Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 23661, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880337

RESUMO

Rafflesia is a unique plant species existing as a single flower and produces the largest flower in the world. While Rafflesia buds take up to 21 months to develop, its flowers bloom and wither within about a week. In this study, transcriptome analysis was carried out to shed light on the molecular mechanism of senescence in Rafflesia. A total of 53.3 million high quality reads were obtained from two Rafflesia cantleyi flower developmental stages and assembled to generate 64,152 unigenes. Analysis of this dataset showed that 5,166 unigenes were differentially expressed, in which 1,073 unigenes were identified as genes involved in flower senescence. Results revealed that as the flowers progress to senescence, more genes related to flower senescence were significantly over-represented compared to those related to plant growth and development. Senescence of the R. cantleyi flower activates senescence-associated genes in the transcription activity (members of the transcription factor families MYB, bHLH, NAC, and WRKY), nutrient remobilization (autophagy-related protein and transporter genes), and redox regulation (CATALASE). Most of the senescence-related genes were found to be differentially regulated, perhaps for the fine-tuning of various responses in the senescing R. cantleyi flower. Additionally, pathway analysis showed the activation of genes such as ETHYLENE RECEPTOR, ETHYLENE-INSENSITIVE 2, ETHYLENE-INSENSITIVE 3, and ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR, indicating the possible involvement of the ethylene hormone response pathway in the regulation of R. cantleyi senescence. Our results provide a model of the molecular mechanism underlying R. cantleyi flower senescence, and contribute essential information towards further understanding the biology of the Rafflesiaceae family.


Assuntos
Flores/genética , Genes de Plantas , Malpighiales/fisiologia , Senescência Vegetal/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Malpighiales/genética
2.
Sci Rep ; 11(1): 20712, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671062

RESUMO

A complete chloroplast genome is not yet available for numerous species of plants. Among the groups that lack plastome information is the clusioid clade (Malpighiales), which includes five families: Bonnetiaceae, Calophyllaceae, Clusiaceae, Hypericaceae, and Podostemaceae. With around 2200 species, it has few published plastomes and most of them are from Podostemaceae. Here we assembled and compared six plastomes from members of the clusioids: five from Calophyllaceae (newly sequenced) and one from Clusiaceae. Putative regions for evolutionary studies were identified and the newly assembled chloroplasts were analyzed with other available chloroplasts for the group, focusing on Calophyllaceae. Our results mostly agree with recent studies which found a general conserved structure, except for the two Podostemaceae species that have a large inversion (trnK-UUU-rbcL) and lack one intron from ycf3. Within Calophyllaceae we observed a longer LSC and reduced IRs in Mahurea exstipulata, resulting in some genic rearrangement, and a short inversion (psbJ-psbE) in Kielmeyera coriacea. Phylogenetic analyses recovered the clusioids and the five families as monophyletic and revealed that conflicts in relationships reported in the literature for the group agree with nodes concentrating uninformative or conflicting gene trees. Our study brings new insights about clusioid plastome architecture and its evolution.


Assuntos
Clusiaceae/genética , Malpighiales/genética , Cloroplastos/genética , Evolução Molecular , Genoma de Cloroplastos/genética , Íntrons/genética , Magnoliopsida/genética , Filogenia , Análise de Sequência de DNA/métodos
3.
Gene ; 769: 145214, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039539

RESUMO

Mesua ferrea (Family: Calophyllaceae) is a tropical forest plant used for timber, biofuel, and traditional medicine. Colloquially, it is known as Nagkesar (Cobra saffron) and is the state flower of Tripura (India). In this study, we perform the whole-genome assembly of Mesua ferrea using ~180X coverage paired-end Illumina data. Our de novo assembly is 614 Mega-base pair (Mbp), has an N50 of 392 Kilo-base pairs (Kbp), and an assembly quality comparable to other published Malpighiales genomes. Further, we collate the genomic datasets of 14 additional forest tree species to compare the temporal dynamics of Effective Population Size (Ne) and find evidence of a substantial bottleneck in all tropical forest plants during Mid-Pleistocene glaciations. The availability of this high-quality draft genome assembly will prove to be a useful resource for functional and comparative genomic studies.


Assuntos
Genoma de Planta , Malpighiales/genética , Árvores/genética , Conjuntos de Dados como Assunto , Mutação
4.
Sci Rep ; 10(1): 9091, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499506

