Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2014: 457092, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25136669

RESUMO

A successful protocol was established for micropropagation in two selected varieties of exotic ornamental plants, Calathea crotalifera. The effects of different sterilization techniques, explant type, and the combination and concentration of plant growth regulators on shoots induction were studied. The axillary shoot buds explants sprouted from rhizomes in soil free conditions showed high induction rate of shoots with lowest contamination percentage when treated with combination of 30% (v/v) NaOCl, 70% (v/v) ethanol, and 0.3% (w/v) HgCl2. In the present study, the highest number of multiple shoots was obtained in MS basal medium supplemented with 3.5 mg/L 6-Benzylaminopurine (BAP), 1.0 mg/L 1-Naphthaleneacetic acid (NAA), 3% sucrose, and 6 g/L plant agar for both varieties and was used as multiplication medium. Microshoots were highly induced when the young shoot bud explants were incised longitudinally prior subculture. Chlorophyll analysis was studied to test the effects of activated charcoal and L-glutamine on reduction of necrosis problem. The maximum roots induction was recorded on MS medium supplemented with 1.0 mg/L 1-Naphthaleneacetic acid (NAA) compared to indolebutyric acid (IBA). The complete regenerated plantlets were successfully acclimatized in the soilless medium under greenhouse condition. This is the first report of rapid mass propagation for C. crotalifera.


Assuntos
Meios de Cultura/farmacologia , Marantaceae/efeitos dos fármacos , Marantaceae/fisiologia , Regeneração/efeitos dos fármacos , Compostos de Benzil/farmacologia , Indóis/farmacologia , Ácidos Naftalenoacéticos/farmacologia , Brotos de Planta/efeitos dos fármacos , Purinas/farmacologia
2.
Environ Sci Pollut Res Int ; 20(10): 7301-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23673920

RESUMO

Perchlorate contamination in water is of concern because of uncertainties about toxicity and health effects, impact on ecosystems, and possible indirect exposure pathways to humans. Therefore, it is very important to investigate the ecotoxicology of perchlorate and to screen plant species for phytoremediation. Effects of perchlorate (20, 200, and 500 mg/L) on the growth of four wetland plants (Eichhornia crassipes, Acorus calamus L., Thalia dealbata, and Canna indica) as well as its accumulation in different plant tissues were investigated through water culture experiments. Twenty milligrams per liter of perchlorate had no significant effects on height, root length, aboveground part weight, root weight, and oxidizing power of roots of four plants, except A. calamus, and increasing concentrations of perchlorate showed that out of the four wetland plants, only A. calamus had a significant (p<0.05) dose-dependent decrease in these parameters. When treated with 500 mg/L perchlorate, these parameters and chlorophyll content in the leaf of plants showed significant decline contrasted to control groups, except the root length of E. crassipes and C. indica. The order of inhibition rates of perchlorate on root length, aboveground part weight and root weight, and oxidizing power of roots was: A. calamus > C. indica > T. dealbata > E. crassipes and on chlorophyll content in the leaf it was: A. calamus > T. dealbata > C. indica > E. crassipes. The higher the concentration of perchlorate used, the higher the amount of perchlorate accumulation in plants. Perchlorate accumulation in aboveground tissues was much higher than that in underground tissues and leaf was the main tissue for perchlorate accumulation. The order of perchlorate accumulation content and the bioconcentration factor in leaf of four plants was: E. crassipes > C. indica > T. dealbata > A. calamus. Therefore, E. crassipes might be an ideal plant with high tolerance ability and accumulation ability for constructing wetland to remediate high levels of perchlorate polluted water.


Assuntos
Percloratos/toxicidade , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Acorus/efeitos dos fármacos , Acorus/crescimento & desenvolvimento , Acorus/metabolismo , Biodegradação Ambiental , Clorofila/metabolismo , Clorofila/farmacologia , Eichhornia/efeitos dos fármacos , Eichhornia/crescimento & desenvolvimento , Eichhornia/metabolismo , Lilium/efeitos dos fármacos , Lilium/crescimento & desenvolvimento , Lilium/metabolismo , Marantaceae/efeitos dos fármacos , Marantaceae/crescimento & desenvolvimento , Marantaceae/metabolismo , Percloratos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas/metabolismo , Medição de Risco , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA