Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Clin Exp Dermatol ; 47(7): 1314-1323, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35279873

RESUMO

BACKGROUND: Loss and remodelling of the dermal extracellular matrix (ECM) are key features of photodamaged human skin. Green tea catechins (GTCs) have been explored for their anti-inflammatory and chemopreventive properties, but data on the impact of GTCs on ultraviolet radiation (UVR)-induced changes to the dermal ECM are lacking. AIM: To investigate the effect of an inflammatory dose of solar-simulated UVR on human dermal ECM and potential for protection by GTCs in a double-blind randomized controlled trial. METHODS: In total, 50 healthy white (Fitzpatrick skin type I-II) adults aged 18-65 years were randomized to a combination of GTCs 540 mg plus vitamin C 50 mg or to placebo twice daily for 12 weeks. The impact of solar-simulated UVR at 3 × minimal erythema dose on the dermal collagen and elastic fibre networks was assessed by histology and immunohistochemistry in all participants at baseline. The impact of GTC supplementation on UVR-induced effects was compared between the groups post-supplementation. RESULTS: The area of papillary dermis covered by collagen and elastic fibres was significantly lower (P < 0.001) in UVR-exposed skin than in unexposed skin. Significantly lower levels of fibrillin-rich microfibrils (P = 0.02), fibulin-2 (P < 0.001) and fibulin-5 (P < 0.001) were seen in UVR-exposed than unexposed skin, while procollagen-1 deposition was significantly higher in UVR-exposed skin (P = 0.01). Following GTC supplementation, the UVR-induced change in fibulin-5 was abrogated in the active group but not the placebo group, with no difference between the two groups for other components. CONCLUSIONS: Acute UVR induced significant changes in the human dermal collagen and elastic fibre networks, whereas oral GTCs conferred specific UVR protection to fibulin-5. Future studies could explore the impact of GTCs on the effects of repeated suberythemal UVR exposure of human skin.


Assuntos
Catequina , Matriz Extracelular , Raios Ultravioleta , Adulto , Catequina/farmacologia , Catequina/uso terapêutico , Colágeno , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/efeitos da radiação , Humanos , Pele/patologia , Chá/química , Raios Ultravioleta/efeitos adversos
2.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054866

RESUMO

The development of bioscaffolds for cardiovascular medical applications, such as peripheral artery disease (PAD), remains to be a challenge for tissue engineering. PAD is an increasingly common and serious cardiovascular illness characterized by progressive atherosclerotic stenosis, resulting in decreased blood perfusion to the lower extremities. Percutaneous transluminal angioplasty and stent placement are routinely performed on these patients with suboptimal outcomes. Natural Vascular Scaffolding (NVS) is a novel treatment in the development for PAD, which offers an alternative to stenting by building on the natural structural constituents in the extracellular matrix (ECM) of the blood vessel wall. During NVS treatment, blood vessels are exposed to a photoactivatable small molecule (10-8-10 Dimer) delivered locally to the vessel wall via an angioplasty balloon. When activated with 450 nm wavelength light, this therapy induces the formation of covalent protein-protein crosslinks of the ECM proteins by a photochemical mechanism, creating a natural scaffold. This therapy has the potential to reduce the need for stent placement by maintaining a larger diameter post-angioplasty and minimizing elastic recoil. Experiments were conducted to elucidate the mechanism of action of NVS, including the molecular mechanism of light activation and the impact of NVS on the ECM.


Assuntos
Prótese Vascular , Matriz Extracelular/efeitos da radiação , Alicerces Teciduais/química , Angioplastia com Balão , Animais , Artérias/fisiologia , Fenômenos Biomecânicos , Reagentes de Ligações Cruzadas/química , Dimerização , Hipercolesterolemia/diagnóstico por imagem , Hipercolesterolemia/fisiopatologia , Hipercolesterolemia/terapia , Luz , Peptídeos/química , Suínos
3.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831262

RESUMO

Exposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can impact human health and well-being as a consequence of, for example, the side effects of radiotherapy (therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation: UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins has the potential to profoundly affect tissue structure, composition and function. This review focuses on the current understanding of the biological effects of ionising and non-ionising radiation on the ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence for radiation-induced damage to ECM proteins, compared with the well-characterised impact of radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of ECM irradiation remain poorly defined.


Assuntos
Radiação Eletromagnética , Proteínas da Matriz Extracelular/efeitos da radiação , Radiação Ionizante , Animais , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Proteínas da Matriz Extracelular/metabolismo , Humanos , Modelos Biológicos
4.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068809

RESUMO

Wound healing is a complex, staged process. It involves extensive communication between the different cellular constituents of various compartments of the skin and its extracellular matrix (ECM). Different signaling pathways are determined by a mutual influence on each other, resulting in a dynamic and complex crosstalk. It consists of various dynamic processes including a series of overlapping phases: hemostasis, inflammation response, new tissue formation, and tissue remodeling. Interruption or deregulation of one or more of these phases may lead to non-healing (chronic) wounds. The most important factor among local and systemic exogenous factors leading to a chronic wound is infection with a biofilm presence. In the last few years, an increasing number of reports have evaluated the effects of extremely low frequency (ELF) electromagnetic fields (EMFs) on tissue repair. Each experimental result comes from a single element of this complex process. An interaction between ELF-EMFs and healing has shown to effectively modulate inflammation, protease matrix rearrangement, neo-angiogenesis, senescence, stem-cell proliferation, and epithelialization. These effects are strictly related to the time of exposure, waveform, frequency, and amplitude. In this review, we focus on the effect of ELF-EMFs on different wound healing phases.


Assuntos
Campos Eletromagnéticos , Inflamação/terapia , Cicatrização/efeitos da radiação , Matriz Extracelular/efeitos da radiação , Humanos , Inflamação/patologia , Transdução de Sinais/efeitos da radiação , Pele/patologia , Pele/efeitos da radiação
5.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33822843

RESUMO

Triple-negative breast cancers (TNBCs) are associated with poor survival mediated by treatment resistance. TNBCs are fibrotic, yet little is known regarding how the extracellular matrix (ECM) evolves following therapy and whether it impacts treatment response. Analysis revealed that while primary untreated TNBCs are surrounded by a rigid stromal microenvironment, chemotherapy-resistant residual tumors inhabit a softer niche. TNBC organoid cultures and xenograft studies showed that organoids interacting with soft ECM exhibit striking resistance to chemotherapy, ionizing radiation, and death receptor ligand TRAIL. A stiff ECM enhanced proapoptotic JNK activity to sensitize cells to treatment, whereas a soft ECM promoted treatment resistance by elevating NF-κB activity and compromising JNK activity. Treatment-resistant residual TNBCs residing within soft stroma had elevated activated NF-κB levels, and disengaging NF-κB activity sensitized tumors in a soft matrix to therapy. Thus, the biophysical properties of the ECM modify treatment response, and agents that modulate stiffness-dependent NF-κB or JNK activity could enhance therapeutic efficacy in patients with TNBC.


Assuntos
Matriz Extracelular/metabolismo , NF-kappa B/metabolismo , Neoplasias de Mama Triplo Negativas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Quimiorradioterapia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/efeitos da radiação , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Terapia Neoadjuvante , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação
6.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720046

RESUMO

Continued thinning of the atmospheric ozone, which protects the earth from damaging ultraviolet radiation (UVR), will result in elevated levels of UVR reaching the earth's surface, leading to a drastic increase in the incidence of skin cancer. In addition to promoting carcinogenesis in skin cells, UVR is a potent extrinsic driver of age-related changes in the skin known as "photoaging." We are in the preliminary stages of understanding of the role of intrinsic aging in melanoma, and the tumor-permissive effects of photoaging on the skin microenvironment remain largely unexplored. In this Review, we provide an overview of the impact of UVR on the skin microenvironment, addressing changes that converge or diverge with those observed in intrinsic aging. Intrinsic and extrinsic aging promote phenotypic changes to skin cell populations that alter fundamental processes such as melanogenesis, extracellular matrix deposition, inflammation, and immune response. Given the relevance of these processes in cancer, we discuss how photoaging might render the skin microenvironment permissive to melanoma progression.


Assuntos
Melanoma/etiologia , Envelhecimento da Pele/efeitos da radiação , Neoplasias Cutâneas/etiologia , Microambiente Tumoral/efeitos da radiação , Envelhecimento/imunologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Progressão da Doença , Matriz Extracelular/efeitos da radiação , Humanos , Tolerância Imunológica/efeitos da radiação , Melaninas/biossíntese , Melanoma/imunologia , Melanoma/metabolismo , Camundongos , Receptores de Hidrocarboneto Arílico/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/efeitos da radiação , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Raios Ultravioleta/efeitos adversos , Ácido Urocânico/metabolismo , Vitamina D/metabolismo
7.
Cancer Res ; 81(8): 2101-2115, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483373

RESUMO

The tumor microenvironment plays an essential role in supporting glioma stemness and radioresistance. Following radiotherapy, recurrent gliomas form in an irradiated microenvironment. Here we report that astrocytes, when pre-irradiated, increase stemness and survival of cocultured glioma cells. Tumor-naïve brains increased reactive astrocytes in response to radiation, and mice subjected to radiation prior to implantation of glioma cells developed more aggressive tumors. Extracellular matrix derived from irradiated astrocytes were found to be a major driver of this phenotype and astrocyte-derived transglutaminase 2 (TGM2) was identified as a promoter of glioma stemness and radioresistance. TGM2 levels increased after radiation in vivo and in recurrent human glioma, and TGM2 inhibitors abrogated glioma stemness and survival. These data suggest that irradiation of the brain results in the formation of a tumor-supportive microenvironment. Therapeutic targeting of radiation-induced, astrocyte-derived extracellular matrix proteins may enhance the efficacy of standard-of-care radiotherapy by reducing stemness in glioma. SIGNIFICANCE: These findings presented here indicate that radiotherapy can result in a tumor-supportive microenvironment, the targeting of which may be necessary to overcome tumor cell therapeutic resistance and recurrence. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2101/F1.large.jpg.


Assuntos
Astrócitos/enzimologia , Neoplasias Encefálicas/radioterapia , Encéfalo/efeitos da radiação , Proteínas de Ligação ao GTP/metabolismo , Glioblastoma/radioterapia , Células-Tronco Neoplásicas , Transglutaminases/metabolismo , Microambiente Tumoral/efeitos da radiação , Animais , Astrócitos/efeitos da radiação , Encéfalo/citologia , Encéfalo/fisiologia , Neoplasias Encefálicas/patologia , Sobrevivência Celular/fisiologia , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Feminino , Proteínas de Ligação ao GTP/antagonistas & inibidores , Glioblastoma/patologia , Glioma/patologia , Glioma/radioterapia , Humanos , Masculino , Camundongos , Recidiva Local de Neoplasia/enzimologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/fisiologia , Proteína 2 Glutamina gama-Glutamiltransferase , Tolerância a Radiação , Transglutaminases/antagonistas & inibidores , Microambiente Tumoral/fisiologia
8.
Nat Commun ; 11(1): 4907, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999289

RESUMO

Global alterations in the metabolic network provide substances and energy to support tumor progression. To fuel these metabolic processes, extracellular matrix (ECM) plays a dominant role in supporting the mass transport and providing essential nutrients. Here, we report a fibrinogen and thrombin based coagulation system to construct an artificial ECM (aECM) for selectively cutting-off the tumor metabolic flux. Once a micro-wound is induced, a cascaded gelation of aECM can be triggered to besiege the tumor. Studies on cell behaviors and metabolomics reveal that aECM cuts off the mass transport and leads to a tumor specific starvation to inhibit tumor growth. In orthotopic and spontaneous murine tumor models, this physical barrier also hinders cancer cells from distant metastasis. The in vivo gelation provides an efficient approach to selectively alter the tumor mass transport. This strategy results in a 77% suppression of tumor growth. Most importantly, the gelation of aECM can be induced by clinical operations such as ultrasonic treatment, surgery or radiotherapy, implying this strategy is potential to be translated into a clinical combination regimen.


Assuntos
Materiais Biomiméticos/administração & dosagem , Matriz Extracelular/química , Neoplasias/terapia , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/efeitos da radiação , Materiais Biomiméticos/química , Materiais Biomiméticos/efeitos da radiação , Linhagem Celular Tumoral/transplante , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Quimiorradioterapia/métodos , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Feminino , Fibrinogênio/administração & dosagem , Fibrinogênio/química , Fibrinogênio/efeitos da radiação , Géis , Humanos , Injeções Intravenosas , Metabolômica , Camundongos , Neoplasias/metabolismo , Trombina/administração & dosagem , Trombina/química , Trombina/efeitos da radiação , Terapia por Ultrassom/métodos , Ondas Ultrassônicas
9.
Virol J ; 17(1): 87, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605632

RESUMO

BACKGROUND: This study was designed to investigate the invasion of human papillomavirus (HPV) positive human cervical carcinoma cell lines in human leiomyoma-based extracellular matrices in vitro, and to test the suitability of the model for studying the irradiation effects on the cancer cell invasion. METHODS: HPV positive cervical carcinoma cell lines SiHa and CaSki, and HPV negative squamous cell carcinoma cell line HSC-3 were used. CaSki cells contain around 600 copies of HPV 16 virus in the genome, whereas SiHa have only 1-2 copies per cell. Cells were analyzed using two different human tumor derived extracellular matrix methods (3D myoma disc model, and Myogel Transwell invasion assay). Cultures were irradiated with 4 Gy. Myoma invasion area and the depth of invasion were measured with ImageJ 1.51j8 software. Statistical analyses were performed with SPSS Statistics (IBM SPSS® Statistics 25). RESULTS: All cells invaded through Myogel coated Transwell membranes and within myoma discs. In myoma discs, a difference in the invasion depth (p = 0.0001) but not in invasion area (p = 0.310) between the HPV positive cell lines was seen, since SiHa (less HPV) invaded slightly better than CaSki (more HPV). HSC-3 cells (HPV negative) invaded deepest (p = 0.048) than either of the HPV positive cell line cells. No difference was detected in the invasion area (p = 0.892) between HPV positive and HPV negative cells. The ionized radiation significantly reduced the invasion depth of HSC-3 (p = 0.008), SiHa (p = 0.0001) and CaSki (p = 0.005). No significant effect on the invasion area was detected in any of the cell lines. However, a significant difference was observed between SiHa and CaSki in the reduction of the invasion depth after radiation (p = 0.013) as the reduction was greater with SiHa than CaSki. CONCLUSIONS: Both solid and gelatinous human leiomyoma-based extracellular matrix models were suitable platforms to study the invasion of HPV positive cervical carcinoma cells in vitro. SiHa cells with less HPV copy number cells invaded slightly better and were slightly more sensitive to irradiation than CaSki cells with high HPV copy number. However, there was no drastic differences between the invasion properties of these carcinoma cells.


Assuntos
Matriz Extracelular/efeitos da radiação , Matriz Extracelular/virologia , Papillomavirus Humano 16/efeitos da radiação , Mioma/virologia , Carcinoma de Células Escamosas/virologia , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Neoplasias do Colo do Útero/virologia
10.
Aquat Toxicol ; 222: 105468, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32199137

RESUMO

The extracellular matrix (ECM) is a non-cellular and three-dimensional structure, constituted by a macromolecular dynamic network that involves the cells in all animal tissues, including embryonic ones. Several studies with vertebrates and cell cultures have reported deleterious effects of ultraviolet-B (UVB) radiation on the components associated with the ECM. However, studies focusing on the UVB radiation effects on ECM components of crustaceans during embryonic development are very scarce. Thus, the aim of this study was to identify the coding sequences of components associated with the ECM and to evaluate the effect of UVB radiation on embryos of the ecologically-important decapod Macrobrachium olfersii. To evaluate the modulation of these ECM components during embryonic development, the transcript levels of Col4α1, Itgß, Lamα, Mmp1 and Timp in M. olfersii embryos were analyzed at early developmental stages (E1, E3 and E4), intermediate developmental stage (E7) and late developmental stages (E10 and E14). In addition, embryos at E7, which correspond to a landmark of crustacean development, were analyzed after 12 h of UVB exposure to verify UVB effects on the ECM components. The ECM component sequences were similar to other decapods, suggesting conservation of these genes among crustaceans. The results showed modulations of the ECM components of M. olfersii embryos that reflect the need for each component in the cellular mechanisms, necessary for normal embryonic development. After UVB exposure, embryos showed opacity of embryonic tissues and it was found the overexpression of Col4α1, Itgß, Mmp1 and Timp transcript levels (1.82-, 1.52-, 2.34- and 6.27-fold, respectively). These impairments can compromise important events for normal embryonic development, such as growth of optic lobes, caudal papilla, ramification of appendages and differentiation of organic systems. The results presented here, together with the effects on morphology, cell proliferation, differentiation, and apoptosis demonstrated previously, strengthen the knowledge of the complex impacts of UVB radiation on freshwater embryos. Nevertheless, our results encourage further investigations focusing on the assessment of UVB effects on different organisms in order to better understand the myriad of UVB effects on ECM components.


Assuntos
Embrião não Mamífero/efeitos da radiação , Desenvolvimento Embrionário/efeitos da radiação , Matriz Extracelular/efeitos da radiação , Palaemonidae/efeitos da radiação , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta , Animais , Apoptose/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Desenvolvimento Embrionário/genética , Matriz Extracelular/genética , Água Doce/química , Palaemonidae/genética , Palaemonidae/crescimento & desenvolvimento
11.
Adv Wound Care (New Rochelle) ; 9(3): 79-89, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31993250

RESUMO

Objective: Exposure to ultraviolet (UV) light from the sun is known to accelerate the skin aging process and leads to significant alterations in skin biomechanics; however, the molecular mechanisms by which chronic UVB affects biomechanical properties of the skin have not been well described. Approach: A murine model for chronic UVB exposure was used to examine changes in epidermal barrier function, skin biomechanics, and miRNA expression as a result of UVB. Results: UVB irradiation caused skin to be weaker, less elastic, stiffer, and less pliable. Notably, these changes were not reversed after a 5-week period of recovery. Following UVB exposure, dermal collagen fibrils were significantly smaller in diameter and expression of the miR-34 family was significantly increased. Innovation: To our knowledge, this is the first study to concurrently examine alterations in skin function, miRNA expression, and tissue biomechanics in response to chronic UVB exposure. Conclusion: The data suggest that UVB alters miR-34 family expression in skin, in addition to dysregulating collagen structure with subsequent reductions in strength and elasticity. miRNAs may play a pivotal role in regulating extracellular matrix deposition and skin biomechanics following chronic UVB exposure, and thus may be a possible target for therapeutic development. However, additional studies are needed to directly probe the link between UVB exposure, miRNA production, and skin biomechanics.


Assuntos
Derme/metabolismo , Elasticidade/efeitos da radiação , Epiderme/metabolismo , MicroRNAs/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Fenômenos Biomecânicos , Colágeno/metabolismo , Derme/efeitos da radiação , Epiderme/efeitos da radiação , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Feminino , Camundongos , Camundongos Pelados
12.
J Biomed Mater Res A ; 108(2): 327-339, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31622534

RESUMO

Current tissue engineering approaches for treatment of injured or diseased articular cartilage use ultraviolet light (UV) for in situ photopolymerization of biomaterials to fill chondral and osteochondral defects as well as resurfacing, stiffening and bonding the extracellular matrix and tissue interfaces. The most commonly used UV light wavelength is UVA 365 nm, the least cytotoxic and deepest penetrating. However, little information is available on the transmission of UVA 365 nm light through the cartilage matrix. In the present study, 365 nm UV light transmission was measured as a function of depth through 100 µm thick slices of healthy articular cartilage removed from mature bovine knees. Transmission properties were measured in normal (Native) cartilage and after swelling equilibration in phosphate-buffered saline (Swollen). Single-factor and multiple linear regression analyses were performed to determine depth-dependencies between the effective attenuation coefficients and proteoglycan, collagen and water contents. For both cartilages, a significant depth-dependency was found for the effective attenuation coefficients, being highest at the articular surface (superficial zone) and decreasing with depth. The effective attenuation coefficients for full-thickness cartilages were approximately a third lower than the total attenuation coefficients calculated from the individual slices. Analysis of absorption and scattering effects due to the ECM and chondrocytes found that UV light scatter coefficients were ∼10 times greater than absorption coefficients. The greater transmittance of UV light through the thicker cartilage was attributed to the collagen within the ECM causing significant backscatter forward reflectance.


Assuntos
Cartilagem Articular/efeitos da radiação , Raios Ultravioleta , Animais , Cartilagem Articular/química , Bovinos , Colágeno/análise , Matriz Extracelular/química , Matriz Extracelular/efeitos da radiação , Articulação do Joelho/química , Articulação do Joelho/efeitos da radiação , Proteoglicanas/análise
13.
Int J Mol Sci ; 20(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795255

RESUMO

The skin is constantly exposed to a variety of environmental threats, including solar electromagnetic radiation, microbes, airborne particulate matter, and chemicals. Acute exposure to these environmental factors results in the activation of different signaling pathways that orchestrate adaptive stress responses to maintain cell and tissue homeostasis. Chronic exposure of skin to these factors, however, may lead to the accumulation of damaged macromolecules and loss of cell and tissue integrity, which, over time, may facilitate aging processes and the development of aging-related malignancies. One transcription factor that is expressed in all cutaneous cells and activated by various environmental stressors, including dioxins, polycyclic aromatic hydrocarbons, and ultraviolet radiation, is the aryl hydrocarbon receptor (AHR). By regulating keratinocyte proliferation and differentiation, epidermal barrier function, melanogenesis, and immunity, a certain degree of AHR activity is critical to maintain skin integrity and to adapt to acute stress situations. In contrast, a chronic activation of cutaneous AHR signaling critically contributes to premature aging and the development of neoplasms by affecting metabolism, extracellular matrix remodeling, inflammation, pigmentation, DNA repair, and apoptosis. This article provides an overview of the detrimental effects associated with sustained AHR activity in chronically stressed skin and pinpoints AHR as a promising target for chemoprevention.


Assuntos
Exposição Ambiental , Receptores de Hidrocarboneto Arílico/metabolismo , Envelhecimento da Pele , Neoplasias Cutâneas/metabolismo , Animais , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Humanos , Neoplasias Cutâneas/genética
14.
J Vis Exp ; (149)2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31403613

RESUMO

Radiation is a therapy for patients with triple negative breast cancer. The effect of radiation on the extracellular matrix (ECM) of healthy breast tissue and its role in local recurrence at the primary tumor site are unknown. Here we present a method for the decellularization, lyophilization, and fabrication of ECM hydrogels derived from murine mammary fat pads. Results are presented on the effectiveness of the decellularization process, and rheological parameters were assessed. GFP- and luciferase-labeled breast cancer cells encapsulated in the hydrogels demonstrated an increase in proliferation in irradiated hydrogels. Finally, phalloidin conjugate staining was employed to visualize cytoskeleton organization of encapsulated tumor cells. Our goal is to present a method for fabricating hydrogels for in vitro study that mimic the in vivo breast tissue environment and its response to radiation in order to study tumor cell behavior.


Assuntos
Matriz Extracelular/metabolismo , Hidrogéis , Glândulas Mamárias Animais/citologia , Animais , Matriz Extracelular/efeitos da radiação , Feminino , Camundongos , Reologia
15.
J Photochem Photobiol B ; 194: 149-157, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30954874

RESUMO

Photobiomodulation therapy (PBMT) and the cell sheet (CS) technology improve processes relevant to tissue regeneration. The aim of this study was to investigate the effects of different PBMT parameters on the architecture (histology), protein composition (Western blotting and immunohistochemistry) and ultrastructure [scanning electron microscopy (SEM) and transmission electron microscopy (TEM)] of the extracellular matrix (ECM) synthesized by CSs composed by human dental pulp stem cells (hDPSCs). METHODS: Thawed cells were recharacterized by the expression profile of the surface molecules of mesenchymal stem cells (MSCs) using flow cytometry. Clonogenic medium supplemented with vitamin C (20 µg/ml) was used for obtaining the CSs. PBMT was performed with continuous-wave diode laser (660 nm, 20 mW, 0.028cm2, 0.71 W/cm2) in punctual and contact mode. The CSs were allocated in 3 experimental groups: Control: no further treatment; PBMT1 [4 s, 3 J/cm2 (lower energy density), 0.08 J/point] and PBMT2 [7 s, 5 J/cm2 (higher energy density), 0.14 J/point]. Statistical comparisons were performed (p ≤ .05). RESULTS: The cells presented the classical immunoprofile of MSCs. Type I and type III collagens and fibronectin were present in the ECM of the CSs. PBMT1 induced higher amount of fibronectin. The overall ultrastructure of the CSs in the PBMT1 was epithelial-like, whereas the PBMT2 leads to CSs with fusiform cells arranged in bundles. TEM identified a more mature ECM and signs of apoptosis and necrosis in the PBMT2 group. CONCLUSION: PBMT influence the composition and ultrastructure of the ECM of CSs of hDPSCs. Thus, PBMT, specifically when applied in the lower energy density, could be of importance in the determination of the mechanical quality of CSs, which may favor cell therapy by improving the CS transplantation approach.


Assuntos
Polpa Dentária/citologia , Matriz Extracelular/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Linhagem Celular , Polpa Dentária/efeitos da radiação , Matriz Extracelular/metabolismo , Humanos , Células-Tronco/citologia , Células-Tronco/efeitos da radiação
16.
J Invest Dermatol ; 139(9): 1993-2003.e4, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30935974

RESUMO

Skin is constantly exposed to UVR, the most critical risk factor for melanoma development. Hyaluronan is abundant in the epidermal extracellular matrix and may undergo degradation by UVR. It is hypothesized that an intact hyaluronan coat around the cells protects against various agents including UVR, whereas hyaluronan fragments promote inflammation and tumorigenesis. We investigated whether hyaluronan contributes to the UVB-induced inflammatory responses in primary melanocytes. A single dose of UVB suppressed hyaluronan secretion and the expression of hyaluronan synthases HAS2 and HAS3, the hyaluronan receptor CD44, and the hyaluronidase HYAL2, as well as induced the expression of inflammatory mediators IL6, IL8, CXCL1, and CXCL10. Silencing HAS2 and CD44 partly inhibited the inflammatory response, suggesting that hyaluronan coat is involved in the process. UVB alone caused little changes in the coat, but its removal with hyaluronidase during the recovery from UVB exposure dramatically enhanced the surge of these inflammatory mediators via TLR4, p38, and NF-κB. Interestingly, exogenous hyaluronan fragments did not reproduce the inflammatory effects of hyaluronidase. We hypothesize that the hyaluronan coat on melanocytes is a sensor of tissue injury. Combined with UVB exposure, repeated injuries to the hyaluronan coat could maintain a sustained inflammatory state associated with melanomagenesis.


Assuntos
Epiderme/efeitos da radiação , Ácido Hialurônico/efeitos da radiação , Melanócitos/imunologia , Transdução de Sinais/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Carcinogênese/imunologia , Carcinogênese/efeitos da radiação , Células Cultivadas , Quimiocina CXCL1/metabolismo , Quimiocina CXCL10/metabolismo , Epiderme/imunologia , Epiderme/metabolismo , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Melanoma/etiologia , Melanoma/patologia , Cultura Primária de Células , Transdução de Sinais/imunologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/patologia , Receptor 4 Toll-Like/metabolismo
17.
Front Immunol ; 10: 193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828330

RESUMO

In recent decades, there has been substantial growth in our understanding of the immune system and its role in tumor growth and overall survival. A central finding has been the cross-talk between tumor cells and the surrounding environment or stroma. This tumor stroma, comprised of various cells, and extracellular matrix (ECM), has been shown to aid in suppressing host immune responses against tumor cells. Through immunosuppressive cytokine secretion, metabolic alterations, and other mechanisms, the tumor stroma provides a complex network of safeguards for tumor proliferation. With recent advances in more effective, localized treatment, radiation therapy (XRT) has allowed for strategies that can effectively alter and ablate tumor stromal tissue. This includes promoting immunogenic cell death through tumor antigen release to increasing immune cell trafficking, XRT has a unique advantage against the tumoral immune evasion mechanisms that are orchestrated by stromal cells. Current studies are underway to elucidate pathways within the tumor stroma as potential targets for immunotherapy and chemoradiation. This review summarizes the effects of tumor stroma in tumor immune evasion, explains how XRT may help overcome these effects, with potential combinatorial approaches for future treatment modalities.


Assuntos
Neoplasias/patologia , Neoplasias/radioterapia , Células Estromais/efeitos da radiação , Microambiente Tumoral/efeitos da radiação , Animais , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos da radiação , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Humanos , Imunidade , Imunomodulação/efeitos da radiação , Neoplasias/imunologia , Tolerância a Radiação/imunologia , Tolerância a Radiação/efeitos da radiação , Radioterapia , Células Estromais/imunologia , Microambiente Tumoral/imunologia
18.
Biomaterials ; 199: 63-75, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30738336

RESUMO

Tissue specific extracellular matrices (ECM) provide structural support and enable access to molecular signals and metabolites, which are essential for directing stem cell renewal and differentiation. To mimic this phenomenon in vitro, tissue decellularisation approaches have been developed, resulting in the generation of natural ECM scaffolds that have comparable physical and biochemical properties of the natural tissues and are currently gaining traction in tissue engineering and regenerative therapies due to the ease of standardised production, and constant availability. In this manuscript we report the successful generation of decellularised ECM-derived peptides from neural retina (decel NR) and retinal pigment epithelium (decel RPE), and their impact on differentiation of human pluripotent stem cells (hPSCs) to retinal organoids. We show that culture media supplementation with decel RPE and RPE-conditioned media (CM RPE) significantly increases the generation of rod photoreceptors, whilst addition of decel NR and decel RPE significantly enhances ribbon synapse marker expression and the light responsiveness of retinal organoids. Photoreceptor maturation, formation of correct synapses between retinal cells and recording of robust light responses from hPSC-derived retinal organoids remain unresolved challenges for the field of regenerative medicine. Enhanced rod photoreceptor differentiation, synaptogenesis and light response in response to addition of decellularised matrices from RPE and neural retina as shown herein provide a novel and substantial advance in generation of retinal organoids for drug screening, tissue engineering and regenerative medicine.


Assuntos
Biomarcadores/metabolismo , Matriz Extracelular/química , Luz , Organoides/citologia , Peptídeos/farmacologia , Células-Tronco Pluripotentes/citologia , Epitélio Pigmentado da Retina/metabolismo , Sinapses/metabolismo , Adulto , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/efeitos da radiação , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos da radiação , Células-Tronco Embrionárias Humanas/ultraestrutura , Humanos , Organoides/efeitos dos fármacos , Organoides/efeitos da radiação , Organoides/ultraestrutura , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Células Fotorreceptoras de Vertebrados/ultraestrutura , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos da radiação , Sinapses/efeitos dos fármacos , Sinapses/efeitos da radiação
19.
Commun Biol ; 2: 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30652127

RESUMO

Optogenetic approaches have gathered momentum in precisely modulating and interrogating cellular signalling and gene expression. The use of optogenetics on the outer cell surface to interrogate how cells receive stimuli from their environment, however, has so far not reached its full potential. Here we demonstrate the development of an optogenetically regulated membrane receptor-ligand pair exemplified by the optically responsive interaction of an integrin receptor with the extracellular matrix. The system is based on an integrin engineered with a phytochrome-interacting factor domain (OptoIntegrin) and a red light-switchable phytochrome B-functionalized matrix (OptoMatrix). This optogenetic receptor-ligand pair enables light-inducible and -reversible cell-matrix interaction, as well as the controlled activation of downstream mechanosensory signalling pathways. Pioneering the application of optogenetic switches in the extracellular environment of cells, this OptoMatrix-OptoIntegrin system may serve as a blueprint for rendering matrix-receptor interactions amendable to precise control with light.


Assuntos
Matriz Extracelular/metabolismo , Integrina alfaVbeta3/metabolismo , Optogenética/métodos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Matriz Extracelular/efeitos da radiação , Células HEK293 , Células HeLa , Humanos , Luz , Células MCF-7 , Fitocromo B/metabolismo , Plasmídeos/genética , Conformação Proteica/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Transfecção
20.
Photochem Photobiol ; 95(2): 595-604, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30266035

RESUMO

Skin photoaging, which is mainly induced by ultraviolet B (UVB) radiation, is prevented by the application of UV-protective agents. The microalga Nannochloropsis oceanica (N. oceanica) has been primarily reported as a potential biofuel; however, in this study, we investigated whether N. oceanica extracts exerted photoprotective effects against UVB-irradiated human dermal fibroblasts (HDFs) and which single component was responsible for the protective effect of the extracts. Two extracts-pigment and nonpigment-were prepared from N. oceanica biomass. WST-1 assay and expression analysis of interleukin genes showed that the pigment extracts were not significantly cytotoxic to HDFs. Further experiments revealed that treatment with the pigment extract upregulated the expression of collagen genes and significantly blocked UVB-induced damage such as decreased cell viability and increased ROS production. Next, to investigate the pigment composition of the extracts, HPLC analysis was conducted and violaxanthin was identified as the major pigment. The UVB photoprotective effect of the pigment extracts was confirmed in violaxanthin-treated HDFs. In addition, violaxanthin significantly attenuated UVB-induced G1 phase arrest, senescence-associated ß-galactosidase activation, p16 and p21 upregulation, ERK phosphorylation and the downregulation of ECM molecules in HDFs. Therefore, we concluded that violaxanthin was a potential antiphotoaging agent.


Assuntos
Alga Marinha/química , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Raios Ultravioleta , Biomassa , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/efeitos da radiação , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Humanos , Pele/citologia , Xantofilas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...