RESUMO

The clusioid clade of Malpighiales is comprised of five families: Bonnetiaceae, Calophyllaceae, Clusiaceae, Hypericaceae and Podostemaceae. Recent studies have found the plastome structure of Garcinia mangostana L. from Clusiaceae was conserved, while plastomes of five riverweed species from Podostemaceae showed significant structural variations. The diversification pattern of plastome structure of the clusioid clade worth a thorough investigation. Here we determined five complete plastomes representing four families of the clusioid clade. Our results found that the plastomes of the early diverged three families (Clusiaceae, Bonnetiaceae and Calophyllaceae) in the clusioid clade are relatively conserved, while the plastomes of the other two families show significant variations. The Inverted Repeat (IR) regions of Tristicha trifaria and Marathrum foeniculaceum (Podostemaceae) are greatly reduced following the loss of the ycf1 and ycf2 genes. An inversion over 50 kb spanning from trnK-UUU to rbcL in the LSC region is shared by Cratoxylum cochinchinense (Hypericaceae), T. trifaria and Ma. foeniculaceum (Podostemaceae). The large inversed colinear block in Hypericaceae and Podostemaceae contains all the genes in the 50-kb inversed colinear block in a clade of Papilionoideae, with two extra genes (trnK-UUU and matK) at one end. Another endpoint of both inversions in the two clusioids families and Papilionoideae is located between rbcL and accD. This study greatly helped to clarify the plastome evolution in the clusioid clade.


Assuntos
Clusiaceae/genética , Evolução Molecular , Genomas de Plastídeos , Malpighiales/genética , Plastídeos/genética , DNA de Plantas/genética , Filogenia , Análise de Sequência de DNA
5.
PLoS One ; 14(12): e0226338, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851702

RESUMO

Rafflesia possesses unique biological features and known primarily for producing the world's largest and existing as a single flower. However, to date, little is known about key regulators participating in Rafflesia flower development. In order to further understand the molecular mechanism that regulates Rafflesia cantleyi flower development, RNA-seq data from three developmental stages of floral bud, representing the floral organ primordia initiation, floral organ differentiation, and floral bud outgrowth, were analysed. A total of 89,890 transcripts were assembled of which up to 35% could be annotated based on homology search. Advanced transcriptome analysis using K-mean clustering on the differentially expressed genes (DEGs) was able to identify 12 expression clusters that reflect major trends and key transitional states, which correlate to specific developmental stages. Through this, comparative gene expression analysis of different floral bud stages identified various transcription factors related to flower development. The members of WRKY, NAC, bHLH, and MYB families are the most represented among the DEGs, suggesting their important function in flower development. Furthermore, pathway enrichment analysis also revealed DEGs that are involved in various phytohormone signal transduction events such as auxin and auxin transport, cytokinin and gibberellin biosynthesis. Results of this study imply that transcription factors and phytohormone signalling pathways play major role in Rafflesia floral bud development. This study provides an invaluable resource for molecular studies of the flower development process in Rafflesia and other plant species.


Assuntos
Flores/crescimento & desenvolvimento , Malpighiales/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Flores/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Malpighiales/genética , Malpighiales/metabolismo , Anotação de Sequência Molecular
6.
Sci Rep ; 9(1): 9161, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235792

RESUMO

Sapria himalayana Griffith., is a root parasitic plant that is exceptionally beautiful and odd-looking and found in Southeast Asia. Now these plants are at risk of extinction as they face a large number of different threats. Appropriate measures and conservation plans are needed and one crucial key for successful conservation is species monitoring. The flower is the only part of S. himalayana that is visible during a short period of time of the year. Thus, conducting a visual survey in the field at the other times of the year would be difficult. DNA from living organisms could be found accumulating in environment and so-called environmental DNA (eDNA). Here, an eDNA-based method was developed to specifically monitor S. himalayana in nature. Detecting the specifically generated amplicons allowed us to monitor the presence of S. himalayana at any time of the year. This developed method would increase the conservation success of the S. himalayana.


Assuntos
DNA Ambiental/análise , Monitoramento Ambiental/métodos , Malpighiales/genética
7.
New Phytol ; 221(1): 565-576, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030969

RESUMO

Whole-genome duplications (WGDs) are widespread and prevalent in vascular plants and frequently coincide with major episodes of global and climatic upheaval, including the mass extinction at the Cretaceous-Tertiary boundary (c. 65 Ma) and during more recent periods of global aridification in the Miocene (c. 10-5 Ma). Here, we explore WGDs in the diverse flowering plant clade Malpighiales. Using transcriptomes and complete genomes from 42 species, we applied a multipronged phylogenomic pipeline to identify, locate, and determine the age of WGDs in Malpighiales using three means of inference: distributions of synonymous substitutions per synonymous site (Ks ) among paralogs, phylogenomic (gene tree) reconciliation, and a likelihood-based gene-count method. We conservatively identify 22 ancient WGDs, widely distributed across Malpighiales subclades. Importantly, these events are clustered around the Eocene-Paleocene transition (c. 54 Ma), during which time the planet was warmer and wetter than any period in the Cenozoic. These results establish that the Eocene Climatic Optimum likely represents a previously unrecognized period of prolific WGDs in plants, and lends further support to the hypothesis that polyploidization promotes adaptation and enhances plant survival during episodes of global change, especially for tropical organisms like Malpighiales, which have tight thermal tolerances.


Assuntos
Genoma de Planta , Malpighiales/genética , Filogenia , Adaptação Fisiológica , Clima , Funções Verossimilhança , Malpighiales/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA