Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Viruses ; 14(10)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36298846

RESUMO

The Biomedical Advanced Research and Development Authority, part of the Administration for Strategic Preparedness and Response within the U.S. Department of Health and Human Services, recognizes that the evaluation of medical countermeasures under the Animal Rule requires well-characterized and reproducible animal models that are likely to be predictive of clinical benefit. Marburg virus (MARV), one of two members of the genus Marburgvirus, is characterized by a hemorrhagic fever and a high case fatality rate for which there are no licensed vaccines or therapeutics available. This natural history study consisted of twelve cynomolgus macaques challenged with 1000 PFU of MARV Angola and observed for body weight, temperature, viremia, hematology, clinical chemistry, and coagulation at multiple time points. All animals succumbed to disease within 8 days and exhibited signs consistent with those observed in human cases, including viremia, fever, systemic inflammation, coagulopathy, and lymphocytolysis, among others. Additionally, this study determined the time from exposure to onset of disease manifestations and the time course, frequency, and magnitude of the manifestations. This study will be instrumental in the design and development of medical countermeasures to Marburg virus disease.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Contramedidas Médicas , Humanos , Animais , Marburgvirus/fisiologia , Viremia , Macaca fascicularis
2.
Antiviral Res ; 207: 105426, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183903

RESUMO

Comparable to the related Ebola virus, Marburg virus is an emerging zoonotic pathogen that causes hemorrhagic fever with a high mortality rate. Therefore, handling of Ebola virus and Marburg virus is limited to biosafety level 4 facilities, of which only a limited number exists worldwide. However, researchers have developed several virus alternatives that are safe to handle in lower biosafety settings. One particularly interesting approach is the engineering of biologically contained Ebola virus by removing an essential gene from the virus genome and providing this missing gene in trans in a specific cell line. Because the virus is confined to this specific cell line, this results in a system that is safe to handle. So far, Ebola virus is the only virus for which biological containment has been reported. Here, we describe the first successful rescue of biologically contained Marburg virus and demonstrate that biological containment is also feasible for other filoviruses. Specifically, we describe the development of containment cell lines for Marburg virus through lentiviral transduction and show the growth and safety characteristics of eGFP-expressing, biologically contained Marburg virus in these cell lines. Additionally, we exploited this newly established Marburg virus system to screen over 500 compounds from available libraries. Lastly, we also validated the applicability of our biologically contained Marburg virus system in a 384-well format, to further illustrate the usefulness of this novel system as an alternative for high-throughput MARV screening of compound libraries.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Febres Hemorrágicas Virais , Doença do Vírus de Marburg , Marburgvirus , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Ebolavirus/genética , Doença pelo Vírus Ebola/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/fisiologia
3.
Viruses ; 14(6)2022 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-35746749

RESUMO

Ecological and experimental infection studies have identified Egyptian rousette bats (ERBs; Rousettus aegyptiacus: family Pteropodidae) as a reservoir host for the zoonotic rubula-like paramyxovirus Sosuga virus (SOSV). A serial sacrifice study of colony-bred ERBs inoculated with wild-type, recombinant SOSV identified small intestines and salivary gland as major sites of viral replication. In the current study, archived formalin-fixed paraffin-embedded (FFPE) tissues from the serial sacrifice study were analyzed in depth-histologically and immunohistochemically, for SOSV, mononuclear phagocytes and T cells. Histopathologic lesion scores increased over time and viral antigen persisted in a subset of tissues, indicating ongoing host responses and underscoring the possibility of chronic infection. Despite the presence of SOSV NP antigen and villus ulcerations in the small intestines, there were only mild increases in mononuclear phagocytes and T cells, a host response aligned with disease tolerance. In contrast, there was a statistically significant, robust and targeted mononuclear phagocyte cell responses in the salivary glands at 21 DPI, where viral antigen was sparse. These findings may have broader implications for chiropteran-paramyxovirus interactions, as bats are hypothesized to be the ancestral hosts of this diverse virus family and for ERB immunology in general, as this species is also the reservoir host for the marburgviruses Marburg virus (MARV) and Ravn virus (RAVV) (family Filoviridae).


Assuntos
Quirópteros , Marburgvirus , Paramyxovirinae , Vírus não Classificados , Animais , Antígenos Virais , Vírus de DNA , Marburgvirus/fisiologia , Tropismo
4.
Virulence ; 13(1): 609-633, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35363588

RESUMO

Marburg virus (MARV) has been a major concern since 1967, with two major outbreaks occurring in 1998 and 2004. Infection from MARV results in severe hemorrhagic fever, causing organ dysfunction and death. Exposure to fruit bats in caves and mines, and human-to-human transmission had major roles in the amplification of MARV outbreaks in African countries. The high fatality rate of up to 90% demands the broad study of MARV diseases (MVD) that correspond with MARV infection. Since large outbreaks are rare for MARV, clinical investigations are often inadequate for providing the substantial data necessary to determine the treatment of MARV disease. Therefore, an overall review may contribute to minimizing the limitations associated with future medical research and improve the clinical management of MVD. In this review, we sought to analyze and amalgamate significant information regarding MARV disease epidemics, pathophysiology, and management approaches to provide a better understanding of this deadly virus and the associated infection.


Assuntos
Quirópteros , Doença do Vírus de Marburg , Marburgvirus , Animais , Modelos Animais de Doenças , Humanos , Doença do Vírus de Marburg/epidemiologia , Marburgvirus/fisiologia , Virulência
5.
J Biol Chem ; 296: 100796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019871

RESUMO

Marburg virus (MARV) is a lipid-enveloped virus harboring a negative-sense RNA genome, which has caused sporadic outbreaks of viral hemorrhagic fever in sub-Saharan Africa. MARV assembles and buds from the host cell plasma membrane where MARV matrix protein (mVP40) dimers associate with anionic lipids at the plasma membrane inner leaflet and undergo a dynamic and extensive self-oligomerization into the structural matrix layer. The MARV matrix layer confers the virion filamentous shape and stability but how host lipids modulate mVP40 oligomerization is mostly unknown. Using in vitro and cellular techniques, we present a mVP40 assembly model highlighting two distinct oligomerization interfaces: the (N-terminal domain [NTD] and C-terminal domain [CTD]) in mVP40. Cellular studies of NTD and CTD oligomerization interface mutants demonstrate the importance of each interface in matrix assembly. The assembly steps include protein trafficking to the plasma membrane, homo-multimerization that induced protein enrichment, plasma membrane fluidity changes, and elongations at the plasma membrane. An ascorbate peroxidase derivative (APEX)-transmission electron microscopy method was employed to closely assess the ultrastructural localization and formation of viral particles for wildtype mVP40 and NTD and CTD oligomerization interface mutants. Taken together, these studies present a mechanistic model of mVP40 oligomerization and assembly at the plasma membrane during virion assembly that requires interactions with phosphatidylserine for NTD-NTD interactions and phosphatidylinositol-4,5-bisphosphate for proper CTD-CTD interactions. These findings have broader implications in understanding budding of lipid-enveloped viruses from the host cell plasma membrane and potential strategies to target protein-protein or lipid-protein interactions to inhibit virus budding.


Assuntos
Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Animais , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Doença do Vírus de Marburg/metabolismo , Marburgvirus/química , Lipídeos de Membrana/química , Modelos Moleculares , Multimerização Proteica , Proteínas da Matriz Viral/química , Vírion/química , Montagem de Vírus
6.
Viruses ; 13(2)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673144

RESUMO

Filoviruses Ebola (EBOV) and Marburg (MARV) are devastating high-priority pathogens capable of causing explosive outbreaks with high human mortality rates. The matrix proteins of EBOV and MARV, as well as eVP40 and mVP40, respectively, are the key viral proteins that drive virus assembly and egress and can bud independently from cells in the form of virus-like particles (VLPs). The matrix proteins utilize proline-rich Late (L) domain motifs (e.g., PPxY) to hijack specific host proteins that contain WW domains, such as the HECT family E3 ligases, to facilitate the last step of virus-cell separation. We identified E3 ubiquitin ligase Smad Ubiquitin Regulatory Factor 2 (SMURF2) as a novel interactor with VP40 that positively regulates VP40 VLP release. Our results show that eVP40 and mVP40 interact with the three WW domains of SMURF2 via their PPxY motifs. We provide evidence that the eVP40-SMURF2 interaction is functional as the expression of SMURF2 positively regulates VLP egress, while siRNA knockdown of endogenous SMURF2 decreases VLP budding compared to controls. In sum, our identification of novel interactor SMURF2 adds to the growing list of identified host proteins that can regulate PPxY-mediated egress of VP40 VLPs. A more comprehensive understanding of the modular interplay between filovirus VP40 and host proteins may lead to the development of new therapies to combat these deadly infections.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/enzimologia , Doença do Vírus de Marburg/enzimologia , Marburgvirus/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus , Motivos de Aminoácidos , Animais , Ebolavirus/química , Ebolavirus/genética , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Humanos , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/virologia , Marburgvirus/química , Marburgvirus/genética , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Vírion/genética , Vírion/fisiologia , Montagem de Vírus
7.
Antiviral Res ; 189: 105059, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705865

RESUMO

Filoviruses, mainly consisting of Ebola viruses (EBOV) and Marburg viruses (MARV), are enveloped negative-strand RNA viruses which can infect humans to cause severe hemorrhagic fevers and outbreaks with high mortality rates. The filovirus infection is mediated by the interaction of viral envelope glycoprotein (GP) and the human endosomal receptor Niemann-Pick C1 (NPC1). Blocking this interaction will prevent the infection. Therefore, we utilized an In silico screening approach to conduct virtual compound screening against the NPC1 receptor-binding site (RBS). Twenty-six top-hit compounds were purchased and evaluated by in vitro cell based inhibition assays against pseudotyped or replication-competent filoviruses. Two classes (A and U) of compounds were identified to have potent inhibitory activity against both Ebola and Marburg viruses. The IC50 values are in the lower level of micromolar concentrations. One compound (compd-A) was found to have a sub-micromolar IC50 value (0.86 µM) against pseudotyped Marburg virus. The cytotoxicity assay (MTT) indicates that compd-A has a moderate cytotoxicity level but the compd-U has much less toxicity and the CC50 value was about 100 µM. Structure-activity relationship (SAR) study has found some analogs of compd-A and -U have reduced the toxicity and enhanced the inhibitory activity. In conclusion, this work has identified several qualified lead-compounds for further drug development against filovirus infection.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Infecções por Filoviridae/virologia , Marburgvirus/efeitos dos fármacos , Proteína C1 de Niemann-Pick/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos , Antivirais/química , Sítios de Ligação , Sobrevivência Celular , Descoberta de Drogas , Ebolavirus/fisiologia , Infecções por Filoviridae/tratamento farmacológico , Células HeLa , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Marburgvirus/fisiologia , Simulação de Acoplamento Molecular , Proteína C1 de Niemann-Pick/química , Ligação Proteica , Receptores Virais/química , Receptores Virais/metabolismo
8.
Elife ; 92020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33016878

RESUMO

Filoviruses such as Ebola and Marburg virus bud from the host membrane as enveloped virions. This process is achieved by the matrix protein VP40. When expressed alone, VP40 induces budding of filamentous virus-like particles, suggesting that localization to the plasma membrane, oligomerization into a matrix layer, and generation of membrane curvature are intrinsic properties of VP40. There has been no direct information on the structure of VP40 matrix layers within viruses or virus-like particles. We present structures of Ebola and Marburg VP40 matrix layers in intact virus-like particles, and within intact Marburg viruses. VP40 dimers assemble extended chains via C-terminal domain interactions. These chains stack to form 2D matrix lattices below the membrane surface. These lattices form a patchwork assembly across the membrane and suggesting that assembly may begin at multiple points. Our observations define the structure and arrangement of the matrix protein layer that mediates formation of filovirus particles.


Assuntos
Ebolavirus/fisiologia , Marburgvirus/fisiologia , Multimerização Proteica , Proteínas da Matriz Viral/química , Membrana Celular/fisiologia , Ebolavirus/química , Marburgvirus/química
9.
PLoS Comput Biol ; 16(9): e1007612, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32986692

RESUMO

Interaction between filovirus glycoprotein (GP) and the Niemann-Pick C1 (NPC1) protein is essential for membrane fusion during virus entry. Some single-nucleotide polymorphism (SNPs) in two surface-exposed loops of NPC1 are known to reduce viral infectivity. However, the dependence of differences in entry efficiency on SNPs remains unclear. Using vesicular stomatitis virus pseudotyped with Ebola and Marburg virus GPs, we investigated the cell-to-cell spread of viruses in cultured cells expressing NPC1 or SNP derivatives. Eclipse and virus-producing phases were assessed by in vitro infection experiments, and we developed a mathematical model describing spatial-temporal virus spread. This mathematical model fit the plaque radius data well from day 2 to day 6. Based on the estimated parameters, we found that SNPs causing the P424A and D508N substitutions in NPC1 most effectively reduced the entry efficiency of Ebola and Marburg viruses, respectively. Our novel approach could be broadly applied to other virus plaque assays.


Assuntos
Ebolavirus/fisiologia , Marburgvirus/fisiologia , Modelos Biológicos , Internalização do Vírus , Linhagem Celular , Ebolavirus/genética , Ebolavirus/patogenicidade , Humanos , Marburgvirus/genética , Marburgvirus/patogenicidade , Mutação , Polimorfismo de Nucleotídeo Único , Ensaio de Placa Viral
10.
Eur J Med Chem ; 207: 112726, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905862

RESUMO

In this study, we screened a large library of (+)-camphor and (-)-borneol derivatives to assess their filovirus entry inhibition activities using pseudotype systems. Structure-activity relationship studies revealed several compounds exhibiting submicromolar IC50 values. These compounds were evaluated for their effect against natural Ebola virus (EBOV) and Marburg virus. Compound 3b (As-358) exhibited the good antiviral potency (IC50 = 3.7 µM, SI = 118) against Marburg virus, while the hydrochloride salt of this compound 3b·HCl had a strong inhibitory effect against Ebola virus (IC50 = 9.1 µM, SI = 31) and good in vivo safety (LD50 > 1000 mg/kg). The results of molecular docking and in vitro mutagenesis analyses suggest that the synthesized compounds bind to the active binding site of EBOV glycoprotein similar to the known inhibitor toremifene.


Assuntos
Antivirais/química , Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Marburgvirus/efeitos dos fármacos , Monoterpenos/química , Monoterpenos/farmacologia , Animais , Antivirais/toxicidade , Ebolavirus/fisiologia , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/fisiologia , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Monoterpenos/toxicidade , Internalização do Vírus
11.
Viruses ; 12(4)2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344654

RESUMO

Marburg virus (MARV) is a lipid-enveloped negative sense single stranded RNA virus, which can cause a deadly hemorrhagic fever. MARV encodes seven proteins, including VP40 (mVP40), a matrix protein that interacts with the cytoplasmic leaflet of the host cell plasma membrane. VP40 traffics to the plasma membrane inner leaflet, where it assembles to facilitate the budding of viral particles. VP40 is a multifunctional protein that interacts with several host proteins and lipids to complete the viral replication cycle, but many of these host interactions remain unknown or are poorly characterized. In this study, we investigated the role of a hydrophobic loop region in the carboxy-terminal domain (CTD) of mVP40 that shares sequence similarity with the CTD of Ebola virus VP40 (eVP40). These conserved hydrophobic residues in eVP40 have been previously shown to be critical to plasma membrane localization and membrane insertion. An array of cellular experiments and confirmatory in vitro work strongly suggests proper orientation and hydrophobic residues (Phe281, Leu283, and Phe286) in the mVP40 CTD are critical to plasma membrane localization. In line with the different functions proposed for eVP40 and mVP40 CTD hydrophobic residues, molecular dynamics simulations demonstrate large flexibility of residues in the EBOV CTD whereas conserved mVP40 hydrophobic residues are more restricted in their flexibility. This study sheds further light on important amino acids and structural features in mVP40 required for its plasma membrane localization as well as differences in the functional role of CTD amino acids in eVP40 and mVP40.


Assuntos
Membrana Celular/metabolismo , Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Mutação , Domínios e Motivos de Interação entre Proteínas , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Aminoácidos/química , Animais , Células COS , Membrana Celular/química , Chlorocebus aethiops , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos , Modelos Moleculares , Imagem Molecular , Conformação Proteica , Transporte Proteico
12.
PLoS Pathog ; 16(1): e1008231, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905227

RESUMO

Ebola (EBOV) and Marburg (MARV) are members of the Filoviridae family, which continue to emerge and cause sporadic outbreaks of hemorrhagic fever with high mortality rates. Filoviruses utilize their VP40 matrix protein to drive virion assembly and budding, in part, by recruitment of specific WW-domain-bearing host proteins via its conserved PPxY Late (L) domain motif. Here, we screened an array of 115 mammalian, bacterially expressed and purified WW-domains using a PPxY-containing peptide from MARV VP40 (mVP40) to identify novel host interactors. Using this unbiased approach, we identified Yes Associated Protein (YAP) and Transcriptional co-Activator with PDZ-binding motif (TAZ) as novel mVP40 PPxY interactors. YAP and TAZ function as downstream transcriptional effectors of the Hippo signaling pathway that regulates cell proliferation, migration and apoptosis. We demonstrate that ectopic expression of YAP or TAZ along with mVP40 leads to significant inhibition of budding of mVP40 VLPs in a WW-domain/PPxY dependent manner. Moreover, YAP colocalized with mVP40 in the cytoplasm, and inhibition of mVP40 VLP budding was more pronounced when YAP was localized predominantly in the cytoplasm rather than in the nucleus. A key regulator of YAP nuclear/cytoplasmic localization and function is angiomotin (Amot); a multi-PPxY containing protein that strongly interacts with YAP WW-domains. Interestingly, we found that expression of PPxY-containing Amot rescued mVP40 VLP egress from either YAP- or TAZ-mediated inhibition in a PPxY-dependent manner. Importantly, using a stable Amot-knockdown cell line, we found that expression of Amot was critical for efficient egress of mVP40 VLPs as well as egress and spread of authentic MARV in infected cell cultures. In sum, we identified novel negative (YAP/TAZ) and positive (Amot) regulators of MARV VP40-mediated egress, that likely function in part, via competition between host and viral PPxY motifs binding to modular host WW-domains. These findings not only impact our mechanistic understanding of virus budding and spread, but also may impact the development of new antiviral strategies.


Assuntos
Filoviridae/fisiologia , Marburgvirus/fisiologia , Mimetismo Molecular , Proteínas Proto-Oncogênicas c-yes/metabolismo , Proteínas da Matriz Viral/fisiologia , Liberação de Vírus , Angiomotinas , Sítios de Ligação , Membrana Celular/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Domínios PDZ , Domínios Proteicos , Proteínas Recombinantes de Fusão/metabolismo
13.
ACS Infect Dis ; 5(8): 1385-1396, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31120240

RESUMO

Marburg virus causes sporadic outbreaks of severe hemorrhagic fever with high case fatality rates. Approved, effective, and safe therapeutic or prophylactic countermeasures are lacking. To address this, we used phage display to engineer a synthetic antibody, sFab H3, which binds the Marburg virus VP35 protein (mVP35). mVP35 is a critical cofactor of the viral replication complex and a viral immune antagonist. sFab H3 displayed high specificity for mVP35 and not for the closely related Ebola virus VP35. sFab H3 inhibited viral-RNA synthesis in a minigenome assay, suggesting its potential use as an antiviral. We characterized sFab H3 by a combination of biophysical and biochemical methods, and a crystal structure of the complex solved to 1.7 Å resolution defined the molecular interface between the sFab H3 and mVP35 interferon inhibitory domain. Our study identifies mVP35 as a therapeutic target using an approach that provides a framework for generating engineered Fabs targeting other viral proteins.


Assuntos
Anticorpos Antivirais/farmacologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Marburgvirus/efeitos dos fármacos , RNA Viral/biossíntese , Proteínas Virais Reguladoras e Acessórias/imunologia , Sítios de Ligação de Anticorpos , Técnicas de Visualização da Superfície Celular , Cristalização , Cristalografia por Raios X , Humanos , Marburgvirus/genética , Marburgvirus/fisiologia , Modelos Moleculares , Replicação Viral/efeitos dos fármacos
14.
Viruses ; 11(3)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30832223

RESUMO

Filoviruses, such as Ebola virus (EBOV) and Marburg virus, are causative agents of unpredictable outbreaks of severe hemorrhagic fevers in humans and non-human primates. For infection, filoviral particles need to be internalized and delivered to intracellular vesicles containing cathepsin proteases and the viral receptor Niemann-Pick C1. Previous studies have shown that EBOV triggers macropinocytosis of the viral particles in a glycoprotein (GP)-dependent manner, but the molecular events required for filovirus internalization remain mostly unknown. Here we report that the diacylglycerol kinase inhibitor, R-59-022, blocks EBOV GP-mediated entry into Vero cells and bone marrow-derived macrophages. Investigation of the mode of action of the inhibitor revealed that it blocked an early step in entry, more specifically, the internalization of the viral particles via macropinocytosis. Finally, R-59-022 blocked viral entry mediated by a panel of pathogenic filovirus GPs and inhibited growth of replicative Ebola virus. Taken together, our studies suggest that R-59-022 could be used as a tool to investigate macropinocytic uptake of filoviruses and could be a starting point for the development of pan-filoviral therapeutics.


Assuntos
Diacilglicerol Quinase/antagonistas & inibidores , Filoviridae/efeitos dos fármacos , Filoviridae/fisiologia , Pirimidinonas/farmacologia , Tiazóis/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Ebolavirus/fisiologia , Células HEK293 , Humanos , Macrófagos/virologia , Marburgvirus/fisiologia , Pinocitose/efeitos dos fármacos , Receptores Virais , Células Vero , Replicação Viral/efeitos dos fármacos
15.
Nat Commun ; 10(1): 105, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631063

RESUMO

The 2013-2016 Ebola virus (EBOV) disease epidemic demonstrated the grave consequences of filovirus epidemics in the absence of effective therapeutics. Besides EBOV, two additional ebolaviruses, Sudan (SUDV) and Bundibugyo (BDBV) viruses, as well as multiple variants of Marburg virus (MARV), have also caused high fatality epidemics. Current experimental EBOV monoclonal antibodies (mAbs) are ineffective against SUDV, BDBV, or MARV. Here, we report that a cocktail of two broadly neutralizing ebolavirus mAbs, FVM04 and CA45, protects nonhuman primates (NHPs) against EBOV and SUDV infection when delivered four days post infection. This cocktail when supplemented by the anti-MARV mAb MR191 exhibited 100% efficacy in MARV-infected NHPs. These findings provide a solid foundation for clinical development of broadly protective immunotherapeutics for use in future filovirus epidemics.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Ebolavirus/imunologia , Infecções por Filoviridae/imunologia , Marburgvirus/imunologia , Doenças dos Primatas/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Ebolavirus/classificação , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Infecções por Filoviridae/terapia , Infecções por Filoviridae/virologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Imunoterapia/métodos , Marburgvirus/efeitos dos fármacos , Marburgvirus/fisiologia , Doenças dos Primatas/terapia , Doenças dos Primatas/virologia , Primatas , Resultado do Tratamento
16.
Viruses ; 11(1)2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609802

RESUMO

The filoviruses Ebolavirus and Marburgvirus are among the deadliest viral pathogens known to infect humans, causing emerging diseases with fatality rates of up to 90% during some outbreaks. The replication cycles of these viruses are comprised of numerous complex molecular processes and interactions with their human host, with one key feature being the means by which nascent virions exit host cells to spread to new cells and ultimately to a new host. This review focuses on our current knowledge of filovirus egress and the viral and host factors and processes that are involved. Within the virus, these factors consist of the major matrix protein, viral protein 40 (VP40), which is necessary and sufficient for viral particle release, and nucleocapsid and glycoprotein that interact with VP40 to promote egress. In the host cell, some proteins are hijacked by filoviruses in order to enhance virion budding capacity that include members of the family of E3 ubiquitin ligase and the endosomal sorting complexes required for transport (ESCRT) pathway, while others such as tetherin inhibit viral egress. An understanding of these molecular interactions that modulate viral particle egress provides an important opportunity to identify new targets for the development of antivirals to prevent and treat filovirus infections.


Assuntos
Ebolavirus/fisiologia , Interações entre Hospedeiro e Microrganismos , Marburgvirus/fisiologia , Liberação de Vírus , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Camundongos , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
17.
Antiviral Res ; 162: 90-100, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30550800

RESUMO

Filoviruses, which include Ebola virus (EBOV) and Marburg virus, are negative-sense RNA viruses associated with sporadic outbreaks of severe viral hemorrhagic fever characterized by uncontrolled virus replication. The extreme virulence and emerging nature of these zoonotic pathogens make them a significant threat to human health. Replication of the filovirus genome and production of viral RNAs require the function of a complex of four viral proteins, the nucleoprotein (NP), viral protein 35 (VP35), viral protein 30 (VP30) and large protein (L). The latter performs the enzymatic activities required for production of viral RNAs and capping of viral mRNAs. Although it has been recognized that interactions between the virus-encoded components of the EBOV RNA polymerase complex are required for viral RNA synthesis reactions, specific molecular details have, until recently, been lacking. New efforts have combined structural biology and molecular virology to reveal in great detail the molecular basis for critical protein-protein interactions (PPIs) necessary for viral RNA synthesis. These efforts include recent studies that have identified a range of interacting host factors and in some instances demonstrated unique mechanisms by which they act. For a select number of these interactions, combined use of mutagenesis, over-expressing of peptides corresponding to PPI interfaces and identification of small molecules that disrupt PPIs have demonstrated the functional significance of virus-virus and virus-host PPIs and suggest several as potential targets for therapeutic intervention.


Assuntos
Filoviridae/fisiologia , Interações entre Hospedeiro e Microrganismos , RNA Viral/biossíntese , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Filoviridae/efeitos dos fármacos , Humanos , Marburgvirus/efeitos dos fármacos , Marburgvirus/fisiologia , Ligação Proteica , Proteínas Virais/antagonistas & inibidores , Viroses/tratamento farmacológico
18.
Viruses ; 10(11)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400182

RESUMO

The Egyptian rousette bat (ERB) is the only known Marburg virus (MARV) reservoir host. ERBs develop a productive MARV infection with low viremia and shedding but no overt disease, suggesting this virus is efficiently controlled by ERB antiviral responses. This dynamic would contrast with humans, where MARV-mediated interferon (IFN) antagonism early in infection is thought to contribute to the severe, often fatal disease. The newly-annotated ERB genome and transcriptome have now enabled us to use a custom-designed NanoString nCounter ERB CodeSet in conjunction with RNA-seq to investigate responses in a MARV-infected ERB cell line. Both transcriptomic platforms correlated well and showed that MARV inhibited the antiviral program in ERB cells, while an IFN antagonism-impaired MARV was less efficient at suppressing the response gene induction, phenotypes previously reported for primate cells. Interestingly, and despite the expansion of IFN loci in the ERB genome, neither MARV showed specific induction of almost any IFN gene. However, we detected an upregulation of putative, unannotated ERB antiviral paralogs, as well as an elevated basal expression in uninfected ERB cells of key antiviral genes.


Assuntos
Quirópteros/genética , Quirópteros/virologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Transcriptoma , Animais , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Imunidade Inata/genética , Interferons/farmacologia
19.
J Gen Virol ; 99(12): 1614-1620, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30394868

RESUMO

The Marburg virus (MARV) matrix protein, VP40, is a multifunctional protein that is essential for the assembly and release of viral particles, inhibition of the interferon response and viral transcription/replication. VP40 is assumed to be present as soluble monomers and membrane-bound higher-order oligomers. To investigate the functional relevance of oligomerization and lipid binding of VP40 we constructed mutants with impaired VP40-VP40 or VP40-lipid interactions and tested their capacity to bind the plasma membrane, to form virus-like particles (VLPs) and to inhibit viral RNA synthesis. All of the analysed VP40 mutants formed perinuclear aggregates and were defective in their delivery to the plasma membrane and in VLP production. The VP40 mutants that were competent for oligomerization but lacked VP40-lipid interactions formed fibril-like structures, influenced MARV inclusion body formation and inhibited viral transcription/replication more strongly than the VP40 wild-type. Altogether, mutations that interfere with VP40's transition from monomer to higher-order oligomers and/or lipid interactions destroy the protein's multifunctionality.


Assuntos
Marburgvirus/fisiologia , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Liberação de Vírus , Análise Mutacional de DNA , Metabolismo dos Lipídeos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Multimerização Proteica , Proteínas da Matriz Viral/genética
20.
Cell Host Microbe ; 24(3): 405-416.e3, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30173956

RESUMO

Sexual transmission of filoviruses was first reported in 1968 after an outbreak of Marburg virus (MARV) disease and recently caused flare-ups of Ebola virus disease in the 2013-2016 outbreak. How filoviruses establish testicular persistence and are shed in semen remain unknown. We discovered that persistent MARV infection of seminiferous tubules, an immune-privileged site that harbors sperm production, is a relatively common event in crab-eating macaques that survived infection after antiviral treatment. Persistence triggers severe testicular damage, including spermatogenic cell depletion and inflammatory cell invasion. MARV mainly persists in Sertoli cells, leading to breakdown of the blood-testis barrier formed by inter-Sertoli cell tight junctions. This disruption is accompanied by local infiltration of immunosuppressive CD4+Foxp3+ regulatory T cells. Our study elucidates cellular events associated with testicular persistence that may promote sexual transmission of filoviruses and suggests that targeting immunosuppression may be warranted to clear filovirus persistence in damaged immune-privileged sites.


Assuntos
Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Doenças dos Primatas/virologia , Testículo/virologia , Animais , Macaca , Masculino , Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/metabolismo , Doenças dos Primatas/imunologia , Doenças dos Primatas/metabolismo , Células de Sertoli/metabolismo , Células de Sertoli/virologia , Sobreviventes , Linfócitos T Reguladores/imunologia , Junções Íntimas/metabolismo , Junções Íntimas/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...