Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.847
Filtrar
1.
Mol Plant Pathol ; 25(5): e13460, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695626

RESUMO

Reverse genetic approaches are common tools in genomics for elucidating gene functions, involving techniques such as gene deletion followed by screening for aberrant phenotypes. If the generation of gene deletion mutants fails, the question arises whether the failure stems from technical issues or because the gene of interest (GOI) is essential, meaning that the deletion causes lethality. In this report, we introduce a novel method for assessing gene essentiality using the phytopathogenic ascomycete Magnaporthe oryzae. The method is based on the observation that telomere vectors are lost in transformants during cultivation without selection pressure. We tested the hypothesis that essential genes can be identified in deletion mutants co-transformed with a telomere vector. The M. oryzae gene MoPKC, described in literature as essential, was chosen as GOI. Using CRISPR/Cas9 technology transformants with deleted GOI were generated and backed up by a telomere vector carrying a copy of the GOI and conferring fenhexamid resistance. Transformants in which the GOI deletion in the genome was not successful lost the telomere vector on media without fenhexamid. In contrast, transformants with confirmed GOI deletion retained the telomere vector even in absence of fenhexamid selection. In the latter case, the maintenance of the telomere indicates that the GOI is essential for the surveillance of the fungi, as it would have been lost otherwise. The method presented here allows to test for essentiality of genes when no mutants can be obtained from gene deletion approaches, thereby expanding the toolbox for studying gene function in ascomycetes.


Assuntos
Ascomicetos , Genes Essenciais , Vetores Genéticos , Fenótipo , Telômero , Telômero/genética , Vetores Genéticos/genética , Sistemas CRISPR-Cas/genética , Genes Fúngicos/genética , Deleção de Genes , Magnaporthe/genética , Magnaporthe/patogenicidade
2.
Planta ; 259(6): 143, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704489

RESUMO

MAIN CONCLUSION: The investigation is the first report on genome-wide identification and characterization of NBLRR genes in pearl millet. We have shown the role of gene loss and purifying selection in the divergence of NBLRRs in Poaceae lineage and candidate CaNBLRR genes for resistance to Magnaporthe grisea infection. Plants have evolved multiple integral mechanisms to counteract the pathogens' infection, among which plant immunity through NBLRR (nucleotide-binding site, leucine-rich repeat) genes is at the forefront. The genome-wide mining in pearl millet (Cenchrus americanus (L.) Morrone) revealed 146 CaNBLRRs. The variation in the branch length of NBLRRs showed the dynamic nature of NBLRRs in response to evolving pathogen races. The orthology of NBLRRs showed a predominance of many-to-one orthologs, indicating the divergence of NBLRRs in the pearl millet lineage mainly through gene loss events followed by gene gain through single-copy duplications. Further, the purifying selection (Ka/Ks < 1) shaped the expansion of NBLRRs within the lineage of pear millet and other members of Poaceae. Presence of cis-acting elements, viz. TCA element, G-box, MYB, SARE, ABRE and conserved motifs annotated with P-loop, kinase 2, RNBS-A, RNBS-D, GLPL, MHD, Rx-CC and LRR suggests their putative role in disease resistance and stress regulation. The qRT-PCR analysis in pearl millet lines showing contrasting responses to Magnaporthe grisea infection identified CaNBLRR20, CaNBLRR33, CaNBLRR46 CaNBLRR51, CaNBLRR78 and CaNBLRR146 as putative candidates. Molecular docking showed the involvement of three and two amino acid residues of LRR domains forming hydrogen bonds (histidine, arginine and threonine) and salt bridges (arginine and lysine) with effectors. Whereas 14 and 20 amino acid residues of CaNBLRR78 and CaNBLRR20 showed hydrophobic interactions with 11 and 9 amino acid residues of effectors, Mg.00g064570.m01 and Mg.00g006570.m01, respectively. The present investigation gives a comprehensive overview of CaNBLRRs and paves the foundation for their utility in pearl millet resistance breeding through understanding of host-pathogen interactions.


Assuntos
Cenchrus , Resistência à Doença , Doenças das Plantas , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Cenchrus/genética , Filogenia , Magnaporthe/fisiologia , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução Molecular , Genoma de Planta/genética , Pennisetum/genética , Pennisetum/microbiologia , Pennisetum/imunologia
3.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732268

RESUMO

Rice (Oryza sativa) is one of the most important staple foods worldwide. However, rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, seriously affects the yield and quality of rice. Calmodulin-binding transcriptional activators (CAMTAs) play vital roles in the response to biotic stresses. In this study, we showed that OsCAMTA3 and CAMTA PROTEIN LIKE (OsCAMTAPL), an OsCAMTA3 homolog that lacks the DNA-binding domain, functioned together in negatively regulating disease resistance in rice. OsCAMTA3 associated with OsCAMTAPL. The oscamta3 and oscamtapl mutants showed enhanced resistance compared to wild-type plants, and oscamta3/pl double mutants showed more robust resistance to M. oryzae than oscamta3 or oscamtapl. An RNA-Seq analysis revealed that 59 and 73 genes, respectively, were differentially expressed in wild-type plants and oscamta3 before and after inoculation with M. oryzae, including OsALDH2B1, an acetaldehyde dehydrogenase that negatively regulates plant immunity. OsCAMTA3 could directly bind to the promoter of OsALDH2B1, and OsALDH2B1 expression was decreased in oscamta3, oscamtapl, and oscamta3/pl mutants. In conclusion, OsCAMTA3 associates with OsCAMTAPL to regulate disease resistance by binding and activating the expression of OsALDH2B1 in rice, which reveals a strategy by which rice controls rice blast disease and provides important genes for resistance breeding holding a certain positive impact on ensuring food security.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Oryza , Doenças das Plantas , Proteínas de Plantas , Oryza/microbiologia , Oryza/genética , Oryza/imunologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Ascomicetos/patogenicidade , Regiões Promotoras Genéticas , Magnaporthe/patogenicidade , Transativadores/genética , Transativadores/metabolismo , Mutação
4.
PLoS One ; 19(4): e0301519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578751

RESUMO

Rice blast disease, caused by the fungus Magnaporthe oryzae, poses a severe threat to rice production, particularly in Asia where rice is a staple food. Concerns over fungicide resistance and environmental impact have sparked interest in exploring natural fungicides as potential alternatives. This study aimed to identify highly potent natural fungicides against M. oryzae to combat rice blast disease, using advanced molecular dynamics techniques. Four key proteins (CATALASE PEROXIDASES 2, HYBRID PKS-NRPS SYNTHETASE TAS1, MANGANESE LIPOXYGENASE, and PRE-MRNA-SPLICING FACTOR CEF1) involved in M. oryzae's infection process were identified. A list of 30 plant metabolites with documented antifungal properties was compiled for evaluation as potential fungicides. Molecular docking studies revealed that 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin exhibited superior binding affinities compared to reference fungicides (Azoxystrobin and Tricyclazole). High throughput molecular dynamics simulations were performed, analyzing parameters like RMSD, RMSF, Rg, SASA, hydrogen bonds, contact analysis, Gibbs free energy, and cluster analysis. The results revealed stable interactions between the selected metabolites and the target proteins, involving important hydrogen bonds and contacts. The SwissADME server analysis indicated that the metabolites possess fungicide properties, making them effective and safe fungicides with low toxicity to the environment and living beings. Additionally, bioactivity assays confirmed their biological activity as nuclear receptor ligands and enzyme inhibitors. Overall, this study offers valuable insights into potential natural fungicides for combating rice blast disease, with 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin standing out as promising and environmentally friendly alternatives to conventional fungicides. These findings have significant implications for developing crop protection strategies and enhancing global food security, particularly in rice-dependent regions.


Assuntos
Ascomicetos , Fungicidas Industriais , Magnaporthe , Oryza , Ácido Quínico/análogos & derivados , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Oryza/microbiologia , Flavonoides/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
5.
Mol Plant ; 17(5): 807-823, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38664971

RESUMO

The plant apoplast, which serves as the frontline battleground for long-term host-pathogen interactions, harbors a wealth of disease resistance resources. However, the identification of the disease resistance proteins in the apoplast is relatively lacking. In this study, we identified and characterized the rice secretory protein OsSSP1 (Oryza sativa secretory small protein 1). OsSSP1 can be secreted into the plant apoplast, and either in vitro treatment of recombinant OsSSP1 or overexpression of OsSSP1 in rice could trigger plant immune response. The expression of OsSSP1 is suppressed significantly during Magnaporthe oryzae infection in the susceptible rice variety Taibei 309, and OsSSP1-overexpressing lines all show strong resistance to M. oryzae. Combining the knockout and overexpression results, we found that OsSSP1 positively regulates plant immunity in response to fungal infection. Moreover, the recognition and immune response triggered by OsSSP1 depend on an uncharacterized transmembrane OsSSR1 (secretory small protein receptor 1) and the key co-receptor OsBAK1, since most of the induced immune response and resistance are lost in the absence of OsSSR1 or OsBAK1. Intriguingly, the OsSSP1 protein is relatively stable and can still induce plant resistance after 1 week of storage in the open environment, and exogenous OsSSP1 treatment for a 2-week period did not affect rice yield. Collectively, our study reveals that OsSSP1 can be secreted into the apoplast and percepted by OsSSR1 and OsBAK1 during fungal infection, thereby triggering the immune response to enhance plant resistance to M. oryzae. These findings provide novel resources and potential strategies for crop breeding and disease control.


Assuntos
Resistência à Doença , Oryza , Doenças das Plantas , Proteínas de Plantas , Oryza/microbiologia , Oryza/genética , Oryza/metabolismo , Oryza/imunologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Magnaporthe/fisiologia , Ascomicetos/fisiologia
6.
mBio ; 15(5): e0008624, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534157

RESUMO

Dynamic transposition of transposable elements (TEs) in fungal pathogens has significant impact on genome stability, gene expression, and virulence to the host. In Magnaporthe oryzae, genome plasticity resulting from TE insertion is a major driving force leading to the rapid evolution and diversification of this fungus. Despite their importance in M. oryzae population evolution and divergence, our understanding of TEs in this context remains limited. Here, we conducted a genome-wide analysis of TE transposition dynamics in the 11 most abundant TE families in M. oryzae populations. Our results show that these TEs have specifically expanded in recently isolated M. oryzae rice populations, with the presence/absence polymorphism of TE insertions highly concordant with population divergence on Geng/Japonica and Xian/Indica rice cultivars. Notably, the genes targeted by clade-specific TEs showed clade-specific expression patterns and are involved in the pathogenic process, suggesting a transcriptional regulation of TEs on targeted genes. Our study provides a comprehensive analysis of TEs in M. oryzae populations and demonstrates a crucial role of recent TE bursts in adaptive evolution and diversification of the M. oryzae rice-infecting lineage. IMPORTANCE: Magnaporthe oryzae is the causal agent of the destructive blast disease, which caused massive loss of yield annually worldwide. The fungus diverged into distinct clades during adaptation toward the two rice subspecies, Xian/Indica and Geng/Japonica. Although the role of TEs in the adaptive evolution was well established, mechanisms underlying how TEs promote the population divergence of M. oryzae remain largely unknown. In this study, we reported that TEs shape the population divergence of M. oryzae by differentially regulating gene expression between Xian/Indica-infecting and Geng/Japonica-infecting populations. Our results revealed a TE insertion-mediated gene expression adaption that led to the divergence of M. oryzae population infecting different rice subspecies.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Genoma Fúngico , Oryza , Doenças das Plantas , Elementos de DNA Transponíveis/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Virulência/genética , Variação Genética , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/patogenicidade , Magnaporthe/genética , Magnaporthe/patogenicidade , Magnaporthe/classificação
7.
mBio ; 15(4): e0334423, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501872

RESUMO

Autophagy is a central biodegradation pathway critical in eliminating intracellular cargo to maintain cellular homeostasis and improve stress resistance. At the same time, the key component of the mitogen-activated protein kinase cascade regulating cell wall integrity signaling MoMkk1 has an essential role in the autophagy of the rice blast fungus Magnaporthe oryzae. Still, the mechanism of how MoMkk1 regulates autophagy is unclear. Interestingly, we found that MoMkk1 regulates the autophagy protein MoAtg9 through phosphorylation. MoAtg9 is a transmembrane protein subjected to phosphorylation by autophagy-related protein kinase MoAtg1. Here, we provide evidence demonstrating that MoMkk1-dependent MoAtg9 phosphorylation is required for phospholipid translocation during isolation membrane stages of autophagosome formation, an autophagic process essential for the development and pathogenicity of the fungus. In contrast, MoAtg1-dependent phosphorylation of MoAtg9 negatively regulates this process, also impacting growth and pathogenicity. Our studies are the first to demonstrate that MoAtg9 is subject to MoMkk1 regulation through protein phosphorylation and that MoMkk1 and MoAtg1 dichotomously regulate autophagy to underlie the growth and pathogenicity of M. oryzae.IMPORTANCEMagnaporthe oryzae utilizes multiple signaling pathways to promote colonization of host plants. MoMkk1, a cell wall integrity signaling kinase, plays an essential role in autophagy governed by a highly conserved autophagy kinase MoAtg1-mediated pathway. How MoMkk1 regulates autophagy in coordination with MoAtg1 remains elusive. Here, we provide evidence that MoMkk1 phosphorylates MoAtg9 to positively regulate phospholipid translocation during the isolation membrane or smaller membrane structures stage of autophagosome formation. This is in contrast to the negative regulation of MoAtg9 by MoAtg1 for the same process. Intriguingly, MoMkk1-mediated MoAtg9 phosphorylation enhances the fungal infection of rice, whereas MoAtg1-dependant MoAtg9 phosphorylation significantly attenuates it. Taken together, we revealed a novel mechanism of autophagy and virulence regulation by demonstrating the dichotomous functions of MoMkk1 and MoAtg1 in the regulation of fungal autophagy and pathogenicity.


Assuntos
Ascomicetos , Proteínas Fúngicas , Magnaporthe , Fosforilação , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Autofagia , Fosfolipídeos/metabolismo , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/metabolismo
8.
Mol Plant Pathol ; 25(3): e13439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483039

RESUMO

Mitophagy is a selective autophagy for the degradation of damaged or excessive mitochondria to maintain intracellular homeostasis. In Magnaporthe oryzae, a filamentous ascomycetous fungus that causes rice blast, the most devastating disease of rice, mitophagy occurs in the invasive hyphae to promote infection. To date, only a few proteins are known to participate in mitophagy and the mechanisms of mitophagy are largely unknown in pathogenic fungi. Here, by a yeast two-hybrid screen with the core autophagy-related protein MoAtg8 as a bait, we obtained a MoAtg8 interactor MoAti1 (MoAtg8-interacting protein 1). Fluorescent observations and protease digestion analyses revealed that MoAti1 is primarily localized to the peripheral mitochondrial outer membrane and is responsible for recruiting MoAtg8 to mitochondria under mitophagy induction conditions. MoAti1 is specifically required for mitophagy, but not for macroautophagy and pexophagy. Infection assays suggested that MoAti1 is required for mitophagy in invasive hyphae during pathogenesis. Notably, no homologues of MoAti1 were found in rice and human protein databases, indicating that MoAti1 may be used as a potential target to control rice blast. By the host-induced gene silencing (HIGS) strategy, transgenic rice plants targeted to silencing MoATI1 showed enhanced resistance against M. oryzae with unchanged agronomic traits. Our results suggest that MoATI1 is required for mitophagy and pathogenicity in M. oryzae and can be used as a target for reducing rice blast.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Humanos , Mitofagia , Autofagia/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia
9.
Nat Commun ; 15(1): 2559, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519521

RESUMO

Proteins containing a ubiquitin regulatory X (UBX) domain are cofactors of Cell Division Cycle 48 (CDC48) and function in protein quality control. However, whether and how UBX-containing proteins participate in host-microbe interactions remain unclear. Here we show that MoNLE1, an effector from the fungal pathogen Magnaporthe oryzae, is a core virulence factor that suppresses rice immunity by specifically interfering with OsPUX8B.2. The UBX domain of OsPUX8B.2 is required for its binding to OsATG8 and OsCDC48-6 and controls its 26 S proteasome-dependent stability. OsPUX8B.2 and OsCDC48-6 positively regulate plant immunity against blast fungus, while the high-temperature tolerance heat-shock protein OsBHT, a putative cytoplasmic substrate of OsPUX8B.2-OsCDC48-6, negatively regulates defense against blast infection. MoNLE1 promotes the nuclear migration and degradation of OsPUX8B.2 and disturbs its association with OsBHT. Given the high conservation of MoNLE1 among fungal isolates, plants with broad and durable blast resistance might be generated by engineering intracellular proteins resistant to MoNLE1.


Assuntos
Magnaporthe , Oryza , Interações Hospedeiro-Patógeno , Imunidade Vegetal/genética , Transporte Biológico , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
10.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542264

RESUMO

The multifunctional carbon catabolite repression negative on TATA-box-less complex (CCR4-NOT) is a multi-subunit complex present in all eukaryotes, including fungi. This complex plays an essential role in gene expression; however, a functional study of the CCR4-NOT complex in the rice blast fungus Magnaporthe oryzae has not been conducted. Seven genes encoding the putative CCR4-NOT complex were identified in the M. oryzae genome. Among these, a homologous gene, MoNOT3, was overexpressed during appressorium development in a previous study. Deletion of MoNOT3 in M. oryzae resulted in a significant reduction in hyphal growth, conidiation, abnormal septation in conidia, conidial germination, and appressorium formation compared to the wild-type. Transcriptional analyses suggest that the MoNOT3 gene affects conidiation and conidial morphology by regulating COS1 and COM1 in M. oryzae. Furthermore, Δmonot3 exhibited a lack of pathogenicity, both with and without wounding, which is attributable to deficiencies in the development of invasive growth in planta. This result was also observed in onion epidermal cells, which are non-host plants. In addition, the MoNOT3 gene was involved in cell wall stress responses and heat shock. Taken together, these observations suggest that the MoNOT3 gene is required for fungal infection-related cell development and stress responses in M. oryzae.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/metabolismo , Esporos Fúngicos , Oryza/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica
11.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542408

RESUMO

Septins play a key regulatory role in cell division, cytokinesis, and cell polar growth of the rice blast fungus (Magnaporthe oryzae). We found that the organization of the septin ring, which is essential for appressorium-mediated infection in M. oryzae, requires long-chain fatty acids (LCFAs), which act as mediators of septin organization at membrane interfaces. However, it is unclear how septin ring formation and LCFAs regulate the pathogenicity of the rice blast fungus. In this study, a novel protein was named MoLfa1 because of its role in LCFAs utilization. MoLfa1 affects the utilization of LCFAs, lipid metabolism, and the formation of the septin ring by binding with phosphatidylinositol phosphates (PIPs), thereby participating in the construction of penetration pegs of M. oryzae. In addition, MoLfa1 is localized in the endoplasmic reticulum (ER) and interacts with the ER-related protein MoMip11 to affect the phosphorylation level of Mps1. (Mps1 is the core protein in the MPS1-MAPK pathway.) In conclusion, MoLfa1 affects conidia morphology, appressorium formation, lipid metabolism, LCFAs utilization, septin ring formation, and the Mps1-MAPK pathway of M. oryzae, influencing pathogenicity.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Septinas/metabolismo , Proteínas Fúngicas/metabolismo , Magnaporthe/fisiologia , Citoesqueleto/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/metabolismo , Regulação Fúngica da Expressão Gênica
12.
Plant Cell Rep ; 43(4): 100, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498220

RESUMO

KEY MESSAGE: The blast resistance allele of OsBsr-d1 does not exist in most japonica rice varieties of Jilin Province in China. The development of Bsr-d1 knockout mutants via CRISPR/Cas9 enhances broad-spectrum resistance to rice blast in Northeast China. Rice blast is a global disease that has a significant negative impact on rice yield and quality. Due to the complexity and variability of the physiological races of rice blast, controlling rice blast is challenging in agricultural production. Bsr-d1, a negative transcription factor that confers broad-spectrum resistance to rice blast, was identified in the indica rice cultivar Digu; however, its biological function in japonica rice varieties is still unclear. In this study, we analyzed the blast resistance allele of Bsr-d1 in a total of 256 japonica rice varieties from Jilin Province in Northeast China and found that this allele was not present in these varieties. Therefore, we generated Bsr-d1 knockout mutants via the CRISPR/Cas9 system using the japonica rice variety Jigeng88 (JG88) as a recipient variety. Compared with those of the wild-type JG88, the homozygous Bsr-d1 mutant lines KO#1 and KO#2 showed enhanced leaf blast resistance at the seedling stage to several Magnaporthe oryzae (M. oryzae) races collected from Jilin Province in Northeast China. Physiological and biochemical indices revealed that the homozygous mutant lines produced more hydrogen peroxide than did JG88 plants when infected with M. oryzae. Comparative RNA-seq revealed that the DEGs were mainly involved in the synthesis of amide compounds, zinc finger proteins, transmembrane transporters, etc. In summary, our results indicate that the development of Bsr-d1 knockout mutants through CRISPR/Cas9 can enhance the broad-spectrum resistance of rice in Northeast China to rice blast. This study not only provides a theoretical basis for disease resistance breeding involving the Bsr-d1 gene in Northeast China, but also provides new germplasm resources for disease-resistance rice breeding.


Assuntos
Magnaporthe , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Melhoramento Vegetal , Alelos , Fatores de Transcrição/genética , Oryza/genética , Oryza/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética
13.
Molecules ; 29(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542989

RESUMO

Rice blast, caused by the filamentous fungus Pyricularia oryzae, has long been one of the major threats to almost all rice-growing areas worldwide. Metconazole, 5-(4-chlorobenzyl)-2, 2-dimethyl-1-(1H-1, 2, 4-triazol-1-ylmethyl) cyclopentanol, is a lipophilic, highly active triazole fungicide that has been applied in the control of various fungal pathogens of crops (cereals, barley, wheat), such as the Fusarium and Alternaria species. However, the antifungal activity of metconazole against P. oryzae is unknown. In this study, metconazole exhibited broad spectrum antifungal activities against seven P. oryzae strains collected from rice paddy fields and the wild type strain P131. Scanning electron microscopic analysis and fluorescein diacetate staining assays revealed that metconazole treatment damaged the cell wall integrity, cell membrane permeability and even cell viability of P. oryzae, resulting in deformed and shrunken hyphae. The supplementation of metconazole in vitro increased fungal sensitivity to different stresses, such as sodium dodecyl sulfate, congo red, sodium chloride, sorbitol and oxidative stress (H2O2). Metconazole could inhibit key virulence processes of P. oryzae, including conidial germination, germ tube elongation and appressorium formation. Furthermore, this chemical prevented P. oryzae from infecting barley epidermal cells by disturbing appressorium penetration and subsequent invasive hyphae development. Pathogenicity assays indicated a reduction of over 75% in the length of blast lesions in both barley and rice leaves when 10 µg/mL of metconazole was applied. This study provides evidence to understand the antifungal effects of metconazole against P. oryzae and demonstrates its potential in rice blast management.


Assuntos
Ascomicetos , Hordeum , Magnaporthe , Oryza , Antifúngicos/farmacologia , Oryza/microbiologia , Peróxido de Hidrogênio/farmacologia , Triazóis/farmacologia , Doenças das Plantas/microbiologia
14.
Plant Signal Behav ; 19(1): 2326870, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38465846

RESUMO

One of the most destructive diseases affecting rice is rice blast, which is brought on by the rice blast fungus Magnaporthe oryzae. The preventive measures, however, are not well established. To effectively reduce the negative effects of rice blasts on crop yields, it is imperative to comprehend the dynamic interactions between pathogen resistance and patterns of host carbon allocation. This review explores the relationship between variations in carbon allocation and rice plants' ability to withstand the damaging effects of M. oryzae. The review highlights potential strategies for altering host carbon allocation including transgenic, selective breeding, crop rotation, and nutrient management practices as a promising avenue for enhancing rice blast resistance. This study advances our knowledge of the interaction between plants' carbon allocation and M. oryzae resistance and provides stakeholders and farmers with practical guidance on mitigating the adverse effects of the rice blast globally. This information may be used in the future to create varieties that are resistant to M. oryzae.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Oryza/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
15.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473921

RESUMO

Cytoskeletal microtubules (MTs) play crucial roles in many aspects of life processes in eukaryotic organisms. They dynamically assemble physiologically important MT arrays under different cell conditions. Currently, aspects of MT assembly underlying the development and pathogenesis of the model plant pathogenic fungus Magnaporthe oryzae (M. oryzae) are unclear. In this study, we characterized the MT plus end binding protein MoMal3 in M. oryzae. We found that knockout of MoMal3 results in defects in hyphal polar growth, appressorium-mediated host penetration and nucleus division. Using high-resolution live-cell imaging, we further found that the MoMal3 mutant assembled a rigid MT in parallel with the MT during hyphal polar growth, the cage-like network in the appressorium and the stick-like spindle in nuclear division. These aberrant MT organization patterns in the MoMal3 mutant impaired actin-based cell growth and host infection. Taken together, these findings showed that M. oryzae relies on MoMal3 to assemble elaborate MT arrays for growth and infection. The results also revealed the assembly mode of MTs in M. oryzae, indicating that MTs are pivotal for M. oryzae growth and host infection and may be new targets for devastating fungus control.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Proteínas de Transporte/metabolismo , Magnaporthe/fisiologia , Ascomicetos/metabolismo , Microtúbulos/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo
16.
PLoS One ; 19(3): e0299999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451992

RESUMO

Rice blast, caused by rice blast fungus (Magnaporthe oryzae), is a global threat to food security, with up to 50% yield losses. Panicle blast is a severe form of rice blast, and disease responses vary between cultivars with different genotypes. Reactive oxygen species (ROS)-mediated signaling reactions and the phenylpropanoid pathway are important defense mechanisms involved in recognizing and resisting against fungal infection. To understand rice-M. oryzae interactions in resistant and susceptible cultivars, we determined dynamic changes in the activities of five defense-related enzymes in resistant cultivar jingsui 18 and susceptible cultivar jinyuan 899 infected with M. oryzae from 4 to 25 days after infection. We then performed untargeted metabolomics analyses to profile the metabolomes of the cultivars under infected and non-infected conditions. Dynamic changes in the activities of five defense-related enzymes were closely related to panicle blast resistance in rice. Metabolome data analysis identified 634 differentially accumulated metabolites (DAMs) between resistant and susceptible cultivars following infection, potentially explaining differences in disease response between varieties. The most enriched DAMs were associated with lipids and lipid-like molecules, phenylpropanoids and polyketides, organoheterocyclic compounds, organic acids and derivatives, and lignans, neolignans, and related compounds. Multiple metabolic pathways are involved in resistance to panicle blast in rice, including biosynthesis of other secondary metabolites, amino acid metabolism, lipid metabolism, phenylpropanoid biosynthesis, arachidonic acid metabolism, arginine biosynthesis, tyrosine metabolism, tryptophan metabolism, tyrosine and tryptophan biosynthesis, lysine biosynthesis, and oxidative phosphorylation.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Resistência à Doença/genética , Oryza/genética , Magnaporthe/genética , Triptofano/metabolismo , Tirosina/metabolismo , Doenças das Plantas/microbiologia
17.
New Phytol ; 242(3): 1257-1274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38481385

RESUMO

Plant pathogenic fungi elaborate numerous detoxification strategies to suppress host reactive oxygen species (ROS), but their coordination is not well-understood. Here, we show that Sirt5-mediated protein desuccinylation in Magnaporthe oryzae is central to host ROS detoxification. SIRT5 encodes a desuccinylase important for virulence via adaptation to host oxidative stress. Quantitative proteomics analysis identified a large number of succinylated proteins targeted by Sirt5, most of which were mitochondrial proteins involved in oxidative phosphorylation, TCA cycle, and fatty acid oxidation. Deletion of SIRT5 resulted in hypersuccinylation of detoxification-related enzymes, and significant reduction in NADPH : NADP+ and GSH : GSSG ratios, disrupting redox balance and impeding invasive growth. Sirt5 desuccinylated thioredoxin Trx2 and glutathione peroxidase Hyr1 to activate their enzyme activity, likely by affecting proper folding. Altogether, this work demonstrates the importance of Sirt5-mediated desuccinylation in controlling fungal process required for detoxifying host ROS during M. oryzae infection.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Espécies Reativas de Oxigênio/metabolismo , Lisina/metabolismo , Estresse Oxidativo , Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia
18.
New Phytol ; 242(1): 211-230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326975

RESUMO

Microbe-produced secondary metabolite phenazine-1-carboxylic acid (PCA) facilitates pathogen virulence and defense mechanisms against competitors. Magnaporthe oryzae, a causal agent of the devastating rice blast disease, needs to compete with other phyllosphere microbes and overcome host immunity for successful colonization and infection. However, whether M. oryzae produces PCA or it has any other functions remains unknown. Here, we found that the MoPHZF gene encodes the phenazine biosynthesis protein MoPhzF, synthesizes PCA in M. oryzae, and regulates appressorium formation and host virulence. MoPhzF is likely acquired through an ancient horizontal gene transfer event and has a canonical function in PCA synthesis. In addition, we found that PCA has a role in suppressing the accumulation of host-derived reactive oxygen species (ROS) during infection. Further examination indicated that MoPhzF recruits both the endoplasmic reticulum membrane protein MoEmc2 and the regulator of G-protein signaling MoRgs1 to the plasma membrane (PM) for MoRgs1 phosphorylation, which is a critical regulatory mechanism in appressorium formation and pathogenicity. Collectively, our studies unveiled a canonical function of MoPhzF in PCA synthesis and a noncanonical signaling function in promoting appressorium formation and host infection.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Fenazinas/metabolismo , Doenças das Plantas/genética
19.
Nat Plants ; 10(4): 618-632, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409290

RESUMO

Effector proteins secreted by plant pathogenic fungi are important artilleries against host immunity, but there is no precedent of such effectors being explored as antifungal targets. Here we demonstrate that MoErs1, a species-specific effector protein secreted by the rice blast fungus Magnaporthe oryzae, inhibits the function of rice papain-like cysteine protease OsRD21 involved in rice immunity. Disrupting MoErs1-OsRD21 interaction effectively controls rice blast. In addition, we show that FY21001, a structure-function-based designer compound, specifically binds to and inhibits MoErs1 function. FY21001 significantly and effectively controls rice blast in field tests. Our study revealed a novel concept of targeting pathogen-specific effector proteins to prevent and manage crop diseases.


Assuntos
Proteínas Fúngicas , Oryza , Doenças das Plantas , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Interações Hospedeiro-Patógeno , Papaína/metabolismo , Ascomicetos , Magnaporthe
20.
Nat Commun ; 15(1): 1621, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424448

RESUMO

Autophagy in eukaryotes functions to maintain homeostasis by degradation and recycling of long-lived and unwanted cellular materials. Autophagy plays important roles in pathogenicity of various fungal pathogens, suggesting that autophagy is a novel target for development of antifungal compounds. Here, we describe bioluminescence resonance energy transfer (BRET)-based high-throughput screening (HTS) strategy to identify compounds that inhibit fungal ATG4 cysteine protease-mediated cleavage of ATG8 that is critical for autophagosome formation. We identified ebselen (EB) and its analogs ebselen oxide (EO) and 2-(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PT) as inhibitors of fungal pathogens Botrytis cinerea and Magnaporthe oryzae ATG4-mediated ATG8 processing. The EB and its analogs inhibit spore germination, hyphal development, and appressorium formation in Ascomycota pathogens, B. cinerea, M. oryzae, Sclerotinia sclerotiorum and Monilinia fructicola. Treatment with EB and its analogs significantly reduced fungal pathogenicity. Our findings provide molecular insights to develop the next generation of antifungal compounds by targeting autophagy in important fungal pathogens.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Virulência , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Esporos Fúngicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...