Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Arch Toxicol ; 95(10): 3285-3302, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480604

RESUMO

Tagging of endogenous stress response genes can provide valuable in vitro models for chemical safety assessment. Here, we present the generation and application of a fluorescent human induced pluripotent stem cell (hiPSC) reporter line for Heme oxygenase-1 (HMOX1), which is considered a sensitive and reliable biomarker for the oxidative stress response. CRISPR/Cas9 technology was used to insert an enhanced green fluorescent protein (eGFP) at the C-terminal end of the endogenous HMOX1 gene. Individual clones were selected and extensively characterized to confirm precise editing and retained stem cell properties. Bardoxolone-methyl (CDDO-Me) induced oxidative stress caused similarly increased expression of both the wild-type and eGFP-tagged HMOX1 at the mRNA and protein level. Fluorescently tagged hiPSC-derived proximal tubule-like, hepatocyte-like, cardiomyocyte-like and neuron-like progenies were treated with CDDO-Me (5.62-1000 nM) or diethyl maleate (5.62-1000 µM) for 24 h and 72 h. Multi-lineage oxidative stress responses were assessed through transcriptomics analysis, and HMOX1-eGFP reporter expression was carefully monitored using live-cell confocal imaging. We found that eGFP intensity increased in a dose-dependent manner with dynamics varying amongst lineages and stressors. Point of departure modelling further captured the specific lineage sensitivities towards oxidative stress. We anticipate that the newly developed HMOX1 hiPSC reporter will become a valuable tool in understanding and quantifying critical target organ cell-specific oxidative stress responses induced by (newly developed) chemical entities.


Assuntos
Heme Oxigenase-1/genética , Células-Tronco Pluripotentes Induzidas/citologia , Estresse Oxidativo/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Maleatos/administração & dosagem , Maleatos/toxicidade , Pessoa de Meia-Idade , Ácido Oleanólico/administração & dosagem , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/toxicidade , RNA Mensageiro/genética , Fatores de Tempo
2.
Chem Commun (Camb) ; 57(56): 6919-6922, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34155490

RESUMO

We demonstrate an intrinsic antitumor effect of polymer nanoparticles (P-NPs), which could re-program tumor-associated macrophages to pro-inflammatory phenotype. The intrinsic effect of P-NPs on macrophage repolarization and its combination with other therapies provide new ideas for drug delivery, macrophage regulation and immunotherapy in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Maleatos/farmacologia , Nanopartículas/química , Poliestirenos/farmacologia , Polivinil/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Maleatos/química , Maleatos/toxicidade , Camundongos , Nanopartículas/toxicidade , Poliestirenos/química , Poliestirenos/toxicidade , Polivinil/química , Polivinil/toxicidade
3.
J Biomed Nanotechnol ; 16(4): 419-431, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32970975

RESUMO

Many promising pharmaceutically active compounds have low solubility in aqueous environments and their encapsulation into efficient drug delivery vehicles is crucial to increase their bioavailability. Lipodisq nanoparticles are approximately 10 nm in diameter and consist of a circular phospholipid bilayer, stabilized by an annulus of SMA (a hydrolysed copolymer of styrene and maleic anhydride). SMA is used extensively in structural biology to extract and stabilize integral membrane proteins for biophysical studies. Here, we assess the potential of these nanoparticles as drug delivery vehicles, determining their cytotoxicity and the in vivo excretion pathways of their polymer and lipid components. Doxorubicin-loaded Lipodisqs were cytotoxic across a panel of cancer cell lines, whereas nanoparticles without the drug had no effect on cell proliferation. Intracellular doxorubicin release from Lipodisqs in HeLa cells occurred in the low-pH environment of the endolysosomal system, consistent with the breakdown of the discoidal structure as the carboxylate groups of the SMA polymer become protonated. Biodistribution studies in mice showed that, unlike other nanoparticles injected intravenously, most of the Lipodisq components were recovered in the colon, consistent with rapid uptake by hepatocytes and excretion into bile. These data suggest that Lipodisqs have the potential to act as delivery vehicles for drugs and contrast agents.


Assuntos
Nanopartículas , Distribuição Tecidual , Animais , Linhagem Celular Tumoral , Doxorrubicina/toxicidade , Células HeLa , Humanos , Maleatos/toxicidade , Camundongos , Nanopartículas/toxicidade
4.
ACS Chem Biol ; 15(4): 856-861, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32250583

RESUMO

Metabolites regulate protein function via covalent and noncovalent interactions. However, manipulating these interactions in living cells remains a major challenge. Here, we report a chemical strategy for inducing cysteine S-succination, a nonenzymatic post-translational modification derived from the oncometabolite fumarate. Using a combination of antibody-based detection and kinetic assays, we benchmark the in vitro and cellular reactivity of two novel S-succination "agonists," maleate and 2-bromosuccinate. Cellular assays reveal maleate to be a more potent and less toxic inducer of S-succination, which can activate KEAP1-NRF2 signaling in living cells. By enabling the cellular reconstitution of an oncometabolite-protein interaction with physiochemical accuracy and minimal toxicity, this study provides a methodological basis for better understanding the signaling role of metabolites in disease.


Assuntos
Cisteína/química , Fumaratos/farmacologia , Maleatos/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteoma/metabolismo , Succinatos/farmacologia , Acilação , Linhagem Celular Tumoral , Fumaratos/química , Fumaratos/toxicidade , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Maleatos/química , Maleatos/toxicidade , Fenóis/química , Proteoma/química , Proteômica/métodos , Succinatos/química , Succinatos/toxicidade , Compostos de Sulfidrila/química
5.
Int J Pharm ; 579: 119154, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32081801

RESUMO

Thermosensitive hydrogels have been studied as feasible needle-avoidance alternative to vaccine delivery. In this work, we report the development of a new thermal-sensitive hydrogel for intranasal vaccine delivery. This delivery system was formulated with a combination of the polymer Gantrez® AN119 and the surfactant Pluronic® F127 (PF127), with a high biocompatibility, biodegradability and immunoadjuvant properties. Shigella flexneri outer membrane vesicles were used as the antigen model. A stable and easy-to-produce thermosensitive hydrogel which allowed the incorporation of the OMV-antigenic complex was successfully synthetized. A rapid gel formation was achieved at body temperature, which prolonged the OMV-antigens residence time in the nasal cavity of BALB/c mice when compared to intranasal delivery of free-OMVs. In addition, the bacterial antigens showed a fast release profile from the hydrogel in vitro, with a peak at 30 min of incubation at 37 °C. Hydrogels appeared to be non-cytotoxic in the human epithelial HeLa cell line and nose epithelium as well, as indicated by the absence of histopathological features. Immunohistochemical studies revealed that after intranasal administration the OMVs reached the nasal associated lymphoid tissue. These results support the use of here described thermosensitive hydrogels as a potential platform for intranasal vaccination.


Assuntos
Adesinas Bacterianas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Portadores de Fármacos/química , Hidrogéis/química , Mucosa Nasal/metabolismo , Adesinas Bacterianas/imunologia , Adjuvantes Imunológicos/farmacocinética , Administração Intranasal , Animais , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Feminino , Células HeLa , Humanos , Maleatos/química , Maleatos/toxicidade , Camundongos , Poloxâmero/química , Poloxâmero/toxicidade , Polietilenos/química , Polietilenos/toxicidade , Shigella flexneri/imunologia , Temperatura , Testes de Toxicidade Aguda
6.
Arch Toxicol ; 93(2): 435-451, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30456486

RESUMO

Oxidative stress leads to the activation of the Nuclear factor-erythroid-2-related factor 2 (Nrf2) pathway. While most studies have focused on the activation of the Nrf2 pathway after single chemical treatment, little is known about the dynamic regulation of the Nrf2 pathway in the context of repeated exposure scenarios. Here we employed single cell live imaging to quantitatively monitor the dynamics of the Nrf2 pathway during repeated exposure, making advantage of two HepG2 fluorescent protein reporter cell lines, expressing GFP tagged Nrf2 or sulfiredoxin 1 (Srxn1), a direct downstream target of Nrf2. High throughput live confocal imaging was used to measure the temporal dynamics of these two components of the Nrf2 pathway after repeated exposure to an extensive concentration range of diethyl maleate (DEM) and tert-butylhydroquinone (tBHQ). Single treatment with DEM or tBHQ induced Nrf2 and Srxn1 over time in a concentration-dependent manner. The Nrf2 response to a second treatment was lower than the response to the first exposure with the same concentration, indicating that the response is adaptive. Moreover, a limited fraction of individual cells committed themselves into the Nrf2 response during the second treatment. Despite the suppression of the Nrf2 pathway, the second treatment resulted in a three-fold higher Srxn1-GFP response compared to the first treatment, with all cells participating in the response. While after the first treatment Srxn1-GFP response was linearly related to Nrf2-GFP nuclear translocation, such a linear relationship was less clear for the second exposure. siRNA-mediated knockdown demonstrated that the second response is dependent on the activity of Nrf2. Several other, clinically relevant, compounds (i.e., sulphorophane, nitrofurantoin and CDDO-Me) also enhanced the induction of Srxn1-GFP upon two consecutive repeated exposure. Together the data indicate that adaptation towards pro-oxidants lowers the Nrf2 activation capacity, but simultaneously primes cells for the enhancement of an antioxidant response which depends on factors other than just Nrf2. These data provide further insight in the overall dynamics of stress pathway activation after repeated exposure and underscore the complexity of responses that may govern repeated dose toxicity.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Xenobióticos/toxicidade , Relação Dose-Resposta a Droga , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Hep G2 , Humanos , Hidroquinonas/administração & dosagem , Hidroquinonas/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator de Transcrição MafF/genética , Fator de Transcrição MafG/genética , Maleatos/administração & dosagem , Maleatos/toxicidade , Imagem Molecular/métodos , Fator 2 Relacionado a NF-E2/genética , Proteínas Nucleares/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Repressoras/genética , Análise de Célula Única/métodos , Testes de Toxicidade , Xenobióticos/administração & dosagem
7.
J Chromatogr A ; 1565: 96-104, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-29983170

RESUMO

Maleic acid (MA), an industrial raw material, was found to be illegally added to edible starch-based food products in Taiwan in 2013, a practice unheard of in most of the world. MA has been associated with renal dysfunction in many experimental animal studies. In this study, we developed chemical probes to investigate protein-protein interactions between MA and renal proteins. In the fabrication of the MA probes, we used silicon dioxide (SiO2) modified with a silanized linker (3-aminopropyl triethoxyslane, APTES) to generate MA with APTES-SiO2 particles. The probes were then incubated with the cell lysates of normal human kidney cell lines (HK-2) and subjected to MS/MS for identifying several MA-related proteins, including nucleophosmin, neutral alpha-glucosidase AB, translocon-associated protein subunit alpha, elongation factor 1-gamma, 60S acidic ribosomal protein P0-like, and heat shock protein (HSP 90-alpha and beta). Based on our findings, we believed that the probe can potentially be used to identify and detect the target proteins and help characterize a network of MA protein-protein interactions.


Assuntos
Túbulos Renais/lesões , Túbulos Renais/metabolismo , Maleatos/toxicidade , Sondas Moleculares/química , Proteômica/métodos , Animais , Linhagem Celular , Cromatografia Líquida , Humanos , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Sondas Moleculares/síntese química , Proteínas/metabolismo , Dióxido de Silício/química , Espectrofotometria Infravermelho , Espectrometria de Massas em Tandem
8.
PLoS One ; 12(10): e0183675, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073142

RESUMO

Maleic acid (MA), an intermediate reagent used in many industrial products, instigated public health concerns in Taiwan when it was used to adulterate an array of starch-based delicacies to improve texture and storage time. Established studies reported that exposure to high concentrations of MA induce renal injury; little is known whether oxidative stress is induced at a relative low dose. This study aims to investigate the effect of oral single dose exposure of MA on the status of oxidative stress and inflammation. Single dose of MA at 0, 6 and 60 mg/kg (control, low- and high-dose groups, respectively) were orally administered to adult male and female rats. Urine samples were collected and analyzed to measure 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-IsoPGF2α), 8-nitroguanine (8-NO2Gua) and N-acetyl-S-(tetrahydro-5-hydroxy-2-pentyl-3-furanyl)-L-cysteine (HNE-MA) using LC-MS/MS. Results revealed that oral consumption of MA induced oxidative DNA damage and lipid peroxidation, as demonstrated by the statistically significant increases in urinary levels of 8-NO2Gua, 8-OHdG, and 8-isoPGF2α, in high-dosed male rats within 12 h of oral gavage (p < 0.05). Additionally, increases in concentration of these biomarkers persist for days after consumption; male rats appear to be more sensitive to oxidative burden compared to their counterparts. The aforementioned findings could help elucidate the mechanisms through which nephrotoxicity occur.


Assuntos
Biomarcadores/urina , Dano ao DNA , Modelos Animais de Doenças , Inflamação/urina , Maleatos/toxicidade , Estresse Oxidativo , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Masculino , Ratos , Ratos Sprague-Dawley
9.
Sci Rep ; 7(1): 13440, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044179

RESUMO

Synergists can counteract metabolic insecticide resistance by inhibiting detoxification enzymes or transporters. They are used in commercial formulations of insecticides, but are also frequently used in the elucidation of resistance mechanisms. However, the effect of synergists on genome-wide transcription in arthropods is poorly understood. In this study we used Illumina RNA-sequencing to investigate genome-wide transcriptional responses in an acaricide resistant strain of the spider mite Tetranychus urticae upon exposure to synergists such as S,S,S-tributyl phosphorotrithioate (DEF), diethyl maleate (DEM), piperonyl butoxide (PBO) and cyclosporin A (CsA). Exposure to PBO and DEF resulted in a broad transcriptional response and about one third of the differentially expressed genes (DEGs), including cytochrome P450 monooxygenases and UDP-glycosyltransferases, was shared between both treatments, suggesting common transcriptional regulation. Moreover, both DEF and PBO induced genes that are strongly implicated in acaricide resistance in the respective strain. In contrast, CsA treatment mainly resulted in downregulation of Major Facilitator Superfamily (MFS) genes, while DEGs of the DEM treatment were not significantly enriched for any GO-terms.


Assuntos
Acaridae/efeitos dos fármacos , Inseticidas/toxicidade , Sinergistas de Praguicidas , Transcriptoma/efeitos dos fármacos , Acaridae/genética , Animais , Ciclosporina/toxicidade , Genoma de Inseto , Resistência a Inseticidas , Maleatos/toxicidade , Organotiofosfatos/toxicidade , Butóxido de Piperonila/toxicidade
11.
Int J Pharm ; 530(1-2): 187-194, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28750895

RESUMO

Gantrez® AN 119-based NPs have been developed as oral drug carriers due to their strong bioadhesive interaction with components of the gastrointestinal mucosa and to their adaptable surface. The use of mannosamine to coat Gantrez® AN 119-based NPs results in a high mucus-permeable carrier, able to reach the gastrointestinal epithelium. Although their efficacy to transport a therapeutic agent has been demonstrated, their safety has not yet been thoroughly studied. They have proved to be non-cytotoxic, non-genotoxic and non-mutagenic in vitro; however, the in vivo toxicity profile has not yet been determined. In this study, the in vivo genotoxic potential of Gantrez® AN 119 NPs coated with mannosamine (GN-MA-NP) has been assessed using the in vivo comet assay in combination with the enzyme formamidopyrimidine DNA glycosylase in mice, following the OECD test guideline 489. To determine the relevant organs to analyse and the sampling times, an in vivo biodistribution study was also carried out. Results showed a statistically significant induction of DNA strand breaks and oxidized bases in the duodenum of animals exposed to 2000 mg/kg bw. However, this effect was not observed at lower doses (i.e. 500 and 1000 mg/kg which are closer to the potential therapeutic doses) or in other organs. In conclusion, GN-MA-NP are promising nanocarriers as oral drug delivery systems.


Assuntos
Anidridos/química , Portadores de Fármacos/química , Trato Gastrointestinal/efeitos dos fármacos , Nanopartículas/química , Anidridos/toxicidade , Animais , Ensaio Cometa , Portadores de Fármacos/toxicidade , Masculino , Maleatos/química , Maleatos/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Nanopartículas/toxicidade , Polietilenos/química , Polietilenos/toxicidade , Distribuição Tecidual
12.
J Appl Toxicol ; 37(12): 1493-1506, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28691739

RESUMO

Maleic acid (MA), a chemical intermediate used in many consumer and industrial products, was intentionally adulterated in a variety of starch-based foods and instigated food safety incidents in Asia. We aim to elucidate possible mechanisms of MA toxicity after repeated exposure by (1) determining the changes of metabolic profile using 1 H nuclear magnetic resonance spectroscopy and multivariate analysis, and (2) investigating the occurrence of oxidative stress using liquid chromatography tandem mass spectrometry by using Sprague-Dawley rat urine samples. Adult male rats were subjected to a 28 day subchronic study (0, 6, 20 and 60 mg kg-1 ) via oral gavage. Urine was collected twice a day on days 0, 7, 14, 21 and 28; organs underwent histopathological examination. Changes in body weight and relative kidney weights in medium- and high-dose groups were significantly different compared to controls. Morphological alterations were evident in the kidneys and liver. Metabolomic results demonstrated that MA exposure increases the urinary concentrations of 8-hydroxy-2'-deoxyguanosine, 8-nitroguanine and 8-iso-prostaglandin F2α ; levels of acetoacetate, hippurate, alanine and acetate demonstrated time- and dose-dependent variations in the treatment groups. Findings suggest that MA consumption escalates oxidative damage, membrane lipid destruction and disrupt energy metabolism. These aforementioned changes in biomarkers and endogenous metabolites elucidate and assist in characterizing the possible mechanisms by which MA induces nephro- and hepatotoxicity.


Assuntos
Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Maleatos/toxicidade , Metaboloma/efeitos dos fármacos , Animais , Biomarcadores/urina , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Rim/patologia , Fígado/patologia , Masculino , Espectrometria de Massas , Metabolômica , Ressonância Magnética Nuclear Biomolecular , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade Subcrônica
13.
Int J Toxicol ; 36(3): 207-219, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28466691

RESUMO

Salt forms of pharmaceutical compounds can have unique pharmacokinetic and toxicity properties. MDV1634 was evaluated for neurology indication and also demonstrated blood pressure (BP)-lowering effects in nonclinical studies. During the chemistry manufacturing campaign, 2 salt forms, dihydrochloride (2HCl) and maleate (MAL), which improved chemical stability and water solubility of the free base were identified. MDV1634.MAL showed better chemical attributes and was evaluated in toxicology studies for further development. A 28-day oral toxicity study in dogs with MDV1634.MAL demonstrated partially reversible renal toxicity. Although MAL salt is generally regarded as safe, renal toxicity is sometimes observed in rats and dogs. To evaluate contribution of each salt form to renal toxicity and BP lowering, an additional 28-day study was conducted with MDV1634.2HCL and MDV1634.MAL, which included toxicokinetics, continuous BP measurement in a subset of dogs, and sensitive urinary biomarker evaluation for temporal monitorability and reversibility of potential renal findings. In the repeat study, both salt forms showed similar exposures during the dosing period, but renal tubular toxicity was observed only with MDV1634.MAL and not with MDV1634.2HCl. The renal findings with MDV1634.MAL included early urinary biomarker changes (increase in albumin, clusterin, ß2 microglobulin, and neutrophil gelatinase-associated lipocalin); elevations in serum blood urea nitrogen and creatinine; and microscopic findings of partially reversible tubular basophilia, single cell necrosis, pigmentation, and mineralization. The renal findings in contrast to the BP findings were MAL-specific and considered not related to MDV1634, thereby under scoring the importance of salt forms in pharmaceutical development.


Assuntos
Rim/efeitos dos fármacos , Maleatos/toxicidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Cães , Feminino , Rim/patologia , Masculino , Maleatos/farmacocinética , Sais/farmacocinética , Sais/toxicidade , Testes de Toxicidade Subaguda
14.
Int J Pharm ; 523(1): 418-426, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28286081

RESUMO

In the last years, the development of nanomaterials has significantly increased due to the immense variety of potential applications in technological sectors, such as medicine, pharmacy and food safety. Focusing on the nanodevices for oral drug delivery, poly(anhydride) nanoparticles have received extensive attention due to their unique properties, such as their capability to develop intense adhesive interactions within the gut mucosa, their modifiable surface and their biodegradable and easy-to-produce profile. However, current knowledge of the possible adverse health effects as well as, toxicological information, is still exceedingly limited. Thus, we investigated the capacity of two poly(anhydride) nanoparticles, Gantrez® AN 119-NP (GN-NP) and Gantrez® AN 119 covered with mannosamine (GN-MA-NP), and their main bulk material (Gantrez® AN 119-Polymer), to induce DNA damage and thymidine kinase (TK+/-) mutations in L5178Y TK+/- mouse lymphoma cells after 24h of exposure. The results showed that GN-NP, GN-MA-NP and their polymer did not induce DNA strand breaks or oxidative damage at concentrations ranging from 7.4 to 600µg/mL. Besides, the mutagenic potential of these nanoparticles and their polymer revealed no significant or biologically relevant gene mutation induction at concentrations up to 600µg/mL under our experimental settings. Considering the non-genotoxic effects of GN-NP and GN-MA-NP, as well as their exceptional properties, these nanoparticles are promising nanocarriers for oral medical administrations.


Assuntos
Portadores de Fármacos/toxicidade , Maleatos/toxicidade , Nanopartículas/toxicidade , Polivinil/toxicidade , Administração Oral , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Camundongos , Testes de Mutagenicidade , Mutação , Timidina Quinase/genética
15.
Chem Res Toxicol ; 30(4): 923-933, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-27982581

RESUMO

A quantitative dynamics pathway map of the Nrf2-mediated oxidative stress response and p53-related DNA damage response pathways as well as the cross-talk between these pathways has not systematically been defined. To allow the dynamic single cell evaluation of these pathways, we have used BAC-GFP recombineering to tag for each pathway's three key components: for the oxidative stress response, Keap1-GFP, Nrf2-GFP, and Srxn1-GFP; for the DNA damage response, 53bp1-GFP, p53-GFP, and p21-GFP. The dynamic activation of these individual components was assessed using quantitative high throughput confocal microscopy after treatment with a broad concentration range of diethyl maleate (DEM; to induce oxidative stress) and etoposide (to induce DNA damage). DEM caused a rapid activation of Nrf2, which returned to baseline levels at low concentrations but remained sustained at high concentrations. Srxn1-GFP induction and Keap1-GFP translocation to autophagosomes followed later, with upper boundaries reached at high concentrations, close to the onset of cell death. Etoposide caused rapid accumulation of 53bp1-GFP in DNA damage foci, which was later followed by the concentration dependent nuclear accumulation of p53-GFP and subsequent induction of p21-GFP. While etoposide caused activation of Srxn1-GFP, a modest activation of DNA damage reporters was observed for DEM at high concentrations. Interestingly, Nrf2 knockdown caused an inhibition of the DNA damage response at high concentrations of etoposide, while Keap1 knockdown caused an enhancement of the DNA damage response already at low concentrations of etoposide. Knockdown of p53 did not affect the oxidative stress response. Altogether, the current stress response landscapes provide insight in the time course responses of and cross-talk between oxidative stress and DNA-damage and defines the tipping points where cell injury may switch from adaptation to injury.


Assuntos
Dano ao DNA/efeitos dos fármacos , Etoposídeo/toxicidade , Maleatos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Genes Reporter , Células Hep G2 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
Int J Pharm ; 517(1-2): 67-79, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-27908629

RESUMO

The main concerns with drugs designed for oral administration are their inactivation or degradation in the harsh conditions of the gastrointestinal tract, their poor solubility through the gastrointestinal mucus gel layer, the poor intestinal epithelium permeability that limits their absorption, and their toxicity. In this context, poly(anhydride) nanoparticles are capable of protecting the drug from the harsh environment, reduce the drug's toxicity and, by virtue of surface modification, to enhance or reduce their mucus permeability and the bioadhesion to specific target cells. The copolymer between methyl vinyl ether and maleic anhydride (commercialized as Gantrez® AN 119) are part of the poly(anhydride) nanoparticles. These biocompatible and biodegradable nanoparticles (NPs) can be modified by using different ligands. Their usefulness as drug carriers and their bioadhesion with components of the intestinal mucosa have been described. However, their toxicity, genotoxicity and mucus permeation capacity has not been thoroughly studied. The aim of this work was to evaluate and compare the in vitro toxicity, cell viability and in vitro genotoxicity of the bioadhesive empty Gantrez® AN 119 NPs modified with dextran, aminodextran, 2-hydroxypropyl-ß-cyclodextrin, mannosamine and poly-ethylene glycol of different molecular weights. Results showed that, in general, coated NPs exhibit better mucus permeability than the bare ones, those coated with mannosamine being the most permeable ones. The NPs studied did not affect cell metabolism, membrane integrity or viability of Caco-2 cells at the different conditions tested. Moreover, they did not induce a relevant level of DNA strand breaks and FPG-sensitive sites (as detected with the comet assay).


Assuntos
Quebras de DNA/efeitos dos fármacos , Portadores de Fármacos/toxicidade , Mucosa Gástrica/metabolismo , Mucosa Intestinal/metabolismo , Maleatos/toxicidade , Nanopartículas/química , Polietilenos/toxicidade , Administração Oral , Animais , Células CACO-2 , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Células HT29 , Humanos , Maleatos/química , Maleatos/farmacocinética , Permeabilidade , Polietilenos/química , Polietilenos/farmacocinética , Propriedades de Superfície , Suínos
17.
Kidney Int ; 90(1): 67-76, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27165818

RESUMO

Tissue preconditioning, whereby various short-term stressors initiate organ resistance to subsequent injury, is well recognized. However, clinical preconditioning of the kidney for protection against acute kidney injury (AKI) has not been established. Here we tested whether a pro-oxidant agent, iron sucrose, combined with a protoporphyrin (Sn protoporphyrin), can induce preconditioning and protect against acute renal failure. Mice were pretreated with iron sucrose, protoporphyrin, cyanocobalamin, iron sucrose and protoporphyrin, or iron sucrose and cyanocobalamin. Eighteen hours later, ischemic, maleate, or glycerol models of AKI were induced, and its severity was assessed the following day (blood urea nitrogen, plasma creatinine concentrations; post-ischemic histology). Agent impact on cytoprotective gene expression (heme oxygenase 1, hepcidin, haptoglobin, hemopexin, α1-antitrypsin, α1-microglobulin, IL-10) was assessed as renal mRNA and protein levels. AKI-associated myocardial injury was gauged by plasma troponin I levels. Combination agent administration upregulated multiple cytoprotective genes and, unlike single agent administration, conferred marked protection against each tested model of acute renal failure. Heme oxygenase was shown to be a marked contributor to this cytoprotective effect. Preconditioning also blunted AKI-induced cardiac troponin release. Thus, iron sucrose and protoporphyrin administration can upregulate diverse cytoprotective genes and protect against acute renal failure. Associated cardiac protection implies potential relevance to both AKI and its associated adverse downstream effects.


Assuntos
Injúria Renal Aguda/prevenção & controle , Compostos Férricos/uso terapêutico , Ácido Glucárico/uso terapêutico , Rim/metabolismo , Metaloporfirinas/uso terapêutico , Substâncias Protetoras/uso terapêutico , Protoporfirinas/uso terapêutico , Injúria Renal Aguda/sangue , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , alfa-Globulinas/metabolismo , Animais , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Modelos Animais de Doenças , Quimioterapia Combinada , Óxido de Ferro Sacarado , Glicerol/toxicidade , Haptoglobinas/metabolismo , Heme Oxigenase-1/metabolismo , Hemopexina/metabolismo , Hepcidinas/metabolismo , Interleucina-10/metabolismo , Rim/patologia , Masculino , Maleatos/toxicidade , Camundongos , RNA Mensageiro/metabolismo , Troponina C/sangue , alfa 1-Antitripsina/metabolismo
18.
Biol Pharm Bull ; 39(2): 272-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26632200

RESUMO

Di-n-butyl phthalate (DBP), a phthalate ester, has been shown to have an adjuvant effect on fluorescein isothiocyanate (FITC)-induced contact hypersensitivity (CHS) mouse models. Di-n-butyl maleate (DBM), widely used as a plasticizer for industrial application, has been reported to cause dermatitis in humans. DBM is a butyl alcohol ester of di-carboxylic acid that represents a part of the DBP structure, while di-n-butyl fumarate (DBF) is a trans isomer of DBM. We examined whether DBM or DBF exhibits an adjuvant effect like DBP does. When BALB/c mice were epicutaneously sensitized with FITC in the presence of DBM or DBF, the FITC-specific CHS response was enhanced, as we have observed for DBP. As to underlying mechanisms, DBM and DBF facilitated the trafficking of FITC-presenting CD11c(+) dendritic cells (DCs) from skin to draining lymph nodes and increased the cytokine production by draining lymph nodes. In conclusion, DBM and DBF may have an effect that aggravates contact dermatitis through a skin sensitization process.


Assuntos
Dermatite de Contato , Hipersensibilidade a Drogas , Fluoresceína-5-Isotiocianato/toxicidade , Fumaratos/toxicidade , Maleatos/toxicidade , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Linfonodos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular
19.
Nanotechnology ; 26(50): 505101, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26580675

RESUMO

Selol is a semi-synthetic compound containing selenite that is effective against cancerous cells and safer for clinical applications in comparison with other inorganic forms of selenite. Recently, we have developed a formulation of poly(methyl vinyl ether-co-maleic anhydride)-shelled selol nanocapsules (SPN), which reduced the proliferative activity of lung adenocarcinoma cells and presented little deleterious effects on normal cells in in vitro studies. In this study, we report on the antitumor activity and systemic effects induced by this formulation in chemically induced lung adenocarcinoma-bearing mice. The in vivo antitumor activity of the SPN was verified by macroscopic quantification, immunohistochemistry and morphological analyses. Toxicity analyses were performed by evaluations of the kidney, liver, and spleen; analyses of hemogram and plasma levels of alanine aminotransferase, aspartate transaminase, urea, and creatinine; and DNA fragmentation and cell cycle activity of the bone marrow cells. Furthermore, we investigated the potential of the SPN formulation to cause hemolysis, activate the complement system, provoke an inflammatory response and change the conformation of the plasma proteins. Our results showed that the SPN reduced the area of the surface tumor nodules but not the total number of tumor nodules. The biochemical and hematological findings were suggestive of the low systemic toxicity of the SPN formulation. The surface properties of the selol nanocapsules point to characteristics that are consistent with the treatment of the tumors in vivo: low hemolytic activity, weak inflammatory reaction with no activation of the complement system, and mild or absent conformational changes of the plasma proteins. In conclusion, this report suggests that the SPN formulation investigated herein exhibits anti-tumoral effects against lung adenocarcinoma in vivo and is associated with low systemic toxicity and high biocompatibility.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Maleatos/administração & dosagem , Nanocápsulas/administração & dosagem , Polietilenos/administração & dosagem , Compostos de Selênio/administração & dosagem , Adenocarcinoma/ultraestrutura , Adenocarcinoma de Pulmão , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas do Sistema Complemento/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Feminino , Inflamação/induzido quimicamente , Neoplasias Pulmonares/ultraestrutura , Maleatos/química , Maleatos/toxicidade , Camundongos , Nanocápsulas/química , Nanocápsulas/toxicidade , Tamanho do Órgão/efeitos dos fármacos , Polietilenos/química , Polietilenos/toxicidade , Compostos de Selênio/química , Compostos de Selênio/toxicidade
20.
Anticancer Res ; 35(9): 4707-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26254360

RESUMO

UNLABELLED: Synthetic cannabinoid WIN55,212-2 (WIN) has shown a promise as an anticancer agent but causes psychoactive side-effects. In the present study, nano-micelles of styrene maleic acid (SMA)-conjugated WIN were synthesized to reduce side-effects and increase drug efficacy. SMA-WIN micelles were characterised and their in vitro cytotoxic effect was compared to that of free WIN against triple-negative breast cancer (MDA-MB-231), hormone receptor-positive breast cancer (MCF-7) and castration-resistant prostate cancer (PC3) cell lines. SMA-WIN micelles were synthesised with a ~15% loading, 132.7 nm average diameter, -0.0388 mV charge, and pH-dependent release rate. A dose-dependent inhibition of cell growth was observed in all three cell lines treated with both free and micellar WIN, with both formulations demonstrating equal cytotoxicity. CONCLUSION: SMA-WIN demonstrated characteristics theorized to improve in vivo drug biodistribution. Potent cytotoxicity was found against breast and prostate cancer cells in vitro, showing promise as a novel treatment against breast and prostate cancer.


Assuntos
Benzoxazinas/uso terapêutico , Canabinoides/metabolismo , Maleatos/química , Micelas , Morfolinas/uso terapêutico , Nanopartículas/química , Naftalenos/uso terapêutico , Neoplasias/tratamento farmacológico , Estireno/química , Benzoxazinas/toxicidade , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Maleatos/toxicidade , Morfolinas/toxicidade , Nanopartículas/toxicidade , Naftalenos/toxicidade , Neoplasias/patologia , Tamanho da Partícula , Padrões de Referência , Eletricidade Estática , Estireno/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...