Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Planta ; 256(4): 75, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087126

RESUMO

MAIN CONCLUSION: TEM and AFM imaging reveal radial orientations and whorl-like arrangements of cellulose microfibrils near the S1/S2 interface. These are explained by wrinkling during lamellar cell growth. In the most widely accepted model of the ultrastructure of wood cell walls, the cellulose microfibrils are arranged in helical patterns on concentric layers. However, this model is contradicted by a number of transmission electron microscopy (TEM) studies which reveal a radial component to the microfibril orientations in the cell wall. The idea of a radial component of the microfibril directions is not widely accepted, since it cannot easily be explained within the current understanding of lamellar cell growth. To help clarify the microfibril arrangements in wood cell walls, we have investigated various wood cell wall sections using both transmission electron microscopy and atomic force microscopy, and using various imaging and specimen preparation methods. Our investigations confirm that the microfibrils have a radial component near the interface between the S1 and S2 cell wall layers, and also reveal a whorl-like microfibril arrangement at the S1/S2 interface. These whorl-like structures are consistent with cell wall wrinkling during growth, allowing the radial microfibril component to be reconciled with the established models for lamellar cell growth.


Assuntos
Microfibrilas , Madeira , Parede Celular/ultraestrutura , Celulose/análise , Microscopia de Força Atômica , Madeira/ultraestrutura
2.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209130

RESUMO

The effect of different pretreatment approaches based on alkali (NaOH)/hydrogen peroxide (H2O2) on willow sawdust (WS) biomass, in terms of delignification efficiency, structural changes of lignocellulose and subsequent fermentation toward ethanol, was investigated. Bioethanol production was carried out using the conventional yeast Saccharomyces cerevisiae, as well as three non-conventional yeasts strains, i.e., Pichia stipitis, Pachysolen tannophilus, Wickerhamomyces anomalus X19, separately and in co-cultures. The experimental results showed that a two-stage pretreatment approach (NaOH (0.5% w/v) for 24 h and H2O2 (0.5% v/v) for 24 h) led to higher delignification (38.3 ± 0.1%) and saccharification efficiency (31.7 ± 0.3%) and higher ethanol concentration and yield. Monocultures of S. cerevisiae or W. anomalus X19 and co-cultures with P. stipitis exhibited ethanol yields in the range of 11.67 ± 0.21 to 13.81 ± 0.20 g/100 g total solids (TS). When WS was subjected to H2O2 (0.5% v/v) alone for 24 h, the lowest ethanol yields were observed for all yeast strains, due to the minor impact of this treatment on the main chemical and structural WS characteristics. In order to decide which is the best pretreatment approach, a detailed techno-economical assessment is needed, which will take into account the ethanol yields and the minimum processing cost.


Assuntos
Biocombustíveis , Etanol/metabolismo , Fermentação , Madeira , Leveduras/metabolismo , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/metabolismo , Análise Espectral , Madeira/química , Madeira/ultraestrutura
3.
Carbohydr Polym ; 254: 117033, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357838

RESUMO

Electromagnetic-interference (EMI) shielding materials that are green, lightweight, and with high mechanical properties need to be urgently developed to address increasingly severe radiation pollution. However, limited EMI shielding materials are successfully used in practical applications, due to the intensive energy consumption or the absence of sufficient strength. Herein, an environmentally friendly and effective method was proved to fabricate wood-based composites with high mechanical robustness and EMI shielding performance by a MXene/cellulose scaffold assembly strategy. The lignocellulose composites with a millimeter-thick mimic the "mortar-brick" layered structure, resulting in excellent mechanical properties that can achieve the compressive strength of 288 MPa and EMI shielding effectiveness of 39.3 dB. This "top-down" method provides an alternative for the efficient production of robust and sustainable EMI shielding materials that can be used in the fields of structural materials for next-generation communications and electronic devices.


Assuntos
Celulose/química , Proteção Radiológica/instrumentação , Madeira/química , Celulose/ultraestrutura , Força Compressiva , Módulo de Elasticidade , Condutividade Elétrica , Campos Eletromagnéticos , Lignina/química , Lignina/ultraestrutura , Ciência dos Materiais , Teste de Materiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Nanocompostos/química , Nanocompostos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Madeira/ultraestrutura
4.
J Struct Biol ; 211(2): 107532, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32442716

RESUMO

Deep understanding of the physicochemical and structural characteristics of wood at the nanoscale is essential for improving wood usage in biorefining and advancing new high performance materials design. Herein, we use in situ atomic force microscopy and a simple delignification treatment to elucidate the nanoscale architecture of individual secondary cell wall layers. Advantages of this approach are: (i) minimal sample preparation that reduces the introduction of potential artifacts; (ii) prevention of structural rearrangements due to dehydration; (iii) increased accessibility to structural details masked by the lignin matrix; and (iv) possibility to complement results with other analytical techniques without sample manipulation. The methodology permits the visualization of parallel and helicoidally arranged microfibril aggregates in the S1 layer and the determination of lignin contribution to microfibril aggregates forming S2 layers. Cellulose and hemicelluloses constitute the core of the aggregates with a mean diameter of approximately 19 nm, and lignin encloses the core forming single structural entities of about 30 nm diameter. Furthermore, we highlight the implications of sample preparation and imaging parameters on the characterization of microfibril aggregates by AFM.


Assuntos
Parede Celular/ultraestrutura , Lignina/ultraestrutura , Madeira/ultraestrutura , Parede Celular/química , Celulose/química , Celulose/ultraestrutura , Lignina/química , Microscopia de Força Atômica , Polissacarídeos/química , Polissacarídeos/ultraestrutura , Madeira/química
5.
Sci Rep ; 10(1): 4358, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152346

RESUMO

Heat treatment is a green, environmentally friendly and mild pyrolysis process that improves the dimensional stability and durability of wood. In this study, Larix spp. Samples were heated at 180 °C and 210 °C for 6 h with nitrogen, air or oil as heat-conducting media. The influence of high-temperature heat treatment on the microstructure, chemical components, and micromechanical properties was investigated. The mass loss rate increased with increasing temperature, and the degradation of wood components resulted in cracks in the cell walls. Samples treated with air showed more cracks in cell walls than were observed in the cells walls of wood treated with the other heat-conducting media. The hardness of the cell walls increased after all heat treatments. In addition, the results showed that heat treatment reduced creep behavior compared to that of untreated wood.


Assuntos
Fenômenos Químicos , Temperatura Alta , Larix/química , Madeira/química , Parede Celular , Dureza , Pirólise , Espectroscopia de Infravermelho com Transformada de Fourier , Madeira/ultraestrutura
6.
Int J Biol Macromol ; 140: 1026-1036, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31470048

RESUMO

Enhancing the performance of starch-based wood adhesive is vitally important for its practical applications. Accordingly, we designed the use of micronized starch (MS) to prepare micronized starch-based wood adhesive (MSWA) by incorporating 0, 2, 4 and 6% (w/w, dry basis starch) sodium dodecyl sulfate (SDS). The results showed that 2% SDS exhibited remarkable improvement in shear strength and viscosity of MSWA. The grafted reaction was demonstrated by 1H NMR and the steady shear results indicated that the adhesive possessed a pseudoplastic behavior under yield stress conditions. Besides, dynamic rheological measurements were applied to evaluate the structure of MSWA under varying frequencies, temperatures and constant stain. The transmission electron microscopy (TEM), Zeta potential and surface tension indicated that SDS could improve the surficial properties. Meanwhile, the microstructure of adhesive films and fracture surfaces of glued wood veneers by scanning electron microscopy (SEM) demonstrated that the migration of SDS led to the formation of surfactant layer. Furthermore, element analysis revealed the distribution of S/N in latex slices. The results of this study provide the detailed information about the influence of SDS on the rheological properties and microstructures of MSWA, which may facilitate the preparation of high performance bio-based adhesive for wood applications.


Assuntos
Adesivos/química , Reologia , Dodecilsulfato de Sódio/química , Amido/química , Madeira/química , Módulo de Elasticidade , Elementos Químicos , Látex/química , Tamanho da Partícula , Espectroscopia de Prótons por Ressonância Magnética , Resistência ao Cisalhamento , Amido/ultraestrutura , Propriedades de Superfície , Madeira/ultraestrutura , Difração de Raios X
7.
Micron ; 124: 102704, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31344654

RESUMO

Bordered pits are a major determinant for the hydraulic function of wood tissues. Unlike microscopic imaging (e.g. light and electron microscopy) that is constrained to two-dimensional (2D) information, X-ray micro-computed tomography (XµCT) contributes to three-dimensional (3D) analysis. This advantage was used to estimate the volume of bordered pits in Pinus sylvestris. The 3D data obtained by XµCT were compared with two mathematical models (ellipsoid model and spherical cap model) using 2D data obtained by transmission light microscopy and XµCT. The findings of this study showed that the volume approximation using the ellipsoid model revealed values close to the volumes, which were three-dimensionally obtained by XµCT. This trend, however, is more pronounced for pits in earlywood than in latewood. Nevertheless, this study demonstrated that microscopic images can also be used for the approximation of pit volumes to some extent. Researchers should be aware of limitations that come with the 3D method (e.g. resolution, image analysis) and 2D method (unknown location of the section in the pit) as well as the natural variation of the pit morphology.


Assuntos
Imageamento Tridimensional , Microscopia , Pinus sylvestris/ultraestrutura , Madeira/ultraestrutura , Microtomografia por Raio-X , Modelos Teóricos , Madeira/análise
8.
Small ; 15(31): e1901079, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31165570

RESUMO

Thin-film electronics are urged to be directly laminated onto human skin for reliable, sensitive biosensing together with feedback transdermal therapy, their self-power supply using the thermoelectric and moisture-induced-electric effects also has gained great attention (skin and on-skin electronics (On-skinE) themselves are energy storehouses). However, "thin-film" On-skinE 1) cannot install "bulky" heatsinks or sweat transport channels, but the output power of thermoelectric generator and moisture-induced-electric generator relies on the temperature difference (∆T ) across generator and the ambient humidity (AH), respectively; 2) lack a routing and accumulation of sweat for biosensing, lack targeted delivery of drugs for precise transdermal therapy; and 3) need insulation between the heat-generating unit and heat-sensitive unit. Here, two breathable nanowood biofilms are demonstrated, which can help insulate between units and guide the heat and sweat to another in-plane direction. The transparent biofilms achieve record-high transport// /transport⊥ (//: along cellulose nanofiber alignment direction, ⊥: perpendicular direction) of heat (925%) and sweat (338%), winning applications emphasizing on ∆T/AH-dependent output power and "reliable" biosensing. The porous biofilms are competent in applications where "sensitive" biosensing (transporting// sweat up to 11.25 mm s-1 at the 1st second), "insulating" between units, and "targeted" delivery of saline-soluble drugs are of uppermost priority.


Assuntos
Biofilmes , Nanofibras/química , Pele , Dispositivos Eletrônicos Vestíveis , Madeira/química , Anisotropia , Humanos , Pinus/química , Porosidade , Suor , Madeira/ultraestrutura , Difração de Raios X
9.
Planta ; 250(1): 163-171, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30953149

RESUMO

MAIN CONCLUSION: Glucomannan was more strongly oriented, in line with the orientation of cellulose, than the xylan in both compression wood and normal wood of Chinese fir. Lignin in compression wood was somewhat more oriented in the direction of the cellulose microfibrils than in normal wood. The structural organization in compression wood (CW) is quite different from that in normal wood (NW). To shed more light on the structural organization of the polymers in plant cell walls, Fourier Transform Infrared (FTIR) microscopy in transmission mode has been used to compare the S2-dominated mean orientation of wood polymers in CW with that in NW from Chinese fir (Cunninghamia lanceolata). Polarized FTIR measurements revealed that in both CW and NW samples, glucomannan and xylan showed a parallel orientation with respect to the cellulose microfibrils. In both wood samples, the glucomannan showed a much greater degree of orientation than the xylan, indicating that the glucomannan has established a stronger interaction with cellulose than xylan. For the lignin, the absorption peak also indicated an orientation along the direction of the cellulose microfibrils, but this orientation was more pronounced in CW than in NW, indicating that the lignin is affected by the orientation of the cellulose microfibrils more strongly in CW than it is in NW.


Assuntos
Cunninghamia/ultraestrutura , Polímeros/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Celulose/metabolismo , Cunninghamia/metabolismo , Lignina/metabolismo , Mananas/metabolismo , Microfibrilas , Espectroscopia de Infravermelho com Transformada de Fourier , Madeira/metabolismo , Madeira/ultraestrutura , Xilanos/metabolismo
10.
PLoS One ; 14(4): e0214888, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30947288

RESUMO

A reasonable micro-pits texture has been initially proved that it can improve friction characteristics between wood and cemented carbide surface and reduce surface friction coefficient. In order to study the cutting performance of the micro-texture when it is applied to the cutting tool for cutting wood more effectively, this paper selected micro-pit texture for studying influence of surface micro-texture cutting tool on wood cutting performance and cutting temperature, finding that when micro-pit cemented carbide cutting tool is adopted for turning the northeast China ash (Fraxinus spp.), it can reduce cutting force of turning and surface friction coefficient between rake face and cuttings. Moreover, for type A and type B cutting tools, when the texture parameters are that the diameter of the micro-pit is 80µm, the depth of the micro pit is: 10µm, area occupancy is 20% and the diameter of the micro-pit is 120µm, the depth of the micro-pit is 10µm and the area occupancy is 20%, the effect generated is the best. When a texture cutting tool is used for cutting, the decrease of the highest temperature in the cutting area is not very great, but the average temperature in the cutting area changes a lot, which is mainly caused by that micro-texture is processed at a position of the rake face close to the main cutting edge and that the highest temperature of cutting is mainly generated on the contact point between tool tip and wood. A reasonable micro-texture parameter can form a layer of liquid lubricating film on the up and down contact surfaces such that the direct contact between cemented carbide and northeast China ash is changed into indirect contact between lubricating films formed by the liquid so as to reduce the surface friction coefficient.


Assuntos
Agricultura Florestal/instrumentação , Madeira , China , Desenho de Equipamento , Agricultura Florestal/métodos , Fraxinus/ultraestrutura , Fricção , Temperatura Alta , Lubrificação , Fenômenos Mecânicos , Propriedades de Superfície , Madeira/ultraestrutura
11.
Sci Rep ; 9(1): 4170, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862854

RESUMO

Antibacterial screening of graphene-tin oxide nanocomposites synthesized from carbonized wood and coconut shell is investigated against Pseudomonas aeruginosa for the first time. Efficient and facile one step hydrothermal process adopted in the present work for the synthesis of graphene-tin oxide nanoparticles provides an ideal method for the economic large-scale production of the same. Graphene-tin oxide nanocomposites derived from wood charcoal possess a spherical morphology whereas rod like structures are seen in the case of coconut shell derivatives. An excitation independent fluorescence response is observed in graphene-tin oxide nanohybrids while graphene oxide nanostructures exhibited an excitation dependent behavior. These hydrophilic nanostructures are highly stable and exhibited no sign of luminescence quenching or particle aggregation even after a storage of 30 months. Bactericidal effects of the nanostructures obtained from coconut shell is found to be relatively higher compared to those procured from wood. This variation in antibacterial performance of the samples is directly related to their morphological difference which in turn is heavily influenced by the precursor material used. MIC assay revealed that coconut shell derived graphene-tin oxide composite is able to inhibit the bacterial growth at a lower concentration (250 µg/mL) than the other nanostructures. Nanocomposites synthesized from agro-waste displayed significantly higher antimicrobial activity compared to the precursor and graphene oxide nanostructures thereby making them excellent candidates for various bactericidal applications such as disinfectants, sanitary agents etc.


Assuntos
Agricultura , Antibacterianos/farmacologia , Grafite/farmacologia , Nanocompostos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Compostos de Estanho/farmacologia , Resíduos/análise , Carvão Vegetal/química , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Análise Espectral Raman , Madeira/ultraestrutura , Difração de Raios X
12.
Tree Physiol ; 39(4): 514-525, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30806711

RESUMO

Wood fibers form thick secondary cell wall (SCW) in xylem tissues to give mechanical support to trees. NAC SECONDARY WALL THICKENING PROMOTING FACTOR3/SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN 1 (NST3/SND1) and NST1 were identified as master regulators of SCW formation in xylem fiber cells in the model plant Arabidopsis thaliana. In Populus species, four NST/SND orthologs have been conserved and coordinately control SCW formation in wood fibers and phloem fibers. However, it remains to be elucidated whether SCW formation in other xylem cells, such as ray parenchyma cells and vessel elements, is regulated by NST/SND orthologs in poplar. We knocked out all NST/SND genes in hybrid aspen using the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system and investigated the detailed histological appearance of stem tissues in the knockout mutants. Observation by light microscopy and transmission electron microscopy showed that SCW was severely suppressed in wood fibers, phloem fibers and xylem ray parenchyma cells in the knockout mutants. Although almost all wood fibers lacked SCW, some fiber cells formed thick cell walls. The irregularly cell wall-forming fibers retained primary wall and SCW, and were mainly located in the vicinity of vessel elements. Field emission-scanning electron microscope observation showed that there were no apparent differences in the structural features of pits such as the shape and size between irregularly SCW-forming wood fibers in the knockout mutants and normal wood fibers in wild-type. Cell wall components such as cellulose, hemicellulose and lignin were deposited in the cell wall of irregularly SCW-forming wood fibers in quadruple mutants. Our results indicate that four NST/SND orthologs are master switches for SCW formation in wood fibers, xylem ray parenchyma cells and phloem fibers in poplar, while SCW is still formed in limited wood fibers, which are located at the region adjacent to vessel elements in the knockout mutants.


Assuntos
Proteínas de Plantas/metabolismo , Populus/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Celulose/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Floema/genética , Floema/fisiologia , Floema/ultraestrutura , Proteínas de Plantas/genética , Polissacarídeos/metabolismo , Populus/fisiologia , Populus/ultraestrutura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Madeira/genética , Madeira/fisiologia , Madeira/ultraestrutura , Xilema/genética , Xilema/fisiologia , Xilema/ultraestrutura
13.
Microsc Res Tech ; 82(5): 507-516, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30597696

RESUMO

Spruce wood (picea abis) has been widely used as structural element, from buildings to musical instruments, due to its outstanding mechanical performances. The main stem transverse section exhibits growth rings formed by periodic fringes patterns, which are constituted by lamellae-tracheid arrangements. In order to improve the understanding of each wood microstructure role, the morphology and crystallinity of earlywood and latewood fibers were examined mainly using scanning electron microscopy, atomic force microscopy, and X-ray difracction. Moreover, measurements of effective elastic modulus and hardness were obtained by nanoindentation tests using a Berkovich indenter in order to confirmed increase in compactness of the wood microstructures. The results indicate that variations in mechanical properties values can be associated with well defined microstructural performances for each characteristic fiber type, where those that belong to latewood fiber showed the most improved behaviors. A finite element simulation of a lamellar-tracheids arrangement was carried out in order to clarify its stiffness and elastic deformation capabilities, as relevant factors contributing to the successful adaptation of picea abis colonies to harsh conditions habitats as well as for its construction applications of string instruments.


Assuntos
Microscopia de Força Atômica , Picea/ultraestrutura , Madeira/ultraestrutura , Fenômenos Biomecânicos , Análise de Elementos Finitos , Microscopia Eletrônica de Varredura , Difração de Raios X
14.
Biomacromolecules ; 20(1): 336-346, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30457845

RESUMO

In the current quest for the design of advanced complex materials, the functionalization of biological materials having hierarchical structures has been of high interest. In the case of lignocellulosic materials, various modification techniques have allowed one to obtain materials with outstanding properties. However, the control over the spatial distribution of the modification inside the wood scaffold, which is an important parameter to obtain the desired properties, has yet to be understood. In this study, the use of solvents with different wood-swelling capabilities is proposed to control the spatial polymer-modification distribution inside the hierarchical wood structure. Wood cubes were functionalized via SI-AGET-ATRP using solvents with different wood-swelling capabilities. Spectroscopic (Raman and FTIR) and electron microscopy techniques showed that a good wood-swelling solvent as reaction media can transport the polymerization initiator molecule into the cell wall, allowing it to react with all the available -OH groups in the wood structure. Conversely, the use of a bad wood-swelling solvent limits the reaction to the available -OH groups at the lumen/cell wall interface. The subsequently added polymers grow from the available initiator sites and therefore show similar spatial distribution. This diffusion limitation is visible not only at the microscopic level (cellular structure) but also at the macroscopic level (over the length of the sample).


Assuntos
Lignina/análogos & derivados , Polimerização , Madeira/química , Picea/química , Solventes/química , Madeira/ultraestrutura
15.
Protoplasma ; 255(6): 1777-1784, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29868989

RESUMO

The main product of Camellia oleifera is edible oil made from the seeds, but huge quantities of agro-waste are produced in the form of shells. The primary components of C. oleifera fruit shell are cellulose, hemicellulose, and lignin, which probably make it a good eco-friendly non-wood material. Understanding the structure of the shell is however a prerequisite to making full use of it. The anatomical structure of C. oleifera fruit shells was investigated from macroscopic to ultrastructural scale by stereoscopic, optical, and scanning electron microscopy. The main cell morphology in the different parts of the shell was observed and measured using the tissue segregation method. The density of the cross section of the shell was also obtained using an X-ray CT scanner to check the change in texture. The C. oleifera fruit pericarp was made up of exocarp, mesocarp, and endocarp. The main types of exocarp cells were stone cells, spiral vessels, and parenchyma cells. The mesocarp accounted for most of the shell and consisted of parenchyma, tracheids, and some stone cells. The endocarp was basically made up of cells with a thickened cell wall that were modified tracheid or parenchyma cells with secondary wall thickening. The most important ultrastructure in these cells was the pits in the cell wall of stone and vessel cells that give the shell a conducting, mechanical, and protective role. The density of the shell gradually decreased from exocarp to endocarp. Tracheid cells are one of the main cell types in the shell, but their low slenderness (length to width) ratio makes them unsuitable for the manufacture of paper. Further research should be conducted on composite shell-plastic panels (or other reinforced materials) to make better use of this agro-waste.


Assuntos
Camellia/anatomia & histologia , Frutas/anatomia & histologia , Camellia/ultraestrutura , Frutas/ultraestrutura , Tomografia Computadorizada por Raios X , Madeira/ultraestrutura
16.
New Phytol ; 218(3): 999-1014, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29528503

RESUMO

The phytohormone ethylene impacts secondary stem growth in plants by stimulating cambial activity, xylem development and fiber over vessel formation. We report the effect of ethylene on secondary cell wall formation and the molecular connection between ethylene signaling and wood formation. We applied exogenous ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) to wild-type and ethylene-insensitive hybrid aspen trees (Populus tremula × tremuloides) and studied secondary cell wall anatomy, chemistry and ultrastructure. We furthermore analyzed the transcriptome (RNA Seq) after ACC application to wild-type and ethylene-insensitive trees. We demonstrate that ACC and ethylene induce gelatinous layers (G-layers) and alter the fiber cell wall cellulose microfibril angle. G-layers are tertiary wall layers rich in cellulose, typically found in tension wood of aspen trees. A vast majority of transcripts affected by ACC are downstream of ethylene perception and include a large number of transcription factors (TFs). Motif-analyses reveal potential connections between ethylene TFs (Ethylene Response Factors (ERFs), ETHYLENE INSENSITIVE 3/ETHYLENE INSENSITIVE3-LIKE1 (EIN3/EIL1)) and wood formation. G-layer formation upon ethylene application suggests that the increase in ethylene biosynthesis observed during tension wood formation is important for its formation. Ethylene-regulated TFs of the ERF and EIN3/EIL1 type could transmit the ethylene signal.


Assuntos
Etilenos/metabolismo , Hibridização Genética , Populus/metabolismo , Transdução de Sinais , Madeira/metabolismo , Aminoácidos Cíclicos/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Celulose/metabolismo , Simulação por Computador , Genes de Plantas , Populus/genética , Populus/ultraestrutura , Análise de Componente Principal , Regiões Promotoras Genéticas/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Água/farmacologia , Madeira/efeitos dos fármacos , Madeira/crescimento & desenvolvimento , Madeira/ultraestrutura , Xilema/efeitos dos fármacos , Xilema/metabolismo , Xilema/ultraestrutura
17.
Ann Bot ; 121(6): 1231-1242, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29415209

RESUMO

Background and Aims: Mediterranean trees have patterns of cambial activity with one or more pauses per year, leading to intra-annual density fluctuations (IADFs) in tree rings. We analysed xylogenesis (January 2015-January 2016) in Pinus pinea L. and Arbutus unedo L., co-occurring at a site on Mt. Vesuvius (southern Italy), to identify the cambial productivity and timing of IADF formation. Methods: Dendrochronological methods and quantitative wood anatomy were applied and enabled IADF identification and classification. Key Results: We showed that cambium in P. pinea was productive throughout the calendar year. From January to March 2015, post-cambial (enlarging) earlywood-like tracheids were observed, which were similar to transition tracheids. The beginning of the tree ring was therefore not marked by a sharp boundary between latewood of the previous year and the new xylem produced. True earlywood tracheids were formed in April. L-IADFs were formed in autumn, with earlywood-like cells in latewood. In A. unedo, a double pause in cell production was observed, in summer and winter, leading to L-IADFs in autumn as well. Moreover, the formation of more than one IADF was observed in A. unedo. Conclusions: Despite having completely different wood formation models and different life strategies, the production of earlywood, latewood and IADF cells was strongly controlled by climatic factors in the two species. Such cambial production patterns need to be taken into account in dendroecological studies to interpret climatic signals in wood from Mediterranean trees.


Assuntos
Ericaceae/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Ecologia , Ericaceae/fisiologia , Ericaceae/ultraestrutura , Microscopia , Pinus/fisiologia , Pinus/ultraestrutura , Caules de Planta/fisiologia , Estações do Ano , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Árvores/ultraestrutura , Madeira/crescimento & desenvolvimento , Madeira/ultraestrutura , Xilema/crescimento & desenvolvimento , Xilema/fisiologia
18.
Planta ; 247(5): 1123-1132, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29380141

RESUMO

MAIN CONCLUSION: AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S2 layer changes from a network structure to a concentric lamellar texture depending on the cutting angle. The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S2 layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation.


Assuntos
Parede Celular/ultraestrutura , Madeira/ultraestrutura , Microscopia de Força Atômica/métodos , Picea/ultraestrutura , Madeira/citologia , Difração de Raios X
19.
Tree Physiol ; 37(12): 1767-1775, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29177443

RESUMO

A gradual shift in the microfibril angle of gelatinous layer (G-layer) of tension wood fibres of the S1+G type has been detected via potassium permanganate (KMnO4) staining. Thus, microfibril angles in fibres of the S1+G type are different from S1+S2+G type fibres. We evaluated the microfibril orientation and presence of lignin and xylan in G-layers of tension wood fibres of the S1+G type in several Japanese hardwoods. The distribution of xylan and lignin was examined using immunoelectron microscopy with anti-xylan monoclonal antibody, ultraviolet (UV) microscopy, fluorescence microscopy after acrifravine staining and transmission electron microscopy after KMnO4 staining. In transverse sections, the outer parts of the G-layers showed ultraviolet absorption and a heterogeneous KMnO4 staining pattern, suggesting that lignin was heterogeneously distributed in the outer parts of the G-layers. The heterogeneous staining pattern was found in the G-layers of several tree species; however, the degree of staining differed between tree species. In longitudinal sections, the KMnO4-staining region in the G-layers continued parallel to the cell axis to variable lengths. The orientation of cellulose microfibrils changed gradually from a steep helix to parallel to the cell axis from the outer to inner parts of the G-layers. Xylan immunolabelling was observed in the outer part of the G-layers; in some fibres, labelling was found in the innermost parts of the G-layers. Following immunogold labelling combined with KMnO4 staining, xylan labelling was mainly found in KMnO4-stained electron-opaque regions, suggesting that lignin and xylan were heterogeneously colocalized in the outer parts of the G-layers. The rotation of cellulose microfibrils and heterogeneous distribution of xylan and lignin might be a general phenomenon in S1+G tension wood fibres.


Assuntos
Lignina/metabolismo , Madeira/metabolismo , Xilanos/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Madeira/ultraestrutura
20.
Plant Cell Physiol ; 58(9): 1477-1485, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922751

RESUMO

Seasonal recycling of nutrients is an important strategy for deciduous perennials. Deciduous perennials maintain and expand their nutrient pools by the autumn nutrient remobilization and the subsequent winter storage throughout their long life. Phosphorus (P), one of the most important elements in living organisms, is remobilized from senescing leaves during autumn in deciduous trees. However, it remains unknown how phosphate is stored over winter. Here we show that in poplar trees (Populus alba L.), organic phosphates are accumulated in twigs from late summer to winter, and that IP6 (myo-inositol-1,2,3,4,5,6-hexakis phosphate: phytic acid) is the primary storage form. IP6 was found in high concentrations in twigs during winter and quickly decreased in early spring. In parenchyma cells of winter twigs, P was associated with electron-dense structures, similar to globoids found in seeds of higher plants. Various other deciduous trees were also found to accumulate IP6 in twigs during winter. We conclude that IP6 is the primary storage form of P in poplar trees during winter, and that it may be a common strategy for seasonal P storage in deciduous woody plants.


Assuntos
Fósforo/metabolismo , Ácido Fítico/metabolismo , Populus/metabolismo , Madeira/metabolismo , Espectroscopia de Ressonância Magnética , Fosfatos/metabolismo , Populus/ultraestrutura , Estações do Ano , Espectrometria por Raios X , Madeira/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...