Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012225

RESUMO

AIMS: This study evaluated the red clover (Trifolium pratense) root-associated microbiota to clarify the presence of pathogenic and beneficial microorganisms in 89 Swedish field sites. METHODS AND RESULTS: 16S rRNA and ITS amplicon sequencing analysis were performed on DNA extracted from the red clover root samples collected to determine the composition of the prokaryotic and eukaryotic root-associated microbe communities. Alpha and beta diversities were calculated and relative abundance of various microbial taxa and their co-occurrence were analyzed. Rhizobium was the most prevalent bacterial genus, followed by Sphingomonas, Mucilaginibacter, Flavobacterium, and the unclassified Chloroflexi group KD4-96. The Leptodontidium, Cladosporium, Clonostachys, and Tetracladium fungal genera known for endophytic, saprotrophic, and mycoparasitic lifestyles were also frequently observed in all samples. Sixty-two potential pathogenic fungi were identified with a bias toward grass pathogens and a higher abundance in samples from conventional farms. CONCLUSIONS: We showed that the microbial community was mainly shaped by geographic location and management procedures. Co-occurrence networks revealed that the Rhizobiumleguminosarum bv. trifolii was negatively associated with all fungal pathogenic taxa recognized in this study.


Assuntos
Microbiota , Trifolium , Trifolium/genética , Trifolium/microbiologia , Fazendas , Medicago/genética , Medicago/microbiologia , RNA Ribossômico 16S/genética , Microbiota/genética
2.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638828

RESUMO

The cyst nematodes Heterodera schachtii and Heterodera trifolii, whose major hosts are sugar beet and clover, respectively, damage a broad range of plants, resulting in significant economic losses. Nematodes synthesize metabolites for organismal development and social communication. We performed metabolic profiling of H. schachtii and H. trifolii in the egg, juvenile 2 (J2), and female stages. In all, 392 peaks were analyzed by capillary electrophoresis time-of-flight mass spectrometry, which revealed a lot of similarities among metabolomes. Aromatic amino acid metabolism, carbohydrate metabolism, choline metabolism, methionine salvage pathway, glutamate metabolism, urea cycle, glycolysis, gluconeogenesis, coenzyme metabolism, purine metabolism, pyrimidine metabolism, and tricarboxylic acid (TCA) cycle for energy conversion (ß-oxidation and branched-chain amino acid metabolism) energy storage were involved in all stages studied. The egg and female stages synthesized higher levels of metabolites compared to the J2 stage. The key metabolites detected were glycerol, guanosine, hydroxyproline, citric acid, phosphorylcholine, and the essential amino acids Phe, Leu, Ser, and Val. Metabolites, such as hydroxyproline, acetylcholine, serotonin, glutathione, and glutathione disulfide, which are associated with growth and reproduction, mobility, and neurotransmission, predominated in the J2 stage. Other metabolites, such as SAM, 3PSer, 3-ureidopropionic acid, CTP, UDP, UTP, 3-hydroxy-3-methylglutaric acid, 2-amino-2-(hydroxymethyl-1,3-propanediol, 2-hydroxy-4-methylvaleric acid, Gly Asp, glucuronic acid-3 + galacturonic acid-3 Ser-Glu, citrulline, and γ-Glu-Asn, were highly detected in the egg stage. Meanwhile, nicotinamide, 3-PG, F6P, Cys, ADP-Ribose, Ru5P, S7P, IMP, DAP, diethanolamine, p-Hydroxybenzoic acid, and γ-Glu-Arg_divalent were unique to the J2 stage. Formiminoglutamic acid, nicotinaminde riboside + XC0089, putrescine, thiamine 2,3-dihydroxybenzoic acid, 3-methyladenine, caffeic acid, ferulic acid, m-hydrobenzoic acid, o- and p-coumaric acid, and shikimic acid were specific to the female stage. Overall, highly similar identities and quantities of metabolites between the corresponding stages of the two species of nematode were observed. Our results will be a valuable resource for further studies of physiological changes related to the development of nematodes and nematode-plant interactions.


Assuntos
Beta vulgaris/parasitologia , Medicago/microbiologia , Metabolômica , Rabditídios/crescimento & desenvolvimento , Rabditídios/metabolismo , Animais , Eletroforese Capilar , Espectrometria de Massas
3.
Microbiology (Reading) ; 167(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33829985

RESUMO

Rhizobia - nitrogen-fixing, root-nodulating bacteria - play a critical role in both plant ecosystems and sustainable agriculture. Rhizobia form intracellular infections within legumes roots where they produce plant accessible nitrogen from atmospheric nitrogen and thus reduce the reliance on industrial inputs. The rhizobia-legume symbiosis is often treated as a pairwise relationship between single genotypes, both in research and in the production of rhizobial inoculants. However in nature individual plants are infected by a high diversity of rhizobia symbionts. How this diversity affects productivity within the symbiosis is unclear. Here, we use a powerful statistical approach to assess the impact of diversity within the Rhizobium leguminosarum - clover symbiosis using a biodiversity-ecosystem function framework. Statistically, we found no significant impact of rhizobium diversity. However this relationship was weakly positive - rather than negative - indicating that there is no significant cost to increasing inoculant diversity. Productivity was influenced by the identity of the strains within an inoculant; strains with the highest individual performