Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
J R Soc Interface ; 21(214): 20240008, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715319

RESUMO

Multicellular organisms grow and acquire their shapes through the differential expansion and deformation of their cells. Recent research has addressed the role of cell and tissue mechanical properties in these processes. In plants, it is believed that growth rate is a function of the mechanical stress exerted on the cell wall, the thin polymeric layer surrounding cells, involving an effective viscosity. Nevertheless, recent studies have questioned this view, suggesting that cell wall elasticity sets the growth rate or that uptake of water is limiting for plant growth. To assess these issues, we developed a microfluidic device to quantify the growth rates, elastic properties and hydraulic conductivity of individual Marchantia polymorpha plants in a controlled environment with a high throughput. We characterized the effect of osmotic treatment and abscisic acid on growth and hydromechanical properties. Overall, the instantaneous growth rate of individuals is correlated with both bulk elastic modulus and hydraulic conductivity. Our results are consistent with a framework in which the growth rate is determined primarily by the elasticity of the wall and its remodelling, and secondarily by hydraulic conductivity. Accordingly, the coupling between the chemistry of the cell wall and the hydromechanics of the cell appears as key to set growth patterns during morphogenesis.


Assuntos
Parede Celular , Parede Celular/fisiologia , Marchantia/crescimento & desenvolvimento , Marchantia/fisiologia , Ácido Abscísico/metabolismo , Modelos Biológicos , Fenômenos Biomecânicos , Desenvolvimento Vegetal/fisiologia
2.
Proc Natl Acad Sci U S A ; 121(19): e2319163121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696472

RESUMO

DELLA proteins are negative regulators of the gibberellin response pathway in angiosperms, acting as central hubs that interact with hundreds of transcription factors (TFs) and regulators to modulate their activities. While the mechanism of TF sequestration by DELLAs to prevent DNA binding to downstream targets has been extensively documented, the mechanism that allows them to act as coactivators remains to be understood. Here, we demonstrate that DELLAs directly recruit the Mediator complex to specific loci in Arabidopsis, facilitating transcription. This recruitment involves DELLA amino-terminal domain and the conserved MED15 KIX domain. Accordingly, partial loss of MED15 function mainly disrupted processes known to rely on DELLA coactivation capacity, including cytokinin-dependent regulation of meristem function and skotomorphogenic response, gibberellin metabolism feedback, and flavonol production. We have also found that the single DELLA protein in the liverwort Marchantia polymorpha is capable of recruiting MpMED15 subunits, contributing to transcriptional coactivation. The conservation of Mediator-dependent transcriptional coactivation by DELLA between Arabidopsis and Marchantia implies that this mechanism is intrinsic to the emergence of DELLA in the last common ancestor of land plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Marchantia , Complexo Mediador , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Complexo Mediador/metabolismo , Complexo Mediador/genética , Marchantia/genética , Marchantia/metabolismo , Giberelinas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
BMC Plant Biol ; 24(1): 399, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745128

RESUMO

BACKGROUND: Riccia fluitans, an amphibious liverwort, exhibits a fascinating adaptation mechanism to transition between terrestrial and aquatic environments. Utilizing nanopore direct RNA sequencing, we try to capture the complex epitranscriptomic changes undergone in response to land-water transition. RESULTS: A significant finding is the identification of 45 differentially expressed genes (DEGs), with a split of 33 downregulated in terrestrial forms and 12 upregulated in aquatic forms, indicating a robust transcriptional response to environmental changes. Analysis of N6-methyladenosine (m6A) modifications revealed 173 m6A sites in aquatic and only 27 sites in the terrestrial forms, indicating a significant increase in methylation in the former, which could facilitate rapid adaptation to changing environments. The aquatic form showed a global elongation bias in poly(A) tails, which is associated with increased mRNA stability and efficient translation, enhancing the plant's resilience to water stress. Significant differences in polyadenylation signals were observed between the two forms, with nine transcripts showing notable changes in tail length, suggesting an adaptive mechanism to modulate mRNA stability and translational efficiency in response to environmental conditions. This differential methylation and polyadenylation underline a sophisticated layer of post-transcriptional regulation, enabling Riccia fluitans to fine-tune gene expression in response to its living conditions. CONCLUSIONS: These insights into transcriptome dynamics offer a deeper understanding of plant adaptation strategies at the molecular level, contributing to the broader knowledge of plant biology and evolution. These findings underscore the sophisticated post-transcriptional regulatory strategies Riccia fluitans employs to navigate the challenges of aquatic versus terrestrial living, highlighting the plant's dynamic adaptation to environmental stresses and its utility as a model for studying adaptation mechanisms in amphibious plants.


Assuntos
Análise de Sequência de RNA , Transcriptoma , Sequenciamento por Nanoporos , Marchantia/genética , Regulação da Expressão Gênica de Plantas , RNA de Plantas/genética , Adaptação Fisiológica/genética , Epigênese Genética
4.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572965

RESUMO

Microtubule organising centres (MTOCs) are sites of localised microtubule nucleation in eukaryotic cells. Regulation of microtubule dynamics often involves KATANIN (KTN): a microtubule severing enzyme that cuts microtubules to generate new negative ends, leading to catastrophic depolymerisation. In Arabidopsis thaliana, KTN is required for the organisation of microtubules in the cell cortex, preprophase band, mitotic spindle and phragmoplast. However, as angiosperms lack MTOCs, the role of KTN in MTOC formation has yet to be studied in plants. Two unique MTOCs - the polar organisers - form on opposing sides of the preprophase nucleus in liverworts. Here, we show that KTN-mediated microtubule depolymerisation regulates the number and organisation of polar organisers formed in Marchantia polymorpha. Mpktn mutants that lacked KTN function had supernumerary disorganised polar organisers compared with wild type. This was in addition to defects in the microtubule organisation in the cell cortex, preprophase band, mitotic spindle and phragmoplast. These data are consistent with the hypothesis that KTN-mediated microtubule dynamics are required for the de novo formation of MTOCs, a previously unreported function in plants.


Assuntos
Katanina , Marchantia , Centro Organizador dos Microtúbulos , Microtúbulos , Katanina/metabolismo , Katanina/genética , Microtúbulos/metabolismo , Marchantia/metabolismo , Marchantia/genética , Centro Organizador dos Microtúbulos/metabolismo , Mutação/genética , Fuso Acromático/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/metabolismo , Arabidopsis/genética
5.
Nat Plants ; 10(5): 785-797, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605238

RESUMO

Gametogenesis, which is essential to the sexual reproductive system, has drastically changed during plant evolution. Bryophytes, lycophytes and ferns develop reproductive organs called gametangia-antheridia and archegonia for sperm and egg production, respectively. However, the molecular mechanism of early gametangium development remains unclear. Here we identified a 'non-canonical' type of BZR/BES transcription factor, MpBZR3, as a regulator of gametangium development in a model bryophyte, Marchantia polymorpha. Interestingly, overexpression of MpBZR3 induced ectopic gametangia. Genetic analysis revealed that MpBZR3 promotes the early phase of antheridium development in male plants. By contrast, MpBZR3 is required for the late phase of archegonium development in female plants. We demonstrate that MpBZR3 is necessary for the successful development of both antheridia and archegonia but functions in a different manner between the two sexes. Together, the functional specialization of this 'non-canonical' type of BZR/BES member may have contributed to the evolution of reproductive systems.


Assuntos
Regulação da Expressão Gênica de Plantas , Haploidia , Marchantia , Proteínas de Plantas , Fatores de Transcrição , Marchantia/genética , Marchantia/crescimento & desenvolvimento , Marchantia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodução/genética , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/metabolismo
6.
Curr Biol ; 34(10): 2212-2220.e7, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642549

RESUMO

The ability of fungi to establish mycorrhizal associations with plants and enhance the acquisition of mineral nutrients stands out as a key feature of terrestrial life. Evidence indicates that arbuscular mycorrhizal (AM) association is a trait present in the common ancestor of land plants,1,2,3,4 suggesting that AM symbiosis was an important adaptation for plants in terrestrial environments.5 The activation of nuclear calcium signaling in roots is essential for AM within flowering plants.6 Given that the earliest land plants lacked roots, whether nuclear calcium signals are required for AM in non-flowering plants is unknown. To address this question, we explored the functional conservation of symbiont-induced nuclear calcium signals between the liverwort Marchantia paleacea and the legume Medicago truncatula. In M. paleacea, AM fungi penetrate the rhizoids and form arbuscules in the thalli.7 Here, we demonstrate that AM germinating spore exudate (GSE) activates nuclear calcium signals in the rhizoids of M. paleacea and that this activation is dependent on the nuclear-localized ion channel DOES NOT MAKE INFECTIONS 1 (MpaDMI1). However, unlike flowering plants, MpaDMI1-mediated calcium signaling is only required for the thalli colonization but not for the AM penetration within rhizoids. We further demonstrate that the mechanism of regulation of DMI1 has diverged between M. paleacea and M. truncatula, including a key amino acid residue essential to sustain DMI1 in an inactive state. Our study reveals functional evolution of nuclear calcium signaling between liverworts and flowering plants and opens new avenues of research into the mechanism of endosymbiosis signaling.


Assuntos
Evolução Biológica , Sinalização do Cálcio , Marchantia , Medicago truncatula , Micorrizas , Simbiose , Medicago truncatula/microbiologia , Medicago truncatula/metabolismo , Medicago truncatula/genética , Micorrizas/fisiologia , Marchantia/metabolismo , Marchantia/genética , Marchantia/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Embriófitas/metabolismo , Embriófitas/fisiologia , Núcleo Celular/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(16): e2322211121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593080

RESUMO

Adenosine 3',5'-cyclic monophosphate (cAMP) is a universal signaling molecule that acts as a second messenger in various organisms. It is well established that cAMP plays essential roles across the tree of life, although the function of cAMP in land plants has long been debated. We previously identified the enzyme with both adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) activity as the cAMP-synthesis/hydrolysis enzyme COMBINED AC with PDE (CAPE) in the liverwort Marchantia polymorpha. CAPE is conserved in streptophytes that reproduce with motile sperm; however, the precise function of CAPE is not yet known. In this study, we demonstrate that the loss of function of CAPE in M. polymorpha led to male infertility due to impaired sperm flagellar motility. We also found that two genes encoding the regulatory subunits of cAMP-dependent protein kinase (PKA-R) were also involved in sperm motility. Based on these findings, it is evident that CAPE and PKA-Rs act as a cAMP signaling module that regulates sperm motility in M. polymorpha. Therefore, our results have shed light on the function of cAMP signaling and sperm motility regulators in land plants. This study suggests that cAMP signaling plays a common role in plant and animal sperm motility.


Assuntos
Marchantia , Masculino , Animais , Marchantia/genética , AMP Cíclico/metabolismo , Motilidade dos Espermatozoides/genética , Sementes/metabolismo , Adenilil Ciclases/metabolismo , Espermatozoides/metabolismo
8.
Biochem Soc Trans ; 52(2): 505-515, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629612

RESUMO

In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.


Assuntos
Miosinas , Células Vegetais , Miosinas/metabolismo , Células Vegetais/metabolismo , Bryopsida/metabolismo , Bryopsida/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Citoesqueleto de Actina/metabolismo , Marchantia/metabolismo , Marchantia/crescimento & desenvolvimento , Desenvolvimento Vegetal/fisiologia
9.
J Hazard Mater ; 470: 134088, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555672

RESUMO

The arsenic-specific ACR3 transporter plays pivotal roles in As detoxification in yeast and a group of ancient tracheophytes, the ferns. Despite putative ACR3 genes being present in the genomes of bryophytes, whether they have the same relevance also in this lineage is currently unknown. In this study, we characterized the MpACR3 gene from the bryophyte Marchantia polymorpha L. through a multiplicity of functional approaches ranging from phylogenetic reconstruction, expression analysis, loss- and gain-of-function as well as genetic complementation with an MpACR3 gene tagged with a fluorescent protein. Genetic complementation demonstrates that MpACR3 plays a pivotal role in As tolerance in M. polymorpha, with loss-of-function Mpacr3 mutants being hypersensitive and MpACR3 overexpressors more tolerant to As. Additionally, MpACR3 activity regulates intracellular As concentration, affects its speciation and controls the levels of intracellular oxidative stress. The MpACR3::3xCitrine appears to localize at the plasma membrane and possibly in other endomembrane systems. Taken together, these results demonstrate the pivotal function of ACR3 detoxification in both sister lineages of land plants, indicating that it was present in the common ancestor to all embryophytes. We propose that Mpacr3 mutants could be used in developing countries as low-cost and low-technology visual bioindicators to detect As pollution in water.


Assuntos
Arsênio , Marchantia , Marchantia/genética , Marchantia/metabolismo , Marchantia/efeitos dos fármacos , Arsênio/toxicidade , Arsênio/metabolismo , Inativação Metabólica , Filogenia , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
New Phytol ; 242(5): 2251-2269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501480

RESUMO

The plant cuticle is a hydrophobic barrier, which seals the epidermal surface of most aboveground organs. While the cuticle biosynthesis of angiosperms has been intensively studied, knowledge about its existence and composition in nonvascular plants is scarce. Here, we identified and characterized homologs of Arabidopsis thaliana fatty acyl-CoA reductase (FAR) ECERIFERUM 4 (AtCER4) and bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase 1 (AtWSD1) in the liverwort Marchantia polymorpha (MpFAR2 and MpWSD1) and the moss Physcomitrium patens (PpFAR2A, PpFAR2B, and PpWSD1). Although bryophyte harbor similar compound classes as described for angiosperm cuticles, their biosynthesis may not be fully conserved between the bryophytes M. polymorpha and P. patens or between these bryophytes and angiosperms. While PpFAR2A and PpFAR2B contribute to the production of primary alcohols in P. patens, loss of MpFAR2 function does not affect the wax profile of M. polymorpha. By contrast, MpWSD1 acts as the major wax ester-producing enzyme in M. polymorpha, whereas mutations of PpWSD1 do not affect the wax ester levels of P. patens. Our results suggest that the biosynthetic enzymes involved in primary alcohol and wax ester formation in land plants have either evolved multiple times independently or undergone pronounced radiation followed by the formation of lineage-specific toolkits.


Assuntos
Ceras , Ceras/metabolismo , Álcoois/metabolismo , Filogenia , Marchantia/genética , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bryopsida/genética , Bryopsida/metabolismo , Briófitas/genética , Briófitas/metabolismo , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Vias Biossintéticas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Aciltransferases/metabolismo , Aciltransferases/genética , Evolução Biológica , Arabidopsis/genética , Arabidopsis/metabolismo , Mutação/genética
12.
Curr Biol ; 34(4): R146-R148, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412824

RESUMO

The tapetum, a tissue that elsewhere ensures correct spore development, is missing in some bryophytes. A new study shows that, in the liverwort, Marchantia polymorpha, a gene controlling spore wall deposition is expressed in the capsule lining, so these cells essentially function as a tapetum.


Assuntos
Embriófitas , Marchantia , Plantas , Embriófitas/genética , Marchantia/genética
13.
Environ Pollut ; 346: 123506, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360385

RESUMO

This study addresses the pressing issue of high arsenic (As) contaminations, which poses a severe threat to various life forms in our ecosystem. Despite this prevailing concern, all organisms have developed some techniques to mitigate the toxic effects of As. Certain plants, such as bryophytes, the earliest land plants, exhibit remarkable tolerance to wide range of harsh environmental conditions, due to their inherent competence. In this study, bryophytes collected from West Bengal, India, across varying contamination levels were investigated for their As tolerance capabilities. Assessment of As accumulation potential and antioxidant defense efficiency, including SOD, CAT, APX, GPX etc. revealed Marchantia polymorpha as the most tolerant species. It exhibited highest As accumulation, antioxidative proficiency, and minimal damage. Transcriptomic analysis of M. polymorpha exposed to 40 µM As(III) for 24 and 48 h identified several early responsive differentially expressing genes (DEGs) associated with As tolerance. These includes GSTs, GRXs, Hsp20s, SULTR1;2, ABCC2 etc., indicating a mechanism involving vacuolar sequestration. Interestingly, one As(III) efflux-transporter ACR3, an extrusion pump, known to combat As toxicity was found to be differentially expressed compared to control. The SEM-EDX analysis, further elucidated the operation of As extrusion mechanism, which contributes added As resilience in M. polymorpha. Yeast complementation assay using Δacr3 yeast cells, showed increased tolerance towards As(III), compared to the mutant cells, indicating As tolerant phenotype. Overall, these findings significantly enhance our understanding of As tolerance mechanisms in bryophytes. This can pave the way for the development of genetically engineered plants with heightened As tolerance and the creation of improved plant varieties.


Assuntos
Arsênio , Briófitas , Marchantia , Resiliência Psicológica , Arsênio/toxicidade , Marchantia/genética , Ecossistema , Saccharomyces cerevisiae
14.
Sci Rep ; 14(1): 3172, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326376

RESUMO

Several studies have documented that treatment by cold atmospheric pressure plasma (CAPP) on plants foster seed germination and growth in recent years. However, the molecular processes that underlie the action of CAPP on the seeds and plants remain mostly enigmatic. We here introduce gemmae of Marchantia polymorpha, a basal liverwort, as a novel model plant material suitable for CAPP research. Treating the gemmae with CAPP for a constant time interval at low power resulted in consistent growth enhancement, while growth inhibition at higher power in a dose-dependent manner. These results distinctly demonstrate that CAPP irradiation can positively and negatively regulate plant growth depending on the plasma intensity of irradiation, offering a suitable experimental system for understanding the molecular mechanisms underlying the action of CAPP in plants.


Assuntos
Marchantia , Desenvolvimento Vegetal
15.
RNA Biol ; 21(1): 1-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303117

RESUMO

MicroRNAs regulate gene expression affecting a variety of plant developmental processes. The evolutionary position of Marchantia polymorpha makes it a significant model to understand miRNA-mediated gene regulatory pathways in plants. Previous studies focused on conserved miRNA-target mRNA modules showed their critical role in Marchantia development. Here, we demonstrate that the differential expression of conserved miRNAs among land plants and their targets in selected organs of Marchantia additionally underlines their role in regulating fundamental developmental processes. The main aim of this study was to characterize selected liverwort-specific miRNAs, as there is a limited knowledge on their biogenesis, accumulation, targets, and function in Marchantia. We demonstrate their differential accumulation in vegetative and generative organs. We reveal that all liverwort-specific miRNAs examined are encoded by independent transcriptional units. MpmiR11737a, MpmiR11887 and MpmiR11796, annotated as being encoded within protein-encoding genes, have their own independent transcription start sites. The analysis of selected liverwort-specific miRNAs and their pri-miRNAs often reveal correlation in their levels, suggesting transcriptional regulation. However, MpmiR11796 shows a reverse correlation to its pri-miRNA level, suggesting post-transcriptional regulation. Moreover, we identify novel targets for selected liverwort-specific miRNAs and demonstrate an inverse correlation between their expression and miRNA accumulation. In the case of one miRNA precursor, we provide evidence that it encodes two functional miRNAs with two independent targets. Overall, our research sheds light on liverwort-specific miRNA gene structure, provides new data on their biogenesis and expression regulation. Furthermore, identifying their targets, we hypothesize the potential role of these miRNAs in early land plant development and functioning.


Assuntos
Marchantia , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Marchantia/genética , Marchantia/metabolismo , Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Genitália/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Plant Cell Physiol ; 65(4): 660-670, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38195149

RESUMO

In response to both biotic and abiotic stresses, vascular plants transmit long-distance Ca2+ and electrical signals from localized stress sites to distant tissues through their vasculature. Various models have been proposed for the mechanisms underlying the long-distance signaling, primarily centered around the presence of vascular bundles. We here demonstrate that the non-vascular liverwort Marchantia polymorpha possesses a mechanism for propagating Ca2+ waves and electrical signals in response to wounding. The propagation velocity of these signals was approximately 1-2 mm s-1, equivalent to that observed in vascular plants. Both Ca2+ waves and electrical signals were inhibited by La3+ as well as tetraethylammonium chloride, suggesting the crucial importance of both Ca2+ channel(s) and K+ channel(s) in wound-induced membrane depolarization as well as the subsequent long-distance signal propagation. Simultaneous recordings of Ca2+ and electrical signals indicated a tight coupling between the dynamics of these two signaling modalities. Furthermore, molecular genetic studies revealed that a GLUTAMATE RECEPTOR-LIKE (GLR) channel plays a central role in the propagation of both Ca2+ waves and electrical signals. Conversely, none of the three two-pore channels were implicated in either signal propagation. These findings shed light on the evolutionary conservation of rapid long-distance Ca2+ wave and electrical signal propagation involving GLRs in land plants, even in the absence of vascular tissue.


Assuntos
Sinalização do Cálcio , Cálcio , Marchantia , Marchantia/fisiologia , Marchantia/genética , Marchantia/metabolismo , Cálcio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Lantânio/farmacologia , Receptores de Glutamato/metabolismo , Receptores de Glutamato/genética , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Tetraetilamônio/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio/genética
17.
Curr Biol ; 34(4): 793-807.e7, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38295796

RESUMO

A key adaptation of plants to life on land is the formation of water-conducting cells (WCCs) for efficient long-distance water transport. Based on morphological analyses it is thought that WCCs have evolved independently on multiple occasions. For example, WCCs have been lost in all but a few lineages of bryophytes but, strikingly, within the liverworts a derived group, the complex thalloids, has evolved a novel externalized water-conducting tissue composed of reinforced, hollow cells termed pegged rhizoids. Here, we show that pegged rhizoid differentiation in Marchantia polymorpha is controlled by orthologs of the ZHOUPI and ICE bHLH transcription factors required for endosperm cell death in Arabidopsis seeds. By contrast, pegged rhizoid development was not affected by disruption of MpNAC5, the Marchantia ortholog of the VND genes that control WCC formation in flowering plants. We characterize the rapid, genetically controlled programmed cell death process that pegged rhizoids undergo to terminate cellular differentiation and identify a corresponding upregulation of conserved putative plant cell death effector genes. Lastly, we show that ectopic expression of MpZOU1 increases production of pegged rhizoids and enhances drought tolerance. Our results support that pegged rhizoids evolved independently of other WCCs. We suggest that elements of the genetic control of developmental cell death are conserved throughout land plants and that the ZHOUPI/ICE regulatory module has been independently recruited to promote cell wall modification and programmed cell death in liverwort rhizoids and in the endosperm of flowering plant seed.


Assuntos
Arabidopsis , Marchantia , Marchantia/genética , Água , Plantas , Arabidopsis/genética , Apoptose , Parede Celular , Regulação da Expressão Gênica de Plantas
18.
J Nat Prod ; 87(2): 228-237, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38266493

RESUMO

As a model liverwort, Marchantia polymorpha contains various flavone glucuronides with cardiovascular-promoting effects and anti-inflammatory properties. However, the related glucuronosyltransferases have not yet been reported. In this study, two bifunctional UDP-glucuronic acid/UDP-glucose:flavonoid glucuronosyltransferases/glucosyltransferases, MpUGT742A1 and MpUGT736B1, were identified from M. polymorpha. Extensive enzymatic assays found that MpUGT742A1 and MpUGT736B1 exhibited efficient glucuronidation activity for flavones, flavonols, and flavanones and showed promiscuous regioselectivity at positions 3, 6, 7, 3', and 4'. These enzymes catalyzed the production of a variety of flavonoid glucuronides with medicinal value, including apigenin-7-O-glucuronide and scutellarein-7-O-glucuronide. With the use of MpUGT736B1, apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide were prepared by scaled-up enzymatic catalysis and structurally identified by NMR spectroscopy. MpUGT742A1 also displayed glucosyltransferase activity on the 7-OH position of the flavanones using UDP-glucose as the sugar donor. Furthermore, we constructed four recombinant strains by combining the pathway for increasing the UDP-glucuronic acid supply with the two novel UGTs MpUGT742A1 and MpUGT736B1. When apigenin was used as a substrate, the extracellular apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide production obtained from the Escherichia coli strain BB2 reached 598 and 81 mg/L, respectively. Our study provides new candidate genes and strategies for the biosynthesis of flavonoid glucuronides.


Assuntos
Flavanonas , Marchantia , Flavonoides/química , Apigenina , Glucuronídeos/metabolismo , Marchantia/metabolismo , Glucuronosiltransferase/química , Glucuronosiltransferase/metabolismo , Escherichia coli/metabolismo , Glucose , Ácido Glucurônico , Difosfato de Uridina
19.
Plant Cell Physiol ; 65(3): 338-349, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38174428

RESUMO

Sexual differentiation is a fundamental process in the life cycles of land plants, ensuring successful sexual reproduction and thereby contributing to species diversity and survival. In the dioicous liverwort Marchantia polymorpha, this process is governed by an autosomal sex-differentiation locus comprising FEMALE GAMETOPHYTE MYB (FGMYB), a female-promoting gene, and SUPPRESSOR OF FEMINIZATION (SUF), an antisense strand-encoded long non-coding RNA (lncRNA). SUF is specifically transcribed in male plants and suppresses the expression of FGMYB, leading to male differentiation. However, the molecular mechanisms underlying this process remain elusive. Here, we show that SUF acts through its transcription to suppress FGMYB expression. Transgene complementation analysis using CRISPR/Cas9D10A-based large-deletion mutants identified a genomic region sufficient for the sex differentiation switch function in the FGMYB-SUF locus. Inserting a transcriptional terminator sequence into the SUF-transcribed region resulted in the loss of SUF function and allowed expression of FGMYB in genetically male plants, leading to conversion of the sex phenotype from male to female. Partial deletions of SUF had no obvious impact on its function. Replacement of the FGMYB sequence with that of an unrelated gene did not affect the ability of SUF transcription to suppress sense-strand expression. Taken together, our findings suggest that the process of SUF transcription, rather than the resulting transcripts, is required for controlling sex differentiation in M. polymorpha.


Assuntos
Marchantia , RNA Longo não Codificante , Masculino , Humanos , Marchantia/genética , RNA Longo não Codificante/genética , Óvulo Vegetal , Feminização , Plantas/genética
20.
Plant Cell Physiol ; 65(3): 460-471, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38179828

RESUMO

Thermospermine suppresses auxin-inducible xylem differentiation, whereas its structural isomer, spermine, is involved in stress responses in angiosperms. The thermospermine synthase, ACAULIS5 (ACL5), is conserved from algae to land plants, but its physiological functions remain elusive in non-vascular plants. Here, we focused on MpACL5, a gene in the liverwort Marchantia polymorpha, that rescued the dwarf phenotype of the acl5 mutant in Arabidopsis. In the Mpacl5 mutants generated by genome editing, severe growth retardation was observed in the vegetative organ, thallus, and the sexual reproductive organ, gametangiophore. The mutant gametangiophores exhibited remarkable morphological defects such as short stalks, fasciation and indeterminate growth. Two gametangiophores fused together, and new gametangiophores were often initiated from the old ones. Furthermore, Mpacl5 showed altered responses to heat and salt stresses. Given the absence of spermine in bryophytes, these results suggest that thermospermine has a dual primordial function in organ development and stress responses in M. polymorpha. The stress response function may have eventually been assigned to spermine during land plant evolution.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Marchantia , Espermina/análogos & derivados , Reguladores de Crescimento de Plantas , Proteínas de Arabidopsis/genética , Marchantia/genética , Arabidopsis/genética , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...