Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virol Sin ; 39(2): 309-318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458399

RESUMO

SARS-CoV-2 infection-induced hyper-inflammation is a key pathogenic factor of COVID-19. Our research, along with others', has demonstrated that mast cells (MCs) play a vital role in the initiation of hyper-inflammation caused by SARS-CoV-2. In previous study, we observed that SARS-CoV-2 infection induced the accumulation of MCs in the peri-bronchus and bronchioalveolar-duct junction in humanized mice. Additionally, we found that MC degranulation triggered by the spike protein resulted in inflammation in alveolar epithelial cells and capillary endothelial cells, leading to subsequent lung injury. The trachea and bronchus are the routes for SARS-CoV-2 transmission after virus inhalation, and inflammation in these regions could promote viral spread. MCs are widely distributed throughout the respiratory tract. Thus, in this study, we investigated the role of MCs and their degranulation in the development of inflammation in tracheal-bronchial epithelium. Histological analyses showed the accumulation and degranulation of MCs in the peri-trachea of humanized mice infected with SARS-CoV-2. MC degranulation caused lesions in trachea, and the formation of papillary hyperplasia was observed. Through transcriptome analysis in bronchial epithelial cells, we found that MC degranulation significantly altered multiple cellular signaling, particularly, leading to upregulated immune responses and inflammation. The administration of ebastine or loratadine effectively suppressed the induction of inflammatory factors in bronchial epithelial cells and alleviated tracheal injury in mice. Taken together, our findings confirm the essential role of MC degranulation in SARS-CoV-2-induced hyper-inflammation and the subsequent tissue lesions. Furthermore, our results support the use of ebastine or loratadine to inhibit SARS-CoV-2-triggered degranulation, thereby preventing tissue damage caused by hyper-inflammation.


Assuntos
Brônquios , COVID-19 , Degranulação Celular , Mastócitos , SARS-CoV-2 , Traqueia , Animais , Mastócitos/virologia , Mastócitos/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/patologia , Camundongos , Traqueia/virologia , Traqueia/patologia , Brônquios/virologia , Brônquios/patologia , Humanos , Inflamação/virologia , Células Epiteliais/virologia , Modelos Animais de Doenças
2.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163636

RESUMO

Mast cells (MCs) have relevant participation in inflammatory and vascular hyperpermeability events, responsible for the action of the kallikrein-kinin system (KKS), that affect patients inflicted by the severe form of COVID-19. Given a higher number of activated MCs present in COVID-19 patients and their association with vascular hyperpermeability events, we investigated the factors that lead to the activation and degranulation of these cells and their harmful effects on the alveolar septum environment provided by the action of its mediators. Therefore, the pyroptotic processes throughout caspase-1 (CASP-1) and alarmin interleukin-33 (IL-33) secretion were investigated, along with the immunoexpression of angiotensin-converting enzyme 2 (ACE2), bradykinin receptor B1 (B1R) and bradykinin receptor B2 (B2R) on post-mortem lung samples from 24 patients affected by COVID-19. The results were compared to 10 patients affected by H1N1pdm09 and 11 control patients. As a result of the inflammatory processes induced by SARS-CoV-2, the activation by immunoglobulin E (IgE) and degranulation of tryptase, as well as Toluidine Blue metachromatic (TB)-stained MCs of the interstitial and perivascular regions of the same groups were also counted. An increased immunoexpression of the tissue biomarkers CASP-1, IL-33, ACE2, B1R and B2R was observed in the alveolar septum of the COVID-19 patients, associated with a higher density of IgE+ MCs, tryptase+ MCs and TB-stained MCs, in addition to the presence of intra-alveolar edema. These findings suggest the direct correlation of MCs with vascular hyperpermeability, edema and diffuse alveolar damage (DAD) events that affect patients with a severe form of this disease. The role of KKS activation in events involving the exacerbated increase in vascular permeability and its direct link with the conditions that precede intra-alveolar edema, and the consequent DAD, is evidenced. Therapy with drugs that inhibit the activation/degranulation of MCs can prevent the worsening of the prognosis and provide a better outcome for the patient.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , Permeabilidade Capilar , Sistema Calicreína-Cinina/fisiologia , Pulmão/patologia , Mastócitos/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Autopsia , COVID-19/imunologia , COVID-19/virologia , Caspase 1/metabolismo , Feminino , Humanos , Interleucina-33/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Masculino , Mastócitos/metabolismo , Mastócitos/virologia , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade
3.
Viruses ; 14(2)2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35215885

RESUMO

Mast cells, widely residing in connective tissues and on mucosal surfaces, play significant roles in battling against influenza A viruses. To gain further insights into the host cellular responses of mouse mast cells with influenza A virus infection, such as the highly pathogenic avian influenza A virus H5N1 and the human pandemic influenza A H1N1, we employed high-throughput RNA sequencing to identify differentially expressed genes (DEGs) and related signaling pathways. Our data revealed that H1N1-infected mouse mast P815 cells presented more up- and down-regulated genes compared with H5N1-infected cells. Gene ontology analysis showed that the up-regulated genes in H1N1 infection were enriched for more degranulation-related cellular component terms and immune recognition-related molecular functions terms, while the up-regulated genes in H5N1 infection were enriched for more immune-response-related biological processes. Network enrichment of the KEGG pathway analysis showed that DEGs in H1N1 infection were specifically enriched for the FoxO and autophagy pathways. In contrast, DEGs in H5N1 infection were specifically enriched for the NF-κB and necroptosis pathways. Interestingly, we found that Nbeal2 could be preferentially activated in H5N1-infected P815 cells, where the level of Nbeal2 increased dramatically but decreased in HIN1-infected P815 cells. Nbeal2 knockdown facilitated inflammatory cytokine release in both H1N1- and H5N1-infected P815 cells and aggravated the apoptosis of pulmonary epithelial cells. In summary, our data described a transcriptomic profile and bioinformatic characterization of H1N-1 or H5N1-infected mast cells and, for the first time, established the crucial role of Nbeal2 during influenza A virus infection.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Virus da Influenza A Subtipo H5N1/fisiologia , Mastócitos/metabolismo , Transcriptoma , Células A549 , Animais , Apoptose , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Linhagem Celular , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Inflamação , Mastócitos/virologia , Camundongos
4.
Front Immunol ; 12: 730346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566991

RESUMO

Mast cell activators are a novel class of mucosal vaccine adjuvants. The polymeric compound, Compound 48/80 (C48/80), and cationic peptide, Mastoparan 7 (M7) are mast cell activators that provide adjuvant activity when administered by the nasal route. However, small molecule mast cell activators may be a more cost-efficient adjuvant alternative that is easily synthesized with high purity compared to M7 or C48/80. To identify novel mast cell activating compounds that could be evaluated for mucosal vaccine adjuvant activity, we employed high-throughput screening to assess over 55,000 small molecules for mast cell degranulation activity. Fifteen mast cell activating compounds were down-selected to five compounds based on in vitro immune activation activities including cytokine production and cellular cytotoxicity, synthesis feasibility, and selection for functional diversity. These small molecule mast cell activators were evaluated for in vivo adjuvant activity and induction of protective immunity against West Nile Virus infection in BALB/c mice when combined with West Nile Virus envelope domain III (EDIII) protein in a nasal vaccine. We found that three of the five mast cell activators, ST101036, ST048871, and R529877, evoked high levels of EDIII-specific antibody and conferred comparable levels of protection against WNV challenge. The level of protection provided by these small molecule mast cell activators was comparable to the protection evoked by M7 (67%) but markedly higher than the levels seen with mice immunized with EDIII alone (no adjuvant 33%). Thus, novel small molecule mast cell activators identified by high throughput screening are as efficacious as previously described mast cell activators when used as nasal vaccine adjuvants and represent next-generation mast cell activators for evaluation in mucosal vaccine studies.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Degranulação Celular/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Febre do Nilo Ocidental/prevenção & controle , Vacinas contra o Vírus do Nilo Ocidental/administração & dosagem , Vírus do Nilo Ocidental/patogenicidade , Administração Intranasal , Animais , Linhagem Celular , Modelos Animais de Doenças , Descoberta de Drogas , Feminino , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno , Imunidade nas Mucosas/genética , Imunização , Imunogenicidade da Vacina , Mastócitos/imunologia , Mastócitos/virologia , Camundongos Endogâmicos BALB C , Estudo de Prova de Conceito , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/imunologia
5.
Front Immunol ; 12: 689436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335593

RESUMO

We investigated the reaction of mouse peritoneal mast cells (MCs) in vitro after IgG-containing immune complex introduction using A/H5N1 and A/H1N1pdm09 influenza viruses as antigens. The sera of immune mice served as a source of IgG antibodies. The concentration of histamine in the supernatants was determined at 4 hours after incubation with antisera and virus. We compared the contribution of MCs to the pathogenesis of post-immunization influenza infection with A/H5N1 and A/H1N1 influenza viruses in mice. The mice were immunized parenterally with inactivated viruses and challenged with lethal doses of drift A/H5N1 and A/H1N1 influenza viruses on the 14th day after immunization. Simultaneously, half of the mice were injected intraperitoneally with a mixture of histamine receptor blockers (chloropyramine and quamatel). In in vitro experiments, the immune complex formed by A/H5N1 virus and antiserum caused a significant increase in the histamine release compared to immune serum or the virus alone. With regard to the A/H1N1 virus, such an increase was not significant. A/H1N1 immunization caused detectable HI response in mice at 12th day after immunization, in contrast to the A/H5N1 virus. After challenge of A/H5N1-immunized mice, administration of antihistamines increased the survival rate by up to 90%. When infecting the A/H1N1-immunized mice, 90% of the animals were already protected from lethal infection by day 14; the administration of histamine receptor blockers did not increase survival. Histological examination of the lungs has shown that toluidine blue staining allows to estimate the degree of MC degranulation. The possibility of in vitro activation of murine MCs by IgG-containing immune complexes has been shown. In a model of influenza infection, it was shown that the administration of histamine receptor blockers increased survival. When the protection was formed faster due to the earlier production of HI antibodies, the administration of histamine receptor blockers did not significantly affect the course of the infection. These data allow to propose that even if there are antibody-dependent MC reactions, they can be easily stopped by the administration of histamine receptor blockers.


Assuntos
Anticorpos Antivirais/sangue , Degranulação Celular , Liberação de Histamina , Imunoglobulina G/sangue , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Pulmão/imunologia , Mastócitos/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Degranulação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Antagonistas dos Receptores Histamínicos/farmacologia , Liberação de Histamina/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H1N1/patogenicidade , Virus da Influenza A Subtipo H5N1/patogenicidade , Vacinas contra Influenza/administração & dosagem , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/virologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/virologia , Camundongos Endogâmicos CBA , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Índice de Gravidade de Doença , Fatores de Tempo , Vacinação
6.
Biofactors ; 47(2): 232-241, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33847020

RESUMO

COVID-19 leads to severe respiratory problems, but also to long-COVID syndrome associated primarily with cognitive dysfunction and fatigue. Long-COVID syndrome symptoms, especially brain fog, are similar to those experienced by patients undertaking or following chemotherapy for cancer (chemofog or chemobrain), as well in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or mast cell activation syndrome (MCAS). The pathogenesis of brain fog in these illnesses is presently unknown but may involve neuroinflammation via mast cells stimulated by pathogenic and stress stimuli to release mediators that activate microglia and lead to inflammation in the hypothalamus. These processes could be mitigated by phytosomal formulation (in olive pomace oil) of the natural flavonoid luteolin.


Assuntos
Tratamento Farmacológico da COVID-19 , Disfunção Cognitiva/tratamento farmacológico , Fadiga/tratamento farmacológico , Luteolina/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Encéfalo/virologia , COVID-19/complicações , COVID-19/fisiopatologia , COVID-19/virologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/virologia , Citocinas/genética , Fadiga/complicações , Fadiga/fisiopatologia , Fadiga/virologia , Humanos , Mastócitos/efeitos dos fármacos , Mastócitos/virologia , SARS-CoV-2/patogenicidade
7.
Front Immunol ; 12: 650331, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777047

RESUMO

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection represents a global health crisis. Immune cell activation via pattern recognition receptors has been implicated as a driver of the hyperinflammatory response seen in COVID-19. However, our understanding of the specific immune responses to SARS-CoV-2 remains limited. Mast cells (MCs) and eosinophils are innate immune cells that play pathogenic roles in many inflammatory responses. Here we report MC-derived proteases and eosinophil-associated mediators are elevated in COVID-19 patient sera and lung tissues. Stimulation of viral-sensing toll-like receptors in vitro and administration of synthetic viral RNA in vivo induced features of hyperinflammation, including cytokine elevation, immune cell airway infiltration, and MC-protease production-effects suppressed by an anti-Siglec-8 monoclonal antibody which selectively inhibits MCs and depletes eosinophils. Similarly, anti-Siglec-8 treatment reduced disease severity and airway inflammation in a respiratory viral infection model. These results suggest that MC and eosinophil activation are associated with COVID-19 inflammation and anti-Siglec-8 antibodies are a potential therapeutic approach for attenuating excessive inflammation during viral infections.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos B/imunologia , COVID-19/imunologia , Eosinófilos/imunologia , Lectinas/imunologia , Mastócitos/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , SARS-CoV-2/imunologia , Receptores Toll-Like/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/metabolismo , COVID-19/metabolismo , COVID-19/prevenção & controle , COVID-19/virologia , Estudos de Casos e Controles , Citocinas/metabolismo , Modelos Animais de Doenças , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Eosinófilos/virologia , Interações Hospedeiro-Patógeno , Humanos , Lectinas/antagonistas & inibidores , Lectinas/genética , Lectinas/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/virologia , Camundongos Transgênicos , Peptídeo Hidrolases/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Receptores Toll-Like/metabolismo
10.
Front Immunol ; 11: 585254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304349

RESUMO

Mast cells play pivotal roles in the pathogenesis of influenza A virus (IAV) infections. Defective viral particles (DPs) often arise during IAV replication, which can interfere with the replication of infectious viruses and stimulate the antiviral response of host cells. Therefore, DPs are expected to have immune-protective functions in clinic. However, the potent immunogenicity and effectiveness of DPs arising in mast cells during IAV replication have not been reported. In the present study, we showed that DPs generated in the human mastocytoma cell line HMC-1 following H1N1 infection were safe to mice after vaccination. Compared with lung adenocarcinoma cells, A549, DPs generated in infected mast cells had much better immunostimulatory activity, enhancing both humoral and cellular immunity of hosts. Notably, they could significantly increase the expression of immune-associated cytokines, especially the IFN-γ. Due to the robust immunogenicity, thus DPs generated in infected mast cells could stimulate the robust protective immune reaction effectively to fight against lethal IAV re-challenge after vaccination, which result in the high survival, decreased lung injury as well as inhibition of viral replication and inflammatory response in lungs. This study is the first to illustrate and explore the safety, immunogenicity, and effectiveness of DPs arising in mast cells against influenza as favorable potential vaccination. The results provide insight into the advances of new prophylactic strategies to fight influenza by focusing on DPs generated in mast cells.


Assuntos
Vírus Defeituosos/imunologia , Vacinas contra Influenza/imunologia , Mastócitos/virologia , Infecções por Orthomyxoviridae/imunologia , Vírion/imunologia , Animais , Linhagem Celular , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle
11.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261178

RESUMO

Mast cells (MCs) are critical for initiating inflammatory responses to pathogens including viruses. Type I interferons (IFNs) that exert their antiviral functions by interacting with the type I IFN receptor (IFNAR) play a central role in host cellular responses to viruses. Given that virus-induced excessive toxic inflammatory responses are associated with aberrant IFNAR signaling and considering MCs are an early source of inflammatory cytokines during viral infections, we sought to determine whether IFNAR signaling plays a role in antiviral cytokine responses of MCs. IFNAR-intact, IFNAR-blocked, and IFNAR-knockout (IFNAR-/-) bone-marrow-derived MCs (BMMCs) were treated in vitro with a recombinant vesicular stomatitis virus (rVSVΔm51) to assess cytokine production by these cells. All groups of MCs produced the cytokines interleukin-6 and tumor necrosis factor-α in response to rVSVΔm51. However, production of the cytokines was lowest in IFNAR-intact cells as compared with IFNAR-/- or IFNAR-blocked cells at 20 h post-stimulation. Surprisingly, rVSVΔm51 was capable of infecting BMMCs, but functional IFNAR signaling was able to protect these cells from virus-induced death. This study showed that BMMCs produced pro-inflammatory cytokines in response to rVSVΔm51 and that IFNAR signaling was required to down-modulate these responses and protect the cells from dying from viral infection.


Assuntos
Células da Medula Óssea/patologia , Citocinas/biossíntese , Citoproteção , Mastócitos/virologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Vesiculovirus/fisiologia , Animais , Morte Celular , Regulação para Baixo , Interleucina-6/metabolismo , Cinética , Camundongos Knockout , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
12.
Biofactors ; 46(6): 927-933, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33296106

RESUMO

Recent articles report elevated markers of coagulation, endothelial injury, and microthromboses in lungs from deceased COVID-19 patients. However, there has been no discussion of what may induce intravascular coagulation. Platelets are critical in the formation of thrombi and their most potent trigger is platelet activating factor (PAF), first characterized by Demopoulos and colleagues in 1979. PAF is produced by cells involved in host defense and its biological actions bear similarities with COVID-19 disease manifestations. PAF can also stimulate perivascular mast cell activation, leading to inflammation implicated in severe acute respiratory syndrome (SARS). Mast cells are plentiful in the lungs and are a rich source of PAF and of inflammatory cytokines, such as IL-1ß and IL-6, which may contribute to COVID-19 and especially SARS. The histamine-1 receptor antagonist rupatadine was developed to have anti-PAF activity, and also inhibits activation of human mast cells in response to PAF. Rupatadine could be repurposed for COVID-19 prophylaxis alone or together with other PAF-inhibitors of natural origin such as the flavonoids quercetin and luteolin, which have antiviral, anti-inflammatory, and anti-PAF actions.


Assuntos
COVID-19/prevenção & controle , Ciproeptadina/análogos & derivados , Coagulação Intravascular Disseminada/prevenção & controle , Fator de Ativação de Plaquetas/antagonistas & inibidores , Embolia Pulmonar/prevenção & controle , SARS-CoV-2/patogenicidade , Síndrome Respiratória Aguda Grave/prevenção & controle , Antivirais/uso terapêutico , Plaquetas/efeitos dos fármacos , Plaquetas/patologia , Plaquetas/virologia , COVID-19/sangue , COVID-19/patologia , COVID-19/virologia , Ciproeptadina/uso terapêutico , Coagulação Intravascular Disseminada/sangue , Coagulação Intravascular Disseminada/patologia , Coagulação Intravascular Disseminada/virologia , Regulação da Expressão Gênica , Humanos , Inflamação , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Luteolina/uso terapêutico , Mastócitos/efeitos dos fármacos , Mastócitos/patologia , Mastócitos/virologia , Fator de Ativação de Plaquetas/genética , Fator de Ativação de Plaquetas/metabolismo , Embolia Pulmonar/sangue , Embolia Pulmonar/patologia , Embolia Pulmonar/virologia , Quercetina/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Síndrome Respiratória Aguda Grave/sangue , Síndrome Respiratória Aguda Grave/patologia , Síndrome Respiratória Aguda Grave/virologia
13.
J Biol Regul Homeost Agents ; 34(6): 1971-1975, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33016027

RESUMO

SARS-Cov-2 infection causes local and systemic inflammation mediated by pro-inflammatory cytokines and COX-2 eicosanoid products with metabolic dysfunction and tissue damage that can lead to patient death. These effects are primarily induced by IL-1 cytokines, which are involved in the elevation of hepatic acute phase proteins and fever. IL-1 has a broad spectrum of biological activities and participates in both innate and acquired immunity. In infections, IL-1 induces gene expression and synthesis of several cytokines/chemokines in both macrophages and mast cells (MCs). The activation of MCs triggers the secretion of mediators stored in the granules, and the de novo synthesis of pro-inflammatory cytokines. In microorganism infections, the release of IL-1 macrophage acts on adhesion molecules and endothelial cells leading to hypotension and septic shock syndrome. IL-1 activated by SARS-CoV-2 stimulates the secretion of TNF, IL-6 and other cytokines, a pro-inflammatory complex that can lead to cytokine storm and be deleterious in both lung and systemically. In SARS-CoV-2 septic shock, severe metabolic cellular abnormalities occur which can lead to death. Here, we report that SARS-CoV-2 induces IL-1 in macrophages and MCs causing the induction of gene expression and activation of other pro-inflammatory cytokines. Since IL-1 is toxic, its production from ubiquitous MCs and macrophages activated by SARS-CoV-2 can also provokes both gastrointestinal and brain disorders. Furthermore, in these immune cells, IL-1 also elevates nitric oxide, and the release of inflammatory arachidonic acid products such as prostaglndins and thromboxane A2. All together these effects can generate cytokine storm and be the primary cause of severe inflammation with respiratory distress and death. Although, IL-1 administered in low doses may be protective; when it is produced in high doses in infectious diseases can be detrimental, therefore, IL-1 blockade has been studied in many human diseases including sepsis, resulting that blocking it is absolutely necessary. This definitely nurtures hope for a new effective therapeutic treatment. Recently, two interesting anti-IL-1 cytokines have been widely described: IL-37 and IL-1Ra. IL-37, by blocking IL-1, has been observed to have anti-inflammatory action in rodents in vivo and in transfected cells. It has been reported that IL-37 is a very powerful protein which inhibits inflammation and its inhibition can be a valid therapeutic strategy. IL-37 is a natural suppressor of inflammation that is generated through a caspase-1 that cleaves pro-IL-37 into mature IL-37 which translocates to the nucleus and inhibits the transcription of pro-inflammatory genes; while IL-1Ra inhibits inflammation by binding IL-1 to its IL-1R (receptor). We firmly believe that blocking IL-1 with an anti-inflammatory cytokine such as IL-37 and/or IL-1Ra is an effective valid therapy in a wide spectrum of inflammatory disorders including SARS-CoV-2-induced COVID-19. Here, we propose for the first time that IL-37, by blocking IL-1, may have an important role in the therapy of COVID-19.


Assuntos
COVID-19/imunologia , Síndrome da Liberação de Citocina/virologia , Interleucina-1/imunologia , Citocinas/imunologia , Humanos , Macrófagos/virologia , Mastócitos/virologia
14.
Drug Discov Ther ; 14(5): 259-261, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33116043

RESUMO

Regardless of the severity of coronavirus disease 2019 (COVID-19), a high proportion of patients struggle with persistent respiratory or systemic symptoms after recovery. This is called "postCOVID syndrome", for which pulmonary fibrosis is one of the pathogenesis. Besides T-lymphocytes and macrophages, mast cells also contribute to the development of cytokine storm and thus stimulate the activity of fibroblasts. Additionally, by the exocytotic release of fibroblast-activating factors, mast cells directly facilitate the progression of pulmonary fibrosis. In our previous basic studies, anti-allergic drugs (olopatadine, ketotifen), antibiotics (clarithromycin) and corticosteroids (hydrocortisone, dexamethasone) inhibited the process of exocytosis and showed their potency as highly effective mast cell stabilizers. Given such pharmacological properties of these commonly used drugs, they may be useful in the treatment of post-COVID-19 pulmonary fibrosis and in relieving the symptoms of post-COVID syndrome.


Assuntos
Corticosteroides/uso terapêutico , Antialérgicos/uso terapêutico , Antibacterianos/uso terapêutico , Betacoronavirus/patogenicidade , Degranulação Celular/efeitos dos fármacos , Infecções por Coronavirus/virologia , Mastócitos/efeitos dos fármacos , Pneumonia Viral/virologia , Fibrose Pulmonar/tratamento farmacológico , Animais , COVID-19 , Infecções por Coronavirus/imunologia , Interações Hospedeiro-Patógeno , Humanos , Mastócitos/imunologia , Mastócitos/virologia , Pandemias , Pneumonia Viral/imunologia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/virologia , SARS-CoV-2
15.
J Biol Regul Homeost Agents ; 34(5): 1629-1632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32945158

RESUMO

SARS-CoV-2 virus is an infectious agent commonly found in certain mammalian animal species and today also in humans. SARS-CoV-2, can cause a pandemic infection with severe acute lung injury respiratory distress syndrome in patients with COVID-19, that can lead to patient death across all ages. The pathology associated with pandemic infection is linked to an over-response of immune cells, including virus-activated macrophages and mast cells (MCs). The local inflammatory response in the lung that occurs after exposure to SARS-CoV-2 is due to a complex network of activated inflammatory innate immune cells and structural lung cells such as bronchial epithelial cells, endothelial cells and fibroblasts. Bronchial epithelial cells and fibroblasts activated by SARS-CoV-2 can result in the up-regulation of pro-inflammatory cytokines and induction of MC differentiation. In addition, endothelial cells which control leukocyte traffic through the expression of adhesion molecules are also able to amplify leukocyte activation by generating interleukin (IL)-1, IL-6 and CXC chemokines. In this pathologic environment, the activation of mast cells (MCs) causes the release of histamine, proteases, cytokines, chemokines and arachidonic acid compounds, such as prostaglandin D2 and leukotrienes, all of which are involved in the inflammatory network. Histamine is stored endogenously within the secretory granules of MCs and is released into the vessels after cell stimulation. Histamine is involved in the expression of chemokine IL-8 and cytokine IL-6, an effect that can be inhibited by histamine receptor antagonists. IL-1 is a pleiotropic cytokine that is mainly active in inflammation and immunity. Alveolar macrophages activated by SARS-CoV-2 through the TLR produce IL-1 which stimulates MCs to produce IL-6. IL-1 in combination with IL-6 leads to excessive inflammation which can be lethal. In an interesting study published several years ago (by E. Vannier et al., 1993), it was found that histamine as well as IL-1 are implicated in the pathogenesis of pulmonary inflammatory reaction, after micorganism immune cell activation. IL-1 in combination with histamine can cause a strong increase of IL-1 levels and, consequently, a higher degree of inflammation. However, it has been reported that histamine alone has no effect on IL-1 production. Furthermore, histamine enhances IL-1-induced IL-6 gene expression and protein synthesis via H2 receptors in peripheral monocytes. Therefore, since MCs are large producers of histamine in inflammatory reactions, this vasoactive amine, by increasing the production of IL-1, can amplify the inflammatory process in the lung infected with SARS-CoV-2. Here, we have proposed for the first time an emerging role for histamine released by MCs which in combination with IL-1 can cause an increase in lung inflammation induced by the viral infection SARS-CoV-2.


Assuntos
Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina/virologia , Histamina/imunologia , Interleucina-1/imunologia , Mastócitos/virologia , Pneumonia Viral/imunologia , Betacoronavirus , COVID-19 , Células Endoteliais/virologia , Humanos , Inflamação , Pandemias , SARS-CoV-2
16.
Life Sci ; 258: 118230, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777303

RESUMO

Here we evaluate the role of mast cells in infection with influenza A/H5N1 virus in immunized mice. CBA mice were immunized intramuscularly with formalin-inactivated A/Vietnam/1194/2004 (H5N1)NIBRG-14 (H5N1). Serum samples were obtained on days 7, 12, 14, 21 after immunization. At day 14, the mice were infected intranasally with the A/Indonesia/5/2005 (H5N1)IDCDC-RG2 (H5N1) influenza virus with half of the animals receiving a mixture of the antihistamines. 67% of the vaccinated mice were protected from the lethality compared to 43% in the PBS-immunized group. Administration of antihistamines increased survival up to 85%-95%. Immunohistochemical examination using CD117 staining of the lungs demonstrated a larger quantity of activated mast cells after infection of immunized mice compared to mock-immunized mice. This was correlated to increased histamine level in the lungs and blood. Our experimental results suggest the involvement of mast cells and the histamine they produce in the pathogenesis of influenza infection in case of incomplete formation of the immune response to vaccination and mismatch of the vaccine and infection influenza viruses.


Assuntos
Degranulação Celular/fisiologia , Liberação de Histamina/fisiologia , Virus da Influenza A Subtipo H5N1 , Mastócitos/fisiologia , Mastócitos/virologia , Infecções por Orthomyxoviridae/metabolismo , Animais , Embrião de Galinha , Chlorocebus aethiops , Mastócitos/patologia , Camundongos , Infecções por Orthomyxoviridae/patologia , Células Vero
17.
Neuroscientist ; 26(5-6): 402-414, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684080

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new pandemic infectious disease that originated in China. COVID-19 is a global public health emergency of international concern. COVID-19 causes mild to severe illness with high morbidity and mortality, especially in preexisting risk groups. Therapeutic options are now limited to COVID-19. The hallmark of COVID-19 pathogenesis is the cytokine storm with elevated levels of interleukin-6 (IL-6), IL-1ß, tumor necrosis factor-alpha (TNF-α), chemokine (C-C-motif) ligand 2 (CCL2), and granulocyte-macrophage colony-stimulating factor (GM-CSF). COVID-19 can cause severe pneumonia, and neurological disorders, including stroke, the damage to the neurovascular unit, blood-brain barrier disruption, high intracranial proinflammatory cytokines, and endothelial cell damage in the brain. Mast cells are innate immune cells and also implicated in adaptive immune response, systemic inflammatory diseases, neuroinflammatory diseases, traumatic brain injury and stroke, and stress disorders. SARS-CoV-2 can activate monocytes/macrophages, dendritic cells, T cells, mast cells, neutrophils, and induce cytokine storm in the lung. COVID-19 can activate mast cells, neurons, glial cells, and endothelial cells. SARS-CoV-2 infection can cause psychological stress and neuroinflammation. In conclusion, COVID-19 can induce mast cell activation, psychological stress, cytokine storm, and neuroinflammation.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/fisiopatologia , Citocinas/imunologia , Mastócitos/imunologia , Doenças do Sistema Nervoso/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/fisiopatologia , Estresse Psicológico/fisiopatologia , COVID-19 , Infecções por Coronavirus/complicações , Humanos , Mastócitos/virologia , Doenças do Sistema Nervoso/complicações , Pandemias , Pneumonia Viral/complicações , SARS-CoV-2
18.
Biofactors ; 46(3): 306-308, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32339387
19.
Cells ; 9(4)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316163

RESUMO

Zika virus (ZIKV) is an emergent arthropod-borne virus whose outbreak in Brazil has brought major public health problems. Infected individuals have different symptoms, including rash and pruritus, which can be relieved by the administration of antiallergics. In the case of pregnant women, ZIKV can cross the placenta and infect the fetus leading to congenital defects. We have identified that mast cells in the placentae of patients who had Zika during pregnancy can be infected. This led to our investigation on the possible role of mast cells during a ZIKV infection, using the HMC-1 cell line. We analyzed their permissiveness to infection, release of mediators and ultrastructural changes. Flow cytometry detection of ZIKV-NS1 expression 24 h post infection in 45.3% of cells showed that HMC-1 cells are permissive to ZIKV infection. Following infection, ß-hexosaminidase was measured in the supernatant of the cells with a notable release at 30 min. In addition, an increase in TNF-α, IL-6, IL-10 and VEGF levels were measured at 6 h and 24 h post infection. Lastly, different intracellular changes were observed in an ultrastructural analysis of infected cells. Our findings suggest that mast cells may represent an important source of mediators that can activate other immune cell types during a ZIKV infection, which has the potential to be a major contributor in the spread of the virus in cases of vertical transmission.


Assuntos
Citocinas/metabolismo , Mastócitos/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Adulto , Brasil , Linhagem Celular , Feminino , Humanos , Imuno-Histoquímica , Transmissão Vertical de Doenças Infecciosas , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Mastócitos/patologia , Mastócitos/ultraestrutura , Mastócitos/virologia , Microscopia Eletrônica de Transmissão , Placenta/imunologia , Placenta/metabolismo , Placenta/virologia , Gravidez , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Zika virus/patogenicidade , Infecção por Zika virus/enzimologia , Infecção por Zika virus/fisiopatologia , Infecção por Zika virus/transmissão , beta-N-Acetil-Hexosaminidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...