Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
J Exp Biol ; 227(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206870

RESUMO

We used thermal imagining and heat balance modelling to examine the thermal ecology of wild mammals, using the diurnal marsupial numbat (Myrmecobius fasciatus) as a model. Body surface temperature was measured using infra-red thermography at environmental wet and dry bulb temperatures of 11.7-29°C and 16.4-49.3°C, respectively; surface temperature varied for different body parts and with environmental temperature. Radiative and convective heat exchange varied markedly with environmental conditions and for various body surfaces reflecting their shapes, surface areas and projected areas. Both the anterior and posterior dorsolateral body areas functioned as thermal windows. Numbats in the shade had lower rates of solar radiative heat gain but non-solar avenues for radiative heat gain were substantial. Radiative gain was higher for black and lower for white stripes, but overall, the stripes had no thermal role. Total heat gain was generally positive (<4 to >20 W) and often greatly exceeded metabolic heat production (3-6 W). Our heat balance model indicates that high environmental heat loads limit foraging in open areas to as little as 10 min and that climate change may extend periods of inactivity, with implications for future conservation and management. We conclude that non-invasive thermal imaging is informative for modelling heat balance of free-living mammals.


Assuntos
Marsupiais , Animais , Marsupiais/metabolismo , Regulação da Temperatura Corporal , Temperatura Alta , Temperatura Corporal , Mamíferos
2.
Oecologia ; 203(1-2): 79-93, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37798536

RESUMO

Hibernation is an adaptive strategy that allows animals to enter a hypometabolic state, conserving energy and enhancing their fitness by surviving harsh environmental conditions. However, addressing the adaptive value of hibernation, at the individual level and in natural populations, has been challenging. Here, we applied a non-invasive technique, body composition analysis by quantitative magnetic resonance (qMR), to calculate energy savings by hibernation in a population of hibernating marsupials (Dromiciops gliroides). Using outdoor enclosures installed in a temperate rainforest, and measuring qMR periodically, we determined the amount of fat and lean mass consumed during a whole hibernation cycle. With this information, we estimated the daily energy expenditure of hibernation (DEEH) at the individual level and related to previous fat accumulation. Using model selection approaches and phenotypic selection analysis, we calculated linear (directional, ß), quadratic (stabilizing or disruptive, γ) and correlational (ρ) coefficients for DEEH and fat accumulation. We found significant, negative directional selection for DEEH (ßDEEH = - 0.58 ± 0.09), a positive value for fat accumulation (ßFAT = 0.34 ± 0.07), and positive correlational selection between both traits (ρDEEH × FAT = 0.24 ± 0.07). Then, individuals maximizing previous fat accumulation and minimizing DEEH were promoted by selection, which is visualized by a bi-variate selection surface estimated by generalized additive models. At the comparative level, results fall within the isometric allometry known for hibernation metabolic rate in mammals. Thus, by a combination of a non-invasive technique for body composition analysis and semi-natural enclosures, we were characterized the heterothermic fitness landscape in a semi-natural population of hibernators.


Assuntos
Hibernação , Marsupiais , Humanos , Animais , Marsupiais/metabolismo , Mamíferos , Metabolismo Energético , Composição Corporal
3.
Biofactors ; 49(5): 1061-1073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37219063

RESUMO

The marsupial Monito del monte (Dromiciops gliroides) utilizes both daily and seasonal bouts of torpor to preserve energy and prolong survival during periods of cold and unpredictable food availability. Torpor involves changes in cellular metabolism, including specific changes to gene expression that is coordinated in part, by the posttranscriptional gene silencing activity of microRNAs (miRNA). Previously, differential miRNA expression has been identified in D. gliroides liver and skeletal muscle; however, miRNAs in the heart of Monito del monte remained unstudied. In this study, the expression of 82 miRNAs was assessed in the hearts of active and torpid D. gliroides, finding that 14 were significantly differentially expressed during torpor. These 14 miRNAs were then used in bioinformatic analyses to identify Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were predicted to be most affected by these differentially expressed miRNAs. Overexpressed miRNAs were predicted to primarily regulate glycosaminoglycan biosynthesis, along with various signaling pathways such as Phosphoinositide-3-kinase/protein kinase B and transforming growth factor-ß. Similarly, signaling pathways including phosphatidylinositol and Hippo were predicted to be regulated by the underexpression of miRNAs during torpor. Together, these results suggest potential molecular adaptations that protect against irreversible tissue damage and enable continued cardiac and vascular function despite hypothermia and limited organ perfusion during torpor.


Assuntos
Hibernação , Marsupiais , MicroRNAs , Torpor , Animais , Hibernação/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Marsupiais/genética , Marsupiais/metabolismo , Fígado
4.
Physiol Biochem Zool ; 96(6): 393-404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38237188

RESUMO

AbstractTo maximize energy savings, entry into torpor should involve a fast reduction of metabolic rate and body temperature (Tb); that is, animals should thermoconform. However, animals often defend against the decrease in Tb via a temporary increase in thermoregulatory heat production, slowing the cooling process. We investigated how thermoregulating or thermoconforming during torpor entry affects temporal and thermoenergetic aspects in relation to body mass and age in juvenile and adult fat-tailed dunnarts (Sminthopsis crassicaudata; Marsupialia: Dasyuridae). During torpor entry, juvenile thermoconformers cooled twice as fast as and used less energy during cooling than juvenile thermoregulators. While both juvenile and adult thermoconformers had a lower minimum Tb, a lower torpor metabolic rate, and longer torpor bouts than thermoregulators, these differences were more pronounced in the juveniles. Rewarming from torpor took approximately twice as long for juvenile thermoconformers, and the costs of rewarming were greater. To determine the difference in average daily metabolic rate between thermoconformers and thermoregulators independent of body mass, we compared juveniles of a similar size (∼13 g) and similarly sized adults (∼17 g). The average daily metabolic rate was 7% (juveniles) and 17% (adults) less in thermoconformers than in thermoregulators, even though thermoconformers were active for longer. Our data suggest that thermoconforming during torpor entry provides an energetic advantage for both juvenile and adult dunnarts and may aid growth for juveniles. While thermoregulation during torpor entry is more costly, it still saves energy, and the higher Tb permits greater alertness and mobility and reduces the energetic cost of endogenous rewarming.


Assuntos
Marsupiais , Torpor , Animais , Marsupiais/metabolismo , Metabolismo Energético/fisiologia , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Torpor/fisiologia
5.
Physiol Biochem Zool ; 95(3): 239-250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35443149

RESUMO

AbstractHibernation (i.e., seasonal or multiday torpor) has been described in mammals from five continents and represents an important adaptation for energy economy. However, direct quantifications of energy savings by hibernation are challenging because of the complexities of estimating energy expenditure in the field. Here, we applied quantitative magnetic resonance to determine body fat and body composition in hibernating Dromiciops gliroides (monito del monte). During an experimental period of 31 d in winter, fat was significantly reduced by 5.72±0.45 g, and lean mass was significantly reduced by 2.05±0.14 g. This fat and lean mass consumption is equivalent to a daily energy expenditure of hibernation (DEEH) of 8.89±0.6 kJ d-1, representing 13.4% of basal metabolic rate, with a proportional contribution of fat and lean mass consumption to DEEH of 81% and 18%, respectively. During the deep heterothermic bouts of monitos, body temperature remained 0.41°C ± 0.2°C above ambient temperature, typical of hibernators. Animals shut down metabolism and passively cool down to a critical defended temperature of 5.0°C ± 0.1°C, where they begin thermoregulation in torpor. Using temperature data loggers, we obtained an empirical estimation of minimum thermal conductance of 3.37±0.19 J g-1 h-1 °C-1, which is 107% of the expectation by allometric equations. With this, we parameterized body temperature/ambient temperature time series to calculate torpor parameters and metabolic rates in euthermia and torpor. Whereas the acute metabolic fall in each torpor episode is about 96%, the energy saved by hibernation is 88% (compared with the DEE of active animals), which coincides with values from the literature at similar body mass. Thus, estimating body composition provides a simple method to measure the energy saved by hibernation in mammals.


Assuntos
Hibernação , Marsupiais , Torpor , Animais , Composição Corporal , Temperatura Corporal , Metabolismo Energético , Mamíferos , Marsupiais/metabolismo , América do Sul
6.
Cell Mol Life Sci ; 78(23): 7537-7555, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34655299

RESUMO

The iconic Tasmanian devil (Sarcophilus harrisii) is endangered due to the transmissible cancer Devil Facial Tumour Disease (DFTD), of which there are two genetically independent subtypes (DFT1 and DFT2). While DFT1 and DFT2 can be differentially diagnosed using tumour biopsies, there is an urgent need to develop less-invasive biomarkers that can detect DFTD and distinguish between subtypes. Extracellular vesicles (EVs), the nano-sized membrane-enclosed vesicles present in most biofluids, represent a valuable resource for biomarker discovery. Here, we characterized the proteome of EVs from cultured DFTD cells using data-independent acquisition-mass spectrometry and an in-house spectral library of > 1500 proteins. EVs from both DFT1 and DFT2 cell lines expressed higher levels of proteins associated with focal adhesion functions. Furthermore, hallmark proteins of epithelial-mesenchymal transition were enriched in DFT2 EVs relative to DFT1 EVs. These findings were validated in EVs derived from serum samples, revealing that the mesenchymal marker tenascin-C was also enriched in EVs derived from the serum of devils infected with DFT2 relative to those infected with DFT1 and healthy controls. This first EV-based investigation of DFTD increases our understanding of the cancers' EVs and their possible involvement in DFTD progression, such as metastasis. Finally, we demonstrated the potential of EVs to differentiate between DFT1 and DFT2, highlighting their potential use as less-invasive liquid biopsies for the Tasmanian devil.


Assuntos
Biomarcadores Tumorais/sangue , Vesículas Extracelulares/metabolismo , Neoplasias Faciais/classificação , Neoplasias Faciais/diagnóstico , Marsupiais/metabolismo , Proteoma/análise , Tenascina/sangue , Animais , Diagnóstico Diferencial , Neoplasias Faciais/sangue , Espectrometria de Massas , Proteoma/metabolismo
7.
Cell Rep ; 34(11): 108851, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730574

RESUMO

Devil facial tumor disease (DFTD) and its lack of available therapies are propelling the Tasmanian devil population toward extinction. This study demonstrates that cholesterol homeostasis and carbohydrate energy metabolism sustain the proliferation of DFTD cells in a cell-type-dependent manner. In addition, we show that the liver-X nuclear receptor-ß (LXRß), a major cholesterol cellular sensor, and its natural ligand 24S-hydroxycholesterol promote the proliferation of DFTD cells via a metabolic switch toward aerobic glycolysis. As a proof of concept of the role of cholesterol homeostasis on DFTD proliferation, we show that atorvastatin, an FDA-approved statin-drug subtype used against human cardiovascular diseases that inhibits cholesterol synthesis, shuts down DFTD energy metabolism and prevents tumor growth in an in vivo DFTD-xenograft model. In conclusion, we show that intervention against cholesterol homeostasis and carbohydrate-dependent energy metabolism by atorvastatin constitutes a feasible biochemical treatment against DFTD, which may assist in the conservation of the Tasmanian devil.


Assuntos
Colesterol/metabolismo , Neoplasias Faciais/metabolismo , Neoplasias Faciais/veterinária , Homeostase , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Receptores X do Fígado/metabolismo , Marsupiais/metabolismo , Aerobiose/efeitos dos fármacos , Animais , Atorvastatina/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Faciais/patologia , Feminino , Glicólise/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxisteróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Dev Comp Immunol ; 115: 103882, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33039410

RESUMO

Immune checkpoint immunotherapy is a pillar of human oncology treatment with potential for non-human species. The first checkpoint immunotherapy approved for human cancers targeted the CTLA4 protein. CTLA4 can inhibit T cell activation by capturing and internalizing CD80 and CD86 from antigen presenting cells, a process called trans-endocytosis. Similarly, CD28 can capture CD80 and CD86 via trogocytosis and retain the captured ligands on the surface of the CD28-expressing cells. The wild Tasmanian devil (Sarcophilus harrisii) population has declined by 77% due to transmissible cancers that evade immune defenses despite genetic mismatches between the host and tumors. We used a live cell-based assay to demonstrate that devil CTLA4 and CD28 can capture CD80 and CD86. Mutation of evolutionarily conserved motifs in CTLA4 altered functional interactions with CD80 and CD86 in accordance with patterns observed in other species. These results suggest that checkpoint immunotherapies can be translated to evolutionarily divergent species.


Assuntos
Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Antígenos CD28/metabolismo , Antígeno CTLA-4/metabolismo , Marsupiais/imunologia , Motivos de Aminoácidos/genética , Animais , Antígenos CD28/antagonistas & inibidores , Células CHO , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/genética , Células Cultivadas , Clonagem Molecular , Cricetulus , Espécies em Perigo de Extinção , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Microscopia Intravital , Marsupiais/metabolismo , Mutação , Trogocitose
9.
J Anat ; 238(2): 426-445, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32974934

RESUMO

A morphological and morphometric study of the skin development in the eastern quoll (Dasyurus viverrinus) was conducted to follow the transition from cutaneous to pulmonary gas exchange in this extremely immature marsupial species. Additionally, the development of the cardiac and respiratory system was followed, to evaluate the systemic prerequisites allowing for cutaneous respiration. The skin in the newborn D. viverrinus was very thin (36 ± 3 µm) and undifferentiated (no hair follicles, no sebaceous and perspiratory glands). Numerous superficial cutaneous capillaries were encountered, closely associated with the epidermis, allowing for gaseous exchange. The capillary volume density was highest in the neonate (0.33 ± 0.04) and decreased markedly during the first 4 days (0.06 ± 0.01). In the same time period, the skin diffusion barrier increased from 9 ± 1 µm to 44 ± 6 µm. From this age on the skin development was characterized by thickening of the different cutaneous layers, formation of hair follicles (day 55) and the occurrence of subcutaneous fat (day 19). The heart of the neonate D. viverrinus had incomplete interatrial, inter-ventricular, and aortico-pulmonary septa, allowing for the possibility that oxygenated blood from the skin mixes with that of the systemic circulation. The fast-structural changes in the systemic circulations (closing all shunts) in the early postnatal period (3 days) necessitate the transition from cutaneous to pulmonary respiration despite the immaturity of the lungs. At this time, the lung was still at the canalicular stage of lung development, but had to be mature enough to meet the respiratory needs of the growing organism. The morphometric results for the skin development of D. viverrinus suggest that cutaneous respiration is most pronounced in neonates and decreases rapidly during the first 3 days of postnatal life. After this time a functional transition of the skin from cutaneous respiration to insulation and protection of the body takes place.


Assuntos
Marsupiais/crescimento & desenvolvimento , Troca Gasosa Pulmonar , Pele/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Sistema Cardiovascular/crescimento & desenvolvimento , Marsupiais/metabolismo , Sistema Respiratório/crescimento & desenvolvimento , Pele/metabolismo
10.
Biol Reprod ; 102(6): 1261-1269, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32179898

RESUMO

Aromatase (P450arom, CYP19A1) is the terminal enzyme in the synthesis of the steroid hormone family of estrogens. Not surprisingly, this enzyme has structural similarities between the limited number of species studied thus far. This study examined the structure of aromatases from four diverse Australian species including a marsupial (tammar wallaby; Macropus eugenii), monotreme (platypus; Ornithorhynchus anatinus), ratite (emu; Dromaius novaehollandiae) and lizard (bearded dragon; Pogona vitticeps). We successfully built homology models for each species, using the only crystallographically determined structure available, human aromatase. The amino acid sequences showed high amino acid sequence identity to the human aromatase: wallaby 81%, platypus 73%, emu 75% and bearded dragon at 74%. The overall structure was highly conserved among the five species, although there were non-secondary structures (loops and bends) that were variable and flexible that may result in some differences in catalytic activity. At the N-terminal regions, there were deletions and variations that suggest that functional distinctions may be found. We found that the active sites of all these proteins were identical, except for a slight variation in the emu. The electrostatic potential across the surfaces of these aromatases highlighted likely variations to the protein-protein interactions of these enzymes with both redox partner cytochrome P450 reductase and possibly homodimerization in the case of the platypus, which has been postulated for the human aromatase enzyme. Given the high natural selection pressures on reproductive strategies, the relatively high degree of conservation of aromatase sequence and structure across species suggests that there is biochemically very little scope for changes to have evolved without the loss of enzyme activity.


Assuntos
Aromatase/metabolismo , Lagartos/metabolismo , Marsupiais/metabolismo , Paleógnatas/metabolismo , Ornitorrinco/metabolismo , Sequência de Aminoácidos , Animais , Aromatase/genética , Regulação Enzimológica da Expressão Gênica , Genoma , Humanos , Lagartos/genética , Marsupiais/genética , Modelos Moleculares , Paleógnatas/genética , Ornitorrinco/genética , Conformação Proteica , Especificidade da Espécie
11.
Stem Cells Dev ; 29(1): 25-37, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709909

RESUMO

Marsupials have long attracted scientific interest because of their unique biological features and their position in mammalian evolution. Mesenchymal stem cells (MSCs) are of considerable research interest in translational medicine due to their immunomodulatory, anti-inflammatory, and regenerative properties. MSCs have been harvested from various tissues in numerous eutherian species; however, there are no descriptions of MSCs derived from a marsupial. In this study, we have generated Tasmanian devil (Sarcophilus harrisii) MSCs from devil induced pluripotent stem cells (iPSCs), thus providing an unlimited source of devil MSCs and circumventing the need to harvest tissues from live animals. Devil iPSCs were differentiated into MSCs (iMSCs) through both embryoid body formation assays (EB-iMSCs) and through inhibition of the transforming growth factor beta/activin signaling pathway (SB-iMSCs). Both EB-iMSCs and SB-iMSCs are highly proliferative and express the MSC-specific surface proteins CD73, CD90, and CD105, in addition to the pluripotency transcription factors OCT4/POU5F1, SOX2, and NANOG. Expression of the marsupial pluripotency factor POU5F3, a paralogue of OCT4/POU5F1, is significantly reduced in association with the transition from pluripotency to multipotency. Devil iMSCs readily differentiate along the adipogenic, osteogenic, and chondrogenic pathways in vitro, confirming their trilineage differentiation potential. Importantly, in vitro teratoma assays confirmed their multipotency, rather than pluripotency, since the iMSCs only formed derivatives of the mesodermal germ layer. Devil iMSCs show a tropism toward medium conditioned by devil facial tumor cells and express a range of immunomodulatory and anti-inflammatory factors. Therefore, devil iMSCs will be a valuable tool for further studies on marsupial biology and may facilitate the development of an MSC-based treatment strategy against Devil Facial Tumor Disease.


Assuntos
Neoplasias Faciais/genética , Fatores Imunológicos/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Marsupiais/genética , Células-Tronco Mesenquimais/metabolismo , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Adipogenia/genética , Animais , Condrogênese/genética , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Endoglina/genética , Endoglina/metabolismo , Neoplasias Faciais/metabolismo , Neoplasias Faciais/patologia , Expressão Gênica , Fatores Imunológicos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Marsupiais/metabolismo , Células-Tronco Mesenquimais/citologia , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Osteogênese/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Tropismo/genética
12.
Genome Biol Evol ; 11(11): 3256-3268, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670760

RESUMO

To fulfill their physiological functions, bile acids are conjugated with amino acids. In humans, conjugation is catalyzed by bile acid coenzyme A: amino acid N-acyltransferase (BAAT), an enzyme with a highly conserved catalytic triad in its active site. Interestingly, the conjugated amino acids are highly variable among mammals, with some species conjugating bile acids with both glycine and taurine, whereas others conjugate only taurine. The genetic origin of these bile acid conjugation differences is unknown. Here, we tested whether mutations in BAAT's catalytic triad could explain bile acid conjugation differences. Our comparative analysis of 118 mammals first revealed that the ancestor of placental mammals and marsupials possessed two genes, BAAT and BAATP1, that arose by a tandem duplication. This duplication was followed by numerous gene losses, including BAATP1 in humans. Losses of either BAAT or BAATP1 largely happened in a reciprocal fashion, suggesting that a single conjugating enzyme is generally sufficient for mammals. In intact BAAT and BAATP1 genes, we observed multiple changes in the catalytic triad between Cys and Ser residues. Surprisingly, although mutagenesis experiments with the human enzyme have shown that replacing Cys for Ser greatly diminishes the glycine-conjugating ability, across mammals we found that this residue provides little power in predicting the experimentally measured amino acids that are conjugated with bile acids. This suggests that the mechanism of BAAT's enzymatic function is incompletely understood, despite relying on a classic catalytic triad. More generally, our evolutionary analysis indicates that results of mutagenesis experiments may not easily be extrapolatable to other species.


Assuntos
Aciltransferases/genética , Metabolismo dos Lipídeos/genética , Animais , Ácidos e Sais Biliares/genética , Ácidos e Sais Biliares/metabolismo , Eutérios/genética , Eutérios/metabolismo , Deleção de Genes , Duplicação Gênica , Humanos , Marsupiais/genética , Marsupiais/metabolismo , Filogenia
13.
RNA ; 25(8): 1004-1019, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31097619

RESUMO

The marsupial inactive X chromosome expresses a long noncoding RNA (lncRNA) called Rsx that has been proposed to be the functional analog of eutherian Xist Despite the possibility that Xist and Rsx encode related functions, the two lncRNAs harbor no linear sequence similarity. However, both lncRNAs harbor domains of tandemly repeated sequence. In Xist, these repeat domains are known to be critical for function. Using k-mer based comparison, we show that the repeat domains of Xist and Rsx unexpectedly partition into two major clusters that each harbor substantial levels of nonlinear sequence similarity. Xist Repeats B, C, and D were most similar to each other and to Rsx Repeat 1, whereas Xist Repeats A and E were most similar to each other and to Rsx Repeats 2, 3, and 4. Similarities at the level of k-mers corresponded to domain-specific enrichment of protein-binding motifs. Within individual domains, protein-binding motifs were often enriched to extreme levels. Our data support the hypothesis that Xist and Rsx encode similar functions through different spatial arrangements of functionally analogous protein-binding domains. We propose that the two clusters of repeat domains in Xist and Rsx function in part to cooperatively recruit PRC1 and PRC2 to chromatin. The physical manner in which these domains engage with protein cofactors may be just as critical to the function of the domains as the protein cofactors themselves. The general approaches we outline in this report should prove useful in the study of any set of RNAs.


Assuntos
Marsupiais/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Animais , Análise por Conglomerados , Humanos , Marsupiais/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Domínios Proteicos , Homologia de Sequência do Ácido Nucleico , Sequências de Repetição em Tandem , Inativação do Cromossomo X
14.
Mol Reprod Dev ; 86(6): 639-649, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30950142

RESUMO

The fluid that surrounds the embryo in the uterus contains important nourishing factors and secretions. To maintain the distinct microenvironment in the uterine lumen, the tight junctions between uterine epithelial cells are remodeled to decrease paracellular movement of molecules and solutes. Modifications to tight junctions between uterine epithelial cells is a common feature of pregnancy in eutherian mammals, regardless of placental type. Here we used immunofluorescence microscopy and western blot analysis to describe distributional changes to tight junctional proteins, claudin-1, -3, -4, and -5, in the uterine epithelial cells of a marsupial species, Sminthopsis crassicaudata. Immunofluorescence microscopy revealed claudin-1, -3, and -5 in the tight junctions of the uterine epithelium of S. crassicaudata during pregnancy. These specific claudins are associated with restricting passive movement of fluid between epithelial cells in eutherians. Hence, their function during pregnancy in S. crassicaudata may be to maintain the uterine luminal content surrounding developing embryos. Claudin-4 disappears from all uterine regions of S. crassicaudata at the time of implantation, in contrast with the distribution of this claudin in some eutherian mammals. We conclude that like eutherian mammals, distributional changes to claudins in the uterine epithelial cells of S. crassicaudata are necessary to support pregnancy. However, the combination of individual claudin isoforms in the tight junctions of the uterine epithelium of S. crassicaudata differs from that of eutherian mammals. Our findings suggest that the precise permeability of the paracellular pathway of the uterine epithelium is species-specific.


Assuntos
Claudinas/metabolismo , Células Epiteliais/metabolismo , Marsupiais/metabolismo , Gravidez/metabolismo , Junções Íntimas/metabolismo , Útero/metabolismo , Animais , Feminino
15.
Aust Vet J ; 97(3): 75-80, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30809814

RESUMO

BACKGROUND: Cefovecin has a long duration of antibiotic activity in cats and dogs, somewhat attributable to its high plasma protein binding. AIMS: To determine the cefovecin binding to plasma proteins in vitro in selected Australian marsupials and to quantify the change in cetovecin concentration over time following subcutaneous injection in koalas. METHODS AND RESULTS: Various cefovecin concentrations were incubated with plasma and quantified using HPLC. The median (range) bound percentages when 10 µg/mL of cefovecin was incubated with plasma were 11.1 (4.1-20.4) in the plasma of the Tasmanian devil, 12.7 (5.8-17.3) in the koala, 18.9 (14.6-38.0) in the eastern grey kangaroo, 16.9 (15.7-30.2) in the common brush-tailed possum, 37.6 (25.3-42.3) in the eastern ring-tailed possum and 36.4 (35.0-38.3) in the red kangaroo, suggesting that cefovecin may have a shorter duration of action in these species than in cats and dogs. Cefovecin binding to plasma proteins in thawed, frozen equine plasma was also undertaken for assay quality control and the median (range) plasma protein binding (at 10 µg/mL) was 95.6% (94.9-96.6%). Cefovecin was also administered to six koalas at 8 mg/kg subcutaneously and serial blood samples were collected at 3, 6, 24, 48, 72, 96 h thereafter. Cefovecin plasma concentrations were not quantifiable in four koalas and in the other two, the mean plasma concentration at t = 3 h was 1.04 ± 0.01 µg/mL. CONCLUSION: Because of the limited pharmacokinetic data generated, no further pharmacokinetic analysis was performed; however, a single injected bolus of cefovecin is likely to have a short duration of action in koalas (hours, rather than days).


Assuntos
Antibacterianos/metabolismo , Proteínas Sanguíneas/metabolismo , Cefalosporinas/metabolismo , Marsupiais/sangue , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Austrália , Cefalosporinas/administração & dosagem , Cefalosporinas/farmacocinética , Cromatografia Líquida de Alta Pressão/veterinária , Feminino , Técnicas In Vitro , Injeções Subcutâneas/veterinária , Masculino , Marsupiais/metabolismo , Phascolarctidae/sangue , Phascolarctidae/metabolismo
16.
Mol Ecol ; 27(22): 4489-4500, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30240506

RESUMO

The small South American marsupial, Dromiciops gliroides, known as the missing link between the American and the Australian marsupials, is one of the few South American mammals known to hibernate. Expressing both daily torpor and seasonal hibernation, this species may provide crucial information about the mechanisms and the evolutionary origins of marsupial hibernation. Here, we compared torpid and active individuals, applying high-throughput sequencing technologies (RNA-seq) to profile gene expression in three D. gliroides tissues and determine whether hibernation induces tissue-specific differential gene expression. We found 566 transcripts that were significantly up-regulated during hibernation (369 in brain, 147 in liver and 50 in skeletal muscle) and 339 that were down-regulated (225 in brain, 79 in liver and 35 in muscle). The proteins encoded by these differentially expressed genes orchestrate multiple metabolic changes during hibernation, such as inhibition of angiogenesis, prevention of muscle disuse atrophy, fuel switch from carbohydrate to lipid metabolism, protection against reactive oxygen species and repair of damaged DNA. According to the global enrichment analysis, brain cells seem to differentially regulate a complex array of biological functions (e.g., cold sensitivity, circadian perception, stress response), whereas liver and muscle cells prioritize fuel switch and heat production for rewarming. Interestingly, transcripts of thioredoxin-interacting protein (TXNIP), a potent antioxidant, were significantly over-expressed during torpor in all three tissues. These results suggest that marsupial hibernation is a controlled process where selected metabolic pathways show adaptive modulation that can help to maintain homeostasis and enhance cytoprotection in the hypometabolic state.


Assuntos
Hibernação/genética , Marsupiais/genética , Transcriptoma , Animais , Encéfalo/metabolismo , Chile , Regulação da Expressão Gênica , Fígado/metabolismo , Marsupiais/metabolismo , Células Musculares/metabolismo , Termogênese , Torpor/genética
17.
J Exp Biol ; 221(Pt 7)2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626116

RESUMO

A novel statistical routine is presented here for exploring and comparing patterns of allometric variation in two or more groups of subjects. The routine combines elements of the analysis of variance (ANOVA) with non-linear regression to achieve the equivalent of an analysis of covariance (ANCOVA) on curvilinear data. The starting point is a three-parameter power equation to which a categorical variable has been added to identify membership by each subject in a specific group or treatment. The protocol differs from earlier ones in that different assumptions can be made about the form for random error in the full statistical model (i.e. normal and homoscedastic, normal and heteroscedastic, lognormal and heteroscedastic). The general equation and several modifications thereof were used to study allometric variation in field metabolic rates of marsupial and placental mammals. The allometric equations for both marsupials and placentals have an explicit, non-zero intercept, but the allometric exponent is higher in the equation for placentals than in that for marsupials. The approach followed here is extraordinarily versatile, and it has wider application in allometry than standard ANCOVA performed on logarithmic transformations.


Assuntos
Metabolismo Energético , Eutérios/metabolismo , Marsupiais/metabolismo , Fisiologia/métodos , Análise de Variância , Animais , Dinâmica não Linear
18.
Bioessays ; 40(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29446482

RESUMO

Similar to parasites, malignant cells exploit the host for energy, resources and protection, thereby impairing host health and fitness. Although cancer is widespread in the animal kingdom, its impact on life history traits and strategies have rarely been documented. Devil facial tumour disease (DFTD), a transmissible cancer, afflicting Tasmanian devils (Sarcophilus harrisii), provides an ideal model system to monitor the impact of cancer on host life-history, and to elucidate the evolutionary arms-race between malignant cells and their hosts. Here we provide an overview of parasite-induced host life history (LH) adaptations, then both phenotypic plasticity of LH responses and changes in allele frequencies that affect LH traits of Tasmanian devils in response to DFTD are discussed. We conclude that akin to parasites, cancer can directly and indirectly affect devil LH traits and trigger host evolutionary responses. Consequently, it is important to consider oncogenic processes as a selective force in wildlife.


Assuntos
Adaptação Fisiológica/genética , Carcinogênese/genética , Características de História de Vida , Marsupiais/genética , Neoplasias/genética , Característica Quantitativa Herdável , Alelos , Animais , Austrália , Carcinogênese/metabolismo , Carcinogênese/patologia , Face/patologia , Frequência do Gene , Marsupiais/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Seleção Genética
19.
Sci Rep ; 8(1): 2412, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402916

RESUMO

Early pregnancy is a critical time for successful reproduction; up to half of human pregnancies fail before the development of the definitive chorioallantoic placenta. Unlike the situation in eutherian mammals, marsupial pregnancy is characterised by a long pre-implantation period prior to the development of the short-lived placenta, making them ideal models for study of the uterine environment promoting embryonic survival pre-implantation. Here we present a transcriptomic study of pre-implantation marsupial pregnancy, and identify differentially expressed genes in the Sminthopsis crassicaudata uterus involved in metabolism and biosynthesis, transport, immunity, tissue remodelling, and uterine receptivity. Interestingly, almost one quarter of the top 50 genes that are differentially upregulated in early pregnancy are putatively involved in histotrophy, highlighting the importance of nutrient transport to the conceptus prior to the development of the placenta. This work furthers our understanding of the mechanisms underlying survival of pre-implantation embryos in the earliest live bearing ancestors of mammals.


Assuntos
Fertilidade/genética , Marsupiais/genética , Placenta/metabolismo , Transcriptoma , Útero/metabolismo , Animais , Transporte Biológico/genética , Transporte Biológico/imunologia , Blastocisto , Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Fertilidade/imunologia , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade Inata/genética , Marsupiais/crescimento & desenvolvimento , Marsupiais/metabolismo , Anotação de Sequência Molecular , Placenta/imunologia , Gravidez , Útero/crescimento & desenvolvimento
20.
Artigo em Inglês | MEDLINE | ID: mdl-29247844

RESUMO

Mammalian hibernation is characterized by extensive adjustments to metabolism that typically include suppression of carbohydrate catabolism and a switch to triglycerides as the primary fuel during torpor. A crucial locus of control in this process is the pyruvate dehydrogenase complex that gates carbohydrate entry into the tricarboxylic acid cycle. Within the complex, the E1 enzyme pyruvate dehydrogenase (PDH) is the main regulatory site and is subject to inhibitory phosphorylation at three serine residues (S232, S293, S300). To determine if marsupial hibernators show a comparable focus on PDH to regulate fuel metabolism, the current study explored PDH control by site-specific phosphorylation in the South American marsupial, monito del monte (Dromiciops gliroides). Luminex multiplex technology was used to analyze PDH responses in six tissues comparing control and hibernating (4days continuous torpor) animals. Total PDH content did not change significantly during hibernation in any tissue but phospho-PDH content increased in all. Heart PDH showed increased phosphorylation at all three sites by 8.1-, 10.6- and 2.1-fold for S232, S293 and S300, respectively. Liver also showed elevated p-S300 (2.5-fold) and p-S293 (4.7-fold) content. Phosphorylation of S232 and S293 increased significantly in brain and lung but only S232 phosphorylation increased in kidney and skeletal muscle. The results show that PDH suppression via enzyme phosphorylation during torpor is a conserved mechanism for inhibiting carbohydrate catabolism in both marsupial and eutherian mammals, an action that would also promote the switch to fatty acid oxidation instead.


Assuntos
Adaptação Fisiológica/fisiologia , Metabolismo dos Carboidratos/fisiologia , Ciclo do Ácido Cítrico/fisiologia , Hibernação/fisiologia , Marsupiais/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Triglicerídeos/metabolismo , Animais , Especificidade de Órgãos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...