Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Ann Bot ; 96(1): 149-58, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15897206

RESUMO

BACKGROUND AND AIMS: The objective of this research was to characterize the physiology and cell ultrastructure of two soybean genotypes subjected to nutrient solutions with increasing concentrations of manganese (Mn) at two contrasting iron (Fe) concentrations. Genotypes 'PI227557' and 'Biloxi' were selected based on their distinctly different capacities to accumulate Mn and Fe. * METHODS: Bradyrhizobium-inoculated plants were grown in hydroponic cultures in a greenhouse. Nutrient solutions were supplied with Mn concentrations ranging from 0.3 to 90 microm, at either 5 or 150 microm Fe as FeEDTA. * KEY RESULTS: For both genotypes and at both Fe concentrations, Mn concentrations from 6.6 to 50 microm did not affect shoot, root and nodule mass, or leaf and nodule ureide concentration. Mn concentrations of 70 and 90 microm did not result in visible toxicity symptoms, but hindered growth and nodulation of 'Biloxi'. An Mn concentration of 0.3 microm was, however, deleterious to growth and nodulation for both genotypes, and caused an accumulation of ureides in leaves and major alterations in the ultrastructure of chloroplasts, nuclei and mitochondria, regardless of the Fe concentration. In 'PI227557', there was also a proliferation of Golgi apparatus and endoplasmic reticulum in the cytoplasm of leaf cells, and nodules showed disrupted symbiosomes lacking poly-beta-hydroxybutirate grains concomitantly with a proliferation of endoplasmic reticulum as well as arrested bacterial division. At 15 microm Fe, ferritin-like crystals were formed in the lumen of chloroplasts of 'PI227557' plants. For both genotypes, there was an antagonism between the Fe and Mn concentrations in leaves, the higher values of both microelements being detected in 'PI227557'. The absence of any detectable relationship between Fe or Mn and zinc, phosphorus and copper concentrations in leaves ruled out those micronutrients as relevant for Mn and Fe nutrition in soybeans. * CONCLUSIONS: The results confirmed the greater capacity of 'PI227557' for Mn and Fe accumulation than 'Biloxi' for most nutrient treatments. Hence, 'PI227557' may be a very useful genetic resource both in developing soybean cultivars for growth on low nutrient soils and in physiological studies to understand differing approaches to nutrient accumulation in plants.


Assuntos
Glycine max/genética , Glycine max/fisiologia , Ferro/fisiologia , Manganês/fisiologia , Bradyrhizobium , Clorofila/metabolismo , Genótipo , Hidroponia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Glycine max/ultraestrutura
2.
Mundo saúde (Impr.) ; 27(4): 589-595, out.-dez. 2003. ilus, tab
Artigo em Português | LILACS | ID: lil-366508

RESUMO

A Revisão Sistemática de Literatura (RS) constitui em importante instrumento metodológico de pesquisas na área de medicina, enfermagem e saúde pública baseadas na evidência. O presente estudo apresenta o percurso metodológico e os resultados obtidos na realização de uma RS, tendo como tema o efeito neurotóxico da exposição ocupacioanl ao mércurio, chumbo e manganês.


Assuntos
Chumbo , Manganês/fisiologia , Mercúrio , Toxicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA