivery in glioblastoma xenografts. Accordingly, genetic ablation or pharmacological blockade of adrenomedullin produced by Hypoxia-TAM restores vascular integrity, improves intratumoral concentration of the anti-tumor agent dabrafenib, and achieves combinatorial therapeutic benefits. Increased proportion of Hypoxia-TAM or adrenomedullin expression is predictive of tumor vessel hyperpermeability and a worse prognosis of glioblastoma. Our findings highlight Mo-TAM diversity and spatial niche-steered Mo-TAM reprogramming in diffuse gliomas and indicate potential therapeutics targeting Hypoxia-TAM to normalize tumor vasculature.


Assuntos
Adrenomedulina , Neoplasias Encefálicas , Glioblastoma , Macrófagos Associados a Tumor , Humanos , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/irrigação sanguínea , Glioblastoma/genética , Glioblastoma/metabolismo , Animais , Adrenomedulina/genética , Adrenomedulina/metabolismo , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Macrófagos Associados a Tumor/metabolismo , Neovascularização Patológica/genética , Microambiente Tumoral , Isocitrato Desidrogenase/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Macrófagos/metabolismo , Hipóxia Celular
13.
Cancer Lett ; 591: 216872, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642609

RESUMO

The tumor-associated macrophages (TAMs) play multifaceted roles in the progression of hepatocellular carcinoma (HCC). However, the involvement of circular RNAs in the interplay between TAMs and HCC remains unclear. Based on Transwell co-culturing and circular RNA sequencing, this study revealed that TAMs enhanced tumor glycolysis and progression by upregulating circMRCKα in HCC cells. Patients with HCC who exhibited elevated circMRCKα levels presented significantly reduced overall survival and greater cumulative recurrence. Notably, we identified a novel functional peptide of 227 amino acids named circMRCKα-227aa, encoded by circMRCKα. Mechanistically, circMRCKα-227aa bound to USP22 and enhanced its protein level to obstruct HIF-1α degradation via the ubiquitin-proteasome pathway, thereby augmenting HCC glycolysis and progression. In clinical HCC samples, a positive correlation was observed between the expression of circMRCKα and the number of infiltrating CD68+ TAMs and expression of USP22. Furthermore, circMRCKα emerged as an independent prognostic risk factor both individually and in conjunction with CD68+ TAMs and USP22. This study illustrated that circMRCKα-227aa, a novel TAM-induced peptide, promotes tumor glycolysis and progression via USP22 binding and HIF-1α upregulation, suggesting that circMRCKα and TAMs could be combined as therapeutic targets in HCC.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Glicólise , Neoplasias Hepáticas , RNA Circular , Macrófagos Associados a Tumor , Ubiquitina Tiolesterase , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , RNA Circular/genética , RNA Circular/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Masculino , Animais , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Feminino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Peptídeos/metabolismo , Pessoa de Meia-Idade , Prognóstico
14.
Cancer Cell ; 42(5): 747-758, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38670090

RESUMO

Cancer is a progressive disease that can develop and evolve over decades, with inflammation playing a central role at each of its stages, from tumor initiation to metastasis. In this context, macrophages represent well-established bridges reciprocally linking inflammation and cancer via an array of diverse functions that have spurred efforts to classify them into subtypes. Here, we discuss the intertwines between macrophages, inflammation, and cancer with an emphasis on temporal dynamics of macrophage diversity and functions in pre-malignancy and cancer. By instilling temporal dynamism into the more static classic view of tumor-associated macrophage biology, we propose a new framework to better contextualize their significance in the inflammatory processes that precede and result from the onset of cancer and shape its evolution.


Assuntos
Inflamação , Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Animais , Inflamação/imunologia , Inflamação/patologia , Microambiente Tumoral/imunologia , Macrófagos/imunologia
15.
Thorac Cancer ; 15(14): 1164-1175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38587042

RESUMO

BACKGROUND: Sphingolipids not only serve as structural components for maintaining cell membrane fluidity but also function as bioactive molecules involved in cell signaling and the regulation of various biological processes. Their pivotal role in cancer cell development, encompassing cancer cell proliferation, migration, angiogenesis, and metastasis, has been a focal point for decades. However, the contribution of sphingolipids to the complexity of tumor microenvironment promoting cancer progression has been rarely investigated. METHODS: Through the integration of publicly available bulk RNA-seq and single-cell RNA-seq data, we conducted a comprehensive analysis to compare the transcriptomic features between tumors and adjacent normal tissues, thus elucidating the intricacies of the tumor microenvironment (TME). RESULTS: Disparities in sphingolipid metabolism (SLM)-associated genes were observed between normal and cancerous tissues, with the TME characterized by the enrichment of sphingolipid signaling in macrophages. Cellular interaction analysis revealed robust communication between macrophages and cancer cells exhibiting low SLM, identifying the crucial ligand-receptor pair, macrophage inhibitory factor (MIF)-CD74. Pseudo-time analysis unveiled the involvement of SLM in modulating macrophage polarization towards either M1 or M2 phenotypes. Categorizing macrophages into six subclusters based on gene expression patterns and function, the SPP1+ cluster, RGS1+ cluster, and CXCL10+ cluster were likely implicated in sphingolipid-induced M2 macrophage polarization. Additionally, the CXCL10+, AGER+, and FABP4+ clusters were likely to be involved in angiogenesis through their interaction with endothelial cells. CONCLUSION: Based on multiple scRNA-seq datasets, we propose that a MIF-targeted strategy could potentially impede the polarization from M1 to M2 and impair tumor angiogenesis in low-SLM non-small cell lung cancer (NSCLC), demonstrating its potent antitumor efficacy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neovascularização Patológica , Esfingolipídeos , Macrófagos Associados a Tumor , Humanos , Esfingolipídeos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Macrófagos Associados a Tumor/metabolismo , Transdução de Sinais , Análise de Célula Única , Camundongos , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Animais , Análise de Sequência de RNA , Microambiente Tumoral , Angiogênese
16.
J Cell Mol Med ; 28(8): e18348, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652105

RESUMO

Tumour immune microenvironment (TIME) plays an indispensable role in tumour progression, and tumour-associated macrophages (TAMs) are the most abundant immune cells in TIME. Non-apoptotic regulated cell death (RCD) can avoid the influence of tumour apoptosis resistance on anti-tumour immune response. Specifically, autophagy, ferroptosis, pyroptosis and necroptosis mediate the crosstalk between TAMs and tumour cells in TIME, thus reprogram TIME and affect the progress of tumour. In addition, although some achievements have been made in immune checkpoint inhibitors (ICIs), there is still defect that ICIs are only effective for some people because non-apoptotic RCD can bypass the apoptosis resistance of tumour. As a result, ICIs combined with targeting non-apoptotic RCD may be a promising solution. In this paper, the basic molecular mechanism of non-apoptotic RCD, the way in which non-apoptotic RCD mediates crosstalk between TAMs and tumour cells to reprogram TIME, and the latest research progress in targeting non-apoptotic RCD and ICIs are reviewed.


Assuntos
Neoplasias , Morte Celular Regulada , Microambiente Tumoral , Macrófagos Associados a Tumor , Animais , Humanos , Apoptose , Autofagia , Ferroptose/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Morte Celular Regulada/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
17.
Cancer Res Commun ; 4(5): 1296-1306, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38651817

RESUMO

The primary treatment for glioblastoma (GBM) is removing the tumor mass as defined by MRI. However, MRI has limited diagnostic and predictive value. Tumor-associated macrophages (TAM) are abundant in GBM tumor microenvironment (TME) and are found in peripheral blood (PB). FKBP51 expression, with its canonical and spliced isoforms, is constitutive in immune cells and aberrant in GBM. Spliced FKBP51s supports M2 polarization. To find an immunologic signature that combined with MRI could advance in diagnosis, we immunophenotyped the macrophages of TME and PB from 37 patients with GBM using FKBP51s and classical M1-M2 markers. We also determined the tumor levels of FKBP51s, PD-L1, and HLA-DR. Tumors expressing FKBP51s showed an increase in various M2 phenotypes and regulatory T cells in PB, indicating immunosuppression. Tumors expressing FKBP51s also activated STAT3 and were associated with reduced survival. Correlative studies with MRI and tumor/macrophages cocultures allowed to interpret TAMs. Tumor volume correlated with M1 infiltration of TME. Cocultures with spheroids produced M1 polarization, suggesting that M1 macrophages may infiltrate alongside cancer stem cells. Cocultures of adherent cells developed the M2 phenotype CD163/FKBP51s expressing pSTAT6, a transcription factor enabling migration and invasion. In patients with recurrences, increased counts of CD163/FKBP51s monocyte/macrophages in PB correlated with callosal infiltration and were accompanied by a concomitant decrease in TME-infiltrating M1 macrophages. PB PD-L1/FKBP51s connoted necrotic tumors. In conclusion, FKBP51s identifies a GBM subtype that significantly impairs the immune system. Moreover, FKBP51s marks PB macrophages associated with MRI features of glioma malignancy that can aid in patient monitoring. SIGNIFICANCE: Our research suggests that by combining imaging with analysis of monocyte/macrophage subsets in patients with GBM, we can enhance our understanding of the disease and assist in its treatment. We discovered a similarity in the macrophage composition between the TME and PB, and through association with imaging, we could interpret macrophages. In addition, we identified a predictive biomarker that drew more attention to immune suppression of patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Isoformas de Proteínas , Proteínas de Ligação a Tacrolimo , Microambiente Tumoral , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Glioblastoma/diagnóstico por imagem , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Prognóstico , Feminino , Microambiente Tumoral/imunologia , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/mortalidade , Pessoa de Meia-Idade , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Idoso , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Imageamento por Ressonância Magnética , Adulto
18.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636823

RESUMO

Immunotherapy is a promising and long-lasting tumor treatment method, but it is challenged by the complex metabolism of tumors. To optimize immunotherapy, it is essential to further investigate the key proteins that regulate tumor metabolism and immune response. STAT3 plays a crucial role in regulating tumor dynamic metabolism and affecting immune cell function by responding to various cytokines and growth factors, which can be used as a potential target for immunotherapy. This review focuses on the crosstalk between STAT3 and tumor metabolism (including glucose, lipid, and amino acid metabolism) and its impact on the differentiation and function of immune cells such as T cells, tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), and reveals potential treatment strategies.


Assuntos
Neoplasias , Fator de Transcrição STAT3 , Humanos , Fator de Transcrição STAT3/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Imunoterapia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia , Metabolismo dos Lipídeos
19.
Nat Immunol ; 25(5): 790-801, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664585

RESUMO

Innate immune cells generate a multifaceted antitumor immune response, including the conservation of essential nutrients such as iron. These cells can be modulated by commensal bacteria; however, identifying and understanding how this occurs is a challenge. Here we show that the food commensal Lactiplantibacillus plantarum IMB19 augments antitumor immunity in syngeneic and xenograft mouse tumor models. Its capsular heteropolysaccharide is the major effector molecule, functioning as a ligand for TLR2. In a two-pronged manner, it skews tumor-associated macrophages to a classically active phenotype, leading to generation of a sustained CD8+ T cell response, and triggers macrophage 'nutritional immunity' to deploy the high-affinity iron transporter lipocalin-2 for capturing and sequestering iron in the tumor microenvironment. This process induces a cycle of tumor cell death, epitope expansion and subsequent tumor clearance. Together these data indicate that food commensals might be identified and developed into 'oncobiotics' for a multi-layered approach to cancer therapy.


Assuntos
Ferro , Microambiente Tumoral , Animais , Ferro/metabolismo , Camundongos , Microambiente Tumoral/imunologia , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/imunologia , Camundongos Endogâmicos C57BL , Lipocalina-2/metabolismo , Lipocalina-2/imunologia , Feminino , Simbiose/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Ativação de Macrófagos/imunologia , Camundongos Knockout
20.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673975

RESUMO

Previously, we reported that epidermal growth factor-like module-containing mucin-like hormone receptor-like 1 (EMR1/ADGRE1) is abnormally expressed in colon cancer (CC) and is a risk factor for lymph node metastasis (LNM) and poor recurrence-free survival in patients with abundant tumor-associated macrophages (TAMs). However, the signaling pathways associated with EMR1 expression in CC progression remain unclear. In this study, we aimed to explore the role of EMR1 and its signaling interactions with macrophages in CC progression. Spatial transcriptomics of pT3 microsatellite unstable CC tissues revealed heightened Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling in EMR1-HL CC with LNM compared to EMR1-N CC without LNM. Through in vitro coculture of CC cells with macrophages, EMR1 expression by CC cells was found to be induced by TAMs, ultimately interacting with upregulated JAK/STAT signaling, increasing cell proliferation, migration, and motility, and reducing apoptosis. JAK2/STAT3 inhibition decreased the levels of EMR1, JAK2, STAT1, and STAT3, significantly impeded the proliferation, migration, and mobility of cells, and increased the apoptosis of EMR1+ CC cells compared to their EMR1KO counterparts. Overall, TAMs-induced EMR1 upregulation in CC cells may promote LNM and CC progression via JAK2/STAT1,3 signaling upregulation. This study provides further insights into the molecular mechanisms involving macrophages and intracellular EMR1 expression in CC progression, suggesting its clinical significance and offering potential interventions to enhance patient outcomes.


Assuntos
Neoplasias do Colo , Janus Quinase 2 , Transdução de Sinais , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Progressão da Doença , Regulação para Cima , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Apoptose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...