Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.886
Filtrar
1.
Carbohydr Polym ; 338: 122204, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763712

RESUMO

This study presents the development and characterization of a novel double-network self-healing hydrogel based on N-carboxyethyl chitosan (CEC) and oxidized dextran (OD) with the incorporation of crosslinked collagen (CEC-OD/COL-GP) to enhance its biological and physicochemical properties. The hydrogel formed via dynamic imine bond formation exhibited efficient self-healing within 30 min, and a compressive modulus recovery of 92 % within 2 h. In addition to its self-healing ability, CEC-OD/COL-GP possesses unique physicochemical characteristics including transparency, injectability, and adhesiveness to various substrates and tissues. Cell encapsulation studies confirmed the biocompatibility and suitability of the hydrogel as a cell-culture scaffold, with the presence of a collagen network that enhances cell adhesion, spreading, long-term cell viability, and proliferation. Leveraging their unique properties, we engineered assemblies of self-healing hydrogel modules for controlled spatiotemporal drug delivery and constructed co-culture models that simulate angiogenesis in tumor microenvironments. Overall, the CEC-OD/COL-GP hydrogel is a versatile and promising material for biomedical applications, offering a bottom-up approach for constructing complex structures with self-healing capabilities, controlled drug release, and support for diverse cell types in 3D environments. This hydrogel platform has considerable potential for advancements in tissue engineering and therapeutic interventions.


Assuntos
Adesão Celular , Quitosana , Dextranos , Hidrogéis , Hidrogéis/química , Hidrogéis/farmacologia , Quitosana/química , Dextranos/química , Humanos , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Animais , Liberação Controlada de Fármacos , Proliferação de Células/efeitos dos fármacos , Encapsulamento de Células/métodos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Camundongos , Biomimética/métodos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Alicerces Teciduais/química
2.
Bioorg Chem ; 147: 107418, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703441

RESUMO

A key approach in developing green chemistry involves converting solar energy into chemical energy of biomolecules through photocatalysis. Photocatalysis can facilitate the regeneration of nicotinamide cofactors during redox processes. Nicotinamide cofactor biomimetics (NCBs) are economical substitutes for natural cofactors. Here, photocatalytic regeneration of NADH and reduced NCBs (NCBsred) using graphitic carbon nitride (g-C3N4) was developed. The process involves g-C3N4 as the photocatalyst, Cp*Rh(bpy)H2O2+ as the electron mediator, and Triethanolamine as the electron donor, facilitating the reduction of NAD+ and various oxidative NCBs (NCBsox) under light irradiation. Notably, the highest reduction yield of 48.32 % was achieved with BANA+, outperforming the natural cofactor NAD+. Electrochemical analysis reveals that the reduction efficiency and capacity of cofactors relies on their redox potentials. Additionally, a coupled photo-enzymatic catalysis system was explored for the reduction of 4-Ketoisophorone by Old Yellow Enzyme XenA. Among all the NCBsox and NAD+, the highest conversion ratio of over 99 % was obtained with BANA+. After recycled for 8 times, g-C3N4 maintained over 93.6 % catalytic efficiency. The photocatalytic cofactor regeneration showcases its outstanding performance with NAD+ as well as NCBsox. This work significantly advances the development of photocatalytic cofactor regeneration for artificial cofactors and its potential application.


Assuntos
Biocatálise , Oxirredução , Processos Fotoquímicos , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Estrutura Molecular , NAD/química , NAD/metabolismo , Biomimética , Niacinamida/química , Niacinamida/metabolismo , Compostos de Nitrogênio/química , Grafite
3.
Bioinspir Biomim ; 19(4)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38722361

RESUMO

Aiming at the blade flutter of large horizontal-axis wind turbines, a method by utilizing biomimetic corrugation to suppress blade flutter is first proposed. By extracting the dragonfly wing corrugation, the biomimetic corrugation airfoil is constructed, finding that mapping corrugation to the airfoil pressure side has better aerodynamic performance. The influence of corrugation type, amplitudeλ, and intensity on airfoil flutter is analyzed using orthogonal experiment, which determines that theλhas the greatest influence on airfoil flutter. Based on the fluctuation range of the moment coefficient ΔCm, the optimal airfoil flutter suppression effect is obtained when the type is III,λ= 0.6, and intensity is denser (n= 13). The effective corrugation layout area in the chord direction is determined to be the leading edge, and the ΔCmof corrugation airfoil is reduced by 7.405%, compared to the original airfoil. The application of this corrugation to NREL 15 MW wind turbine 3D blades is studied, and the influence of corrugation layout length in the blade span direction on the suppressive effect is analyzed by fluid-structure interaction. It is found that when the layout length is 0.85 R, the safety marginSfreaches a maximum value of 0.3431 Hz, which is increased 2.940%. The results show that the biomimetic corrugated structure proposed in this paper can not only improve the aerodynamic performance by changing the local flow field on the surface of the blade, but also increase the structural stiffness of the blade itself, and achieve the effect of flutter suppression.


Assuntos
Biomimética , Desenho de Equipamento , Vento , Asas de Animais , Animais , Asas de Animais/fisiologia , Biomimética/métodos , Odonatos/fisiologia , Materiais Biomiméticos/química , Voo Animal/fisiologia , Centrais Elétricas
4.
Sci Adv ; 10(19): eadm9561, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718119

RESUMO

Lactic acid (LA) accumulation in the tumor microenvironment poses notable challenges to effective tumor immunotherapy. Here, an intelligent tumor treatment microrobot based on the unique physiological structure and metabolic characteristics of Veillonella atypica (VA) is proposed by loading Staphylococcus aureus cell membrane-coating BaTiO3 nanocubes (SAM@BTO) on the surface of VA cells (VA-SAM@BTO) via click chemical reaction. Following oral administration, VA-SAM@BTO accurately targeted orthotopic colorectal cancer through inflammatory targeting of SAM and hypoxic targeting of VA. Under in vitro ultrasonic stimulation, BTO catalyzed two reduction reactions (O2 → •O2- and CO2 → CO) and three oxidation reactions (H2O → •OH, GSH → GSSG, and LA → PA) simultaneously, effectively inducing immunogenic death of tumor cells. BTO catalyzed the oxidative coupling of VA cells metabolized LA, effectively disrupting the immunosuppressive microenvironment, improving dendritic cell maturation and macrophage M1 polarization, and increasing effector T cell proportions while decreasing regulatory T cell numbers, which facilitates synergetic catalysis and immunotherapy.


Assuntos
Neoplasias Colorretais , Imunoterapia , Microambiente Tumoral , Neoplasias Colorretais/terapia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Imunoterapia/métodos , Animais , Camundongos , Humanos , Catálise , Linhagem Celular Tumoral , Nanoestruturas/química , Materiais Biomiméticos/química , Administração Oral , Titânio/química , Biomimética/métodos , Ácido Láctico/química , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Compostos de Bário
5.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731407

RESUMO

The problem of bacterial resistance has become more and more common with improvements in health care. Worryingly, the misuse of antibiotics leads to an increase in bacterial multidrug resistance and the development of new antibiotics has virtually stalled. These challenges have prompted the need to combat bacterial infections with the use of radically different approaches. Taking lessons from the exciting properties of micro-/nano-natural-patterned surfaces, which can destroy cellular integrity, the construction of artificial surfaces to mimic natural functions provides new opportunities for the innovation and development of biomedicine. Due to the diversity of natural surfaces, functional surfaces inspired by natural surfaces have a wide range of applications in healthcare. Nature-inspired surface structures have emerged as an effective and durable strategy to prevent bacterial infection, opening a new way to alleviate the problem of bacterial drug resistance. The present situation of bactericidal and antifouling surfaces with natural and biomimetic micro-/nano-structures is briefly reviewed. In addition, these innovative nature-inspired methods are used to manufacture a variety of artificial surfaces to achieve extraordinary antibacterial properties. In particular, the physical antibacterial effect of nature-inspired surfaces and the functional mechanisms of chemical groups, small molecules, and ions are discussed, as well as the wide current and future applications of artificial biomimetic micro-/nano-surfaces. Current challenges and future development directions are also discussed at the end. In the future, controlling the use of micro-/nano-structures and their subsequent functions will lead to biomimetic surfaces offering great potential applications in biomedicine.


Assuntos
Antibacterianos , Nanoestruturas , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Humanos , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle
6.
Anal Chim Acta ; 1306: 342598, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692791

RESUMO

BACKGROUND: Carbon-based nanozymes have recently received enormous concern, however, there is still a huge challenge for inexpensive and large-scale synthesis of magnetic carbon-based "Two-in-One" mimics with both peroxidase (POD)-like and laccase-like activities, especially their potential applications in multi-mode sensing of antibiotics and neurotransmitters in biofluids. Although some progresses have been made in this field, the feasibility of biomass-derived carbon materials with both POD-like and laccase-like activities by polyatomic doping strategy is still unclear. In addition, multi-mode sensing platform can provide a more reliable result because of the self-validation, self-correction and mutual agreement. Nevertheless, the use of magnetic carbon-based nanozyme sensors for the multi-mode detection of antibiotics and neurotransmitters have not been investigated. RESULTS: We herein report a shrimp shell-derived N, O-codoped porous carbon confined magnetic CuFe2O4 nanosphere with outstanding laccase-like and POD-like activities for triple-mode sensing of antibiotic d-penicillamine (D-PA) and chloramphenicol (CPL), as well as colorimetric detection of neurotransmitters in biofluids. The magnetic CuFe2O4/N, O-codoped porous carbon (MCNPC) armored mimetics was successfully fabricated using a combined in-situ coordination and high-temperature crystallization method. The synthesized MCNPC composite with superior POD-like activity can be used for colorimetric/temperature/smartphone-based triple-mode detection of D-PA and CPL in goat serum. Importantly, the MCNPC nanozyme can also be used for colorimetric analysis of dopamine and epinephrine in human urine. SIGNIFICANCE: This work not only offered a novel strategy to large-scale, cheap synthesize magnetic carbon-based "Two-in-One" armored mimetics, but also established the highly sensitive and selective platforms for triple-mode monitoring D-PA and CPL, as well as colorimetric analysis of neurotransmitters in biofluids without any tanglesome sample pretreatment.


Assuntos
Antibacterianos , Carbono , Cobre , Neurotransmissores , Carbono/química , Antibacterianos/análise , Antibacterianos/urina , Antibacterianos/sangue , Neurotransmissores/urina , Neurotransmissores/análise , Neurotransmissores/sangue , Porosidade , Cobre/química , Humanos , Nanosferas/química , Colorimetria/métodos , Compostos Férricos/química , Materiais Biomiméticos/química , Animais , Técnicas Biossensoriais/métodos , Cloranfenicol/análise , Cloranfenicol/urina , Limite de Detecção
7.
Int J Nanomedicine ; 19: 3957-3972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711614

RESUMO

Purpose: Current treatment approaches for Prostate cancer (PCa) often come with debilitating side effects and limited therapeutic outcomes. There is urgent need for an alternative effective and safe treatment for PCa. Methods: We developed a nanoplatform to target prostate cancer cells based on graphdiyne (GDY) and a copper-based metal-organic framework (GDY-CuMOF), that carries the chemotherapy drug doxorubicin (DOX) for cancer treatment. Moreover, to provide GDY-CuMOF@DOX with homotypic targeting capability, we coated the PCa cell membrane (DU145 cell membrane, DCM) onto the surface of GDY-CuMOF@DOX, thus obtaining a biomimetic nanoplatform (DCM@GDY-CuMOF@DOX). The nanoplatform was characterized by using transmission electron microscope, atomic force microscope, X-ray diffraction, etc. Drug release behavior, antitumor effects in vivo and in vitro, and biosafety of the nanoplatform were evaluated. Results: We found that GDY-CuMOF exhibited a remarkable capability to load DOX mainly through π-conjugation and pore adsorption, and it responsively released DOX and generated Cu+ in the presence of glutathione (GSH). In vivo experiments demonstrated that this nanoplatform exhibits remarkable cell-killing efficiency by generating lethal reactive oxygen species (ROS) and mediating cuproptosis. In addition, DCM@GDY-CuMOF@DOX effectively suppresses tumor growth in vivo without causing any apparent side effects. Conclusion: The constructed DCM@GDY-CuMOF@DOX nanoplatform integrates tumor targeting, drug-responsive release and combination with cuproptosis and chemodynamic therapy, offering insights for further biomedical research on efficient PCa treatment.


Assuntos
Cobre , Doxorrubicina , Grafite , Estruturas Metalorgânicas , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Doxorrubicina/farmacologia , Doxorrubicina/química , Animais , Humanos , Linhagem Celular Tumoral , Cobre/química , Cobre/farmacologia , Grafite/química , Grafite/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Liberação Controlada de Fármacos , Espécies Reativas de Oxigênio/metabolismo , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Camundongos Nus , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Portadores de Fármacos/química , Ensaios Antitumorais Modelo de Xenoenxerto
8.
ACS Appl Mater Interfaces ; 16(19): 25101-25112, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691046

RESUMO

The evolution of nano-drug delivery systems addresses the limitations of conventional cancer treatments with stimulus-responsive nanomaterial-based delivery systems presenting temporal and spatial advantages. Among various nanomaterials, boron nitride nanoparticles (BNNs) demonstrate significant potential in drug delivery and cancer treatment, providing a high drug loading capacity, multifunctionality, and low toxicity. However, the challenge lies in augmenting nanomaterial accumulation exclusively within tumors while preserving healthy tissues. To address this, we introduce a novel approach involving cancer cell membrane-functionalized BNNs (CM-BIDdT) for the codelivery of doxorubicin (Dox) and indocyanine green to treat homologous tumor. The cancer cell membrane biomimetic CM-BIDdT nanoparticles possess highly efficient homologous targeting capabilities toward tumor cells. The surface modification with acylated TAT peptides (dTAT) further enhances the nanoparticle intracellular accumulation. Consequently, CM-BIDdT nanoparticles, responsive to the acidic tumor microenvironment, hydrolyze amide bonds, activate the transmembrane penetrating function, and achieve precise targeting with substantial accumulation at the tumor site. Additionally, the photothermal effect of CM-BIDdT under laser irradiation not only kills cells through thermal ablation but also destroys the membrane on the surface of the nanoparticles, facilitating Dox release. Therefore, the fabricated CM-BIDdT nanoparticles orchestrate chemo-photothermal combination therapy and effectively inhibit tumor growth with minimal adverse effects, holding promise as a new modality for synergistic cancer treatment.


Assuntos
Compostos de Boro , Doxorrubicina , Verde de Indocianina , Nanopartículas , Doxorrubicina/química , Doxorrubicina/farmacologia , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Compostos de Boro/química , Compostos de Boro/farmacologia , Animais , Humanos , Camundongos , Nanopartículas/química , Linhagem Celular Tumoral , Terapia Fototérmica , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia , Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Camundongos Endogâmicos BALB C , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos
9.
Nat Commun ; 15(1): 4072, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773087

RESUMO

Natural materials typically exhibit irregular and non-periodic architectures, endowing them with compelling functionalities such as body protection, camouflage, and mechanical stress modulation. Among these functionalities, mechanical stress modulation is crucial for homeostasis regulation and tissue remodeling. Here, we uncover the relationship between stress modulation functionality and the irregularity of bio-inspired architected materials by a generative computational framework. This framework optimizes the spatial distribution of a limited set of basic building blocks and uses these blocks to assemble irregular materials with heterogeneous, disordered microstructures. Despite being irregular and non-periodic, the assembled materials display spatially varying properties that precisely modulate stress distribution towards target values in various control regions and load cases, echoing the robust stress modulation capability of natural materials. The performance of the generated irregular architected materials is experimentally validated with 3D printed physical samples - a good agreement with target stress distribution is observed. Owing to its capability to redirect loads while keeping a proper amount of stress to stimulate bone repair, we demonstrate the potential application of the stress-programmable architected materials as support in orthopedic femur restoration.


Assuntos
Estresse Mecânico , Impressão Tridimensional , Humanos , Fêmur , Materiais Biomiméticos/química , Engenharia Tecidual/métodos , Teste de Materiais , Alicerces Teciduais/química
10.
Biomed Mater ; 19(4)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38697149

RESUMO

To effectively address underlying issues and enhance the healing process of hard-to-treat soft tissue defects, innovative therapeutic approaches are required. One promising strategy involves the incorporation of bioactive substances into biodegradable scaffolds to facilitate synergistic tissue regeneration, particularly in vascular regeneration. In this study, we introduce a composite hydrogel design that mimics the extracellular matrix by covalently combining gelatin and hyaluronic acid (HA), with the encapsulation of deferoxamine nanoparticles (DFO NPs) for potential tissue regeneration applications. Crosslinked hydrogels were fabricated by controlling the ratio of HA in the gelatin-based hydrogels, resulting in improved mechanical properties, enhanced degradation ability, and optimised porosity, compared with hydrogel formed by gelatin alone. The DFO NPs, synthesized using a double emulsion method with poly (D,L-lactide-co-glycolide acid), exhibited a sustained release of DFO over 12 d. Encapsulating the DFO NPs in the hydrogel enabled controlled release over 15 d. The DFO NPs, composite hydrogel, and the DFO NPs loaded hydrogel exhibited excellent cytocompatibility and promoted cell proliferationin vitro. Subcutaneous implantation of the composite hydrogel and the DFO NPs loaded hydrogel demonstrated biodegradability, tissue integration, and no obvious adverse effects, evidenced by histological analysis. Furthermore, the DFO NPs loaded composite hydrogel exhibited accelerated wound closure and promoted neovascularisation and granular formation when tested in an excisional skin wound model in mice. These findings highlight the potential of our composite hydrogel system for promoting the faster healing of diabetes-induced skin wounds and oral lesions through its ability to modulate tissue regeneration processes.


Assuntos
Materiais Biomiméticos , Desferroxamina , Gelatina , Ácido Hialurônico , Hidrogéis , Nanopartículas , Gelatina/química , Desferroxamina/química , Desferroxamina/farmacologia , Animais , Hidrogéis/química , Ácido Hialurônico/química , Nanopartículas/química , Camundongos , Materiais Biomiméticos/química , Proliferação de Células/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Humanos , Porosidade , Regeneração , Biomimética
11.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731897

RESUMO

Inspired by nature's remarkable ability to form intricate minerals, researchers have unlocked transformative strategies for creating next-generation biosensors with exceptional sensitivity, selectivity, and biocompatibility. By mimicking how organisms orchestrate mineral growth, biomimetic and bioinspired materials are significantly impacting biosensor design. Engineered bioinspired materials offer distinct advantages over their natural counterparts, boasting superior tunability, precise controllability, and the ability to integrate specific functionalities for enhanced sensing capabilities. This remarkable versatility enables the construction of various biosensing platforms, including optical sensors, electrochemical sensors, magnetic biosensors, and nucleic acid detection platforms, for diverse applications. Additionally, bioinspired materials facilitate the development of smartphone-assisted biosensing platforms, offering user-friendly and portable diagnostic tools for point-of-care applications. This review comprehensively explores the utilization of naturally occurring and engineered biominerals and materials for diverse biosensing applications. We highlight the fabrication and design strategies that tailor their functionalities to address specific biosensing needs. This in-depth exploration underscores the transformative potential of biominerals and materials in revolutionizing biosensing, paving the way for advancements in healthcare, environmental monitoring, and other critical fields.


Assuntos
Materiais Biomiméticos , Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Materiais Biomiméticos/química , Humanos , Minerais/química , Minerais/análise , Animais , Biomimética/métodos
12.
Bioinspir Biomim ; 19(4)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38714195

RESUMO

Euplectella aspergillummarine sponge spicules are renowned for their remarkable strength and toughness. These spicules exhibit a unique concentric layering structure, which contributes to their exceptional mechanical resistance. In this study, finite element method simulations were used to comprehensively investigate the effect of nested cylindrical structures on the mechanical properties of spicules. This investigation leveraged scanning electron microscopy images to guide the computational modeling of the microstructure and the results were validated by three-point bending tests of 3D-printed spicule-inspired structures. The numerical analyses showed that the nested structure of spicules induces stress and strain jumps on the layer interfaces, reducing the load on critical zones of the fiber and increasing its toughness. It was found that this effect shows a tapering enhancement as the number of layers increases, which combines with a threshold related to the 3D-printing manufacturability to suggest a compromise for optimal performance. A comprehensive evaluation of the mechanical properties of these fibers can assist in developing a new generation of bioinspired structures with practical real-world applications.


Assuntos
Análise de Elementos Finitos , Impressão Tridimensional , Estresse Mecânico , Animais , Poríferos/fisiologia , Simulação por Computador , Materiais Biomiméticos/química , Microscopia Eletrônica de Varredura
13.
Biosens Bioelectron ; 258: 116370, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744115

RESUMO

Protein phosphorylation is a significant post-translational modification that plays a decisive role in the occurrence and development of diseases. However, the rapid and accurate identification of phosphoproteins remains challenging. Herein, a high-throughput sensor array has been constructed based on a magnetic bimetallic nanozyme (Fe3O4@ZNP@UiO-66) for the identification and discrimination of phosphoproteins. Attributing to the formation of Fe-Zr bimetallic dual active centers, the as-prepared Fe3O4@ZNP@UiO-66 exhibits enhanced peroxidase-mimicking catalytic activity, which promotes the electron transfer from Zr center to Fe(II)/Fe(III). The catalytic activity of Fe3O4@ZNP@UiO-66 can be selectively inhibited by phosphoproteins due to the strong interaction between phosphate groups and Zr centers, as well as the ultra-robust antifouling capability of zwitterionic dopamine nanoparticle (ZNP). Considering the diverse binding affinities between various proteins with the nanozyme, the catalytic activity of Fe3O4@ZNP@UiO-66 can be changed to various degree, leading to the different absorption responses at 420 nm in the hydrogen peroxide (H2O2) - 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) system. By simply extracting different absorbance intensities at various time points, a sensor array based on reaction kinetics for the discrimination of phosphoproteins from other proteins is constructed through linear discriminant analysis (LDA). Besides, the quantitative determination of phosphoproteins and identification of protein mixtures have been realized. Further, based on the differential level of phosphoproteins in cells, the differentiation of cancer cells from normal cells can also be implemented by utilizing the proposed sensor array, showing great potential in disease diagnosis.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio , Neoplasias , Fosfoproteínas , Zircônio , Técnicas Biossensoriais/métodos , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Peróxido de Hidrogênio/química , Zircônio/química , Peroxidase/química , Dopamina/química , Limite de Detecção , Materiais Biomiméticos/química , Catálise
14.
J Nanobiotechnology ; 22(1): 263, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760755

RESUMO

The prevalence of cardiovascular diseases continues to be a challenge for global health, necessitating innovative solutions. The potential of high-density lipoprotein (HDL) mimetic nanotherapeutics in the context of cardiovascular disease and the intricate mechanisms underlying the interactions between monocyte-derived cells and HDL mimetic showing their impact on inflammation, cellular lipid metabolism, and the progression of atherosclerotic plaque. Preclinical studies have demonstrated that HDL mimetic nanotherapeutics can regulate monocyte recruitment and macrophage polarization towards an anti-inflammatory phenotype, suggesting their potential to impede the progression of atherosclerosis. The challenges and opportunities associated with the clinical application of HDL mimetic nanotherapeutics, emphasize the need for additional research to gain a better understanding of the precise molecular pathways and long-term effects of these nanotherapeutics on monocytes and macrophages to maximize their therapeutic efficacy. Furthermore, the use of nanotechnology in the treatment of cardiovascular diseases highlights the potential of nanoparticles for targeted treatments. Moreover, the concept of theranostics combines therapy and diagnosis to create a selective platform for the conversion of traditional therapeutic medications into specialized and customized treatments. The multifaceted contributions of HDL to cardiovascular and metabolic health via highlight its potential to improve plaque stability and avert atherosclerosis-related problems. There is a need for further research to maximize the therapeutic efficacy of HDL mimetic nanotherapeutics and to develop targeted treatment approaches to prevent atherosclerosis. This review provides a comprehensive overview of the potential of nanotherapeutics in the treatment of cardiovascular diseases, emphasizing the need for innovative solutions to address the challenges posed by cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Lipoproteínas HDL , Macrófagos , Monócitos , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Doenças Cardiovasculares/tratamento farmacológico , Monócitos/efeitos dos fármacos , Nanopartículas/química , Aterosclerose/tratamento farmacológico , Placa Aterosclerótica/tratamento farmacológico , Nanomedicina/métodos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia
15.
Technol Cancer Res Treat ; 23: 15330338241250244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693842

RESUMO

Single biofilm biomimetic nanodrug delivery systems based on single cell membranes, such as erythrocytes and cancer cells, have immune evasion ability, good biocompatibility, prolonged blood circulation, and high tumor targeting. Because of the different characteristics and functions of each single cell membrane, more researchers are using various hybrid cell membranes according to their specific needs. This review focuses on several different types of biomimetic nanodrug-delivery systems based on composite biofilms and looks forward to the challenges and possible development directions of biomimetic nanodrug-delivery systems based on composite biofilms to provide reference and ideas for future research.


Assuntos
Antineoplásicos , Biofilmes , Biomimética , Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Biomimética/métodos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Materiais Biomiméticos/química , Animais , Portadores de Fármacos/química
16.
Biofabrication ; 16(3)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697099

RESUMO

Rotator cuff tear is one of the most common musculoskeletal disorders, which often results in recurrent shoulder pain and limited movement. Enthesis is a structurally complex and functionally critical interface connecting tendon and bone that plays an essential role in maintaining integrity of the shoulder joint. Despite the availability of advanced surgical procedures for rotator cuff repair, there is a high rate of failure following surgery due to suboptimal enthesis healing and regeneration. Novel strategies based on tissue engineering are gaining popularity in improving tendon-bone interface (TBI) regeneration. Through incorporating physical and biochemical cues into scaffold design which mimics the structure and composition of native enthesis is advantageous to guide specific differentiation of seeding cells and facilitate the formation of functional tissues. In this review, we summarize the current state of research in enthesis tissue engineering highlighting the development and application of biomimetic scaffolds that replicate the gradient TBI. We also discuss the latest techniques for fabricating potential translatable scaffolds such as 3D bioprinting and microfluidic device. While preclinical studies have demonstrated encouraging results of biomimetic gradient scaffolds, the translation of these findings into clinical applications necessitates a comprehensive understanding of their safety and long-term efficacy.


Assuntos
Manguito Rotador , Engenharia Tecidual , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Manguito Rotador/cirurgia , Animais , Materiais Biomiméticos/química , Regeneração , Biomimética , Lesões do Manguito Rotador/cirurgia , Impressão Tridimensional
17.
ACS Appl Bio Mater ; 7(5): 2862-2871, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38699864

RESUMO

Mosquito-borne viruses are a major worldwide health problem associated with high morbidity and mortality rates and significant impacts on national healthcare budgets. The development of antiviral drugs for both the treatment and prophylaxis of these diseases is thus of considerable importance. To address the need for therapeutics with antiviral activity, a library of heparan sulfate mimetic polymers was screened against dengue virus (DENV), Yellow fever virus (YFV), Zika virus (ZIKV), and Ross River virus (RRV). The polymers were prepared by RAFT polymerization of various acidic monomers with a target MW of 20 kDa (average Mn ∼ 27 kDa by GPC). Among the polymers, poly(SS), a homopolymer of sodium styrenesulfonate, was identified as a broad spectrum antiviral with activity against all the tested viruses and particularly potent inhibition of YFV (IC50 = 310 pM). Our results further uncovered that poly(SS) exhibited a robust inhibition of ZIKV infection in both mosquito and human cell lines, which points out the potential functions of poly(SS) in preventing mosquito-borne viruses associated diseases by blocking viral transmission in their mosquito vectors and mitigating viral infection in patients.


Assuntos
Antivirais , Heparitina Sulfato , Polímeros , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Heparitina Sulfato/química , Heparitina Sulfato/farmacologia , Animais , Humanos , Polímeros/química , Polímeros/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Culicidae/efeitos dos fármacos , Culicidae/virologia , Testes de Sensibilidade Microbiana , Teste de Materiais , Tamanho da Partícula , Linhagem Celular , Estrutura Molecular , Chlorocebus aethiops , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Zika virus/efeitos dos fármacos
18.
J Nanobiotechnology ; 22(1): 250, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750519

RESUMO

The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.


Assuntos
Regeneração Óssea , Fosfatos de Cálcio , Osteogênese , Osteossarcoma , Alicerces Teciduais , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Animais , Regeneração Óssea/efeitos dos fármacos , Alicerces Teciduais/química , Coelhos , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Osteogênese/efeitos dos fármacos , Poliésteres/química , Humanos , Diferenciação Celular/efeitos dos fármacos , Neoplasias Ósseas/patologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células de Schwann/efeitos dos fármacos , Nanofibras/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Selênio/química , Selênio/farmacologia
19.
Sci Robot ; 9(90): eadl3606, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748779

RESUMO

Arthropods' eyes are effective biological vision systems for object tracking and wide field of view because of their structural uniqueness; however, unlike mammalian eyes, they can hardly acquire the depth information of a static object because of their monocular cues. Therefore, most arthropods rely on motion parallax to track the object in three-dimensional (3D) space. Uniquely, the praying mantis (Mantodea) uses both compound structured eyes and a form of stereopsis and is capable of achieving object recognition in 3D space. Here, by mimicking the vision system of the praying mantis using stereoscopically coupled artificial compound eyes, we demonstrated spatiotemporal object sensing and tracking in 3D space with a wide field of view. Furthermore, to achieve a fast response with minimal latency, data storage/transportation, and power consumption, we processed the visual information at the edge of the system using a synaptic device and a federated split learning algorithm. The designed and fabricated stereoscopic artificial compound eye provides energy-efficient and accurate spatiotemporal object sensing and optical flow tracking. It exhibits a root mean square error of 0.3 centimeter, consuming only approximately 4 millijoules for sensing and tracking. These results are more than 400 times lower than conventional complementary metal-oxide semiconductor-based imaging systems. Our biomimetic imager shows the potential of integrating nature's unique design using hardware and software codesigned technology toward capabilities of edge computing and sensing.


Assuntos
Biomimética , Olho Composto de Artrópodes , Percepção de Profundidade , Animais , Percepção de Profundidade/fisiologia , Olho Composto de Artrópodes/fisiologia , Olho Composto de Artrópodes/anatomia & histologia , Algoritmos , Mantódeos/fisiologia , Imageamento Tridimensional , Desenho de Equipamento , Materiais Biomiméticos
20.
Dalton Trans ; 53(16): 6974-6982, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38563069

RESUMO

Tubular structured composites have attracted great interest in catalysis research owing to their void-confinement effects. In this work, we synthesized a pair of hollow N-doped carbon microtubes (NCMTs) with Fe3O4 nanoparticles (NPs) encapsulated inside NCMTs (Fe3O4@NCMTs) and supported outside NCMTs (NCMTs@Fe3O4) while keeping other structural features the same. The impact of structural effects on the catalytic activities was investigated by comparing a pair of hollow-structured nanocomposites. It was found that the Fe3O4@NCMTs possessed a higher peroxidase-like activity when compared with NCMTs@Fe3O4, demonstrating structural superiority of Fe3O4@NCMTs. Based on the excellent peroxidase-like catalytic activity and stability of Fe3O4@NCMTs, an ultra-sensitive colorimetric method was developed for the detection of H2O2 and GSH with detection limits of 0.15 µM and 0.49 µM, respectively, which has potential application value in biological sciences and biotechnology.


Assuntos
Carbono , Peróxido de Hidrogênio , Carbono/química , Peróxido de Hidrogênio/química , Catálise , Nanopartículas de Magnetita/química , Propriedades de Superfície , Glutationa/química , Materiais Biomiméticos/química , Nitrogênio/química , Colorimetria , Biomimética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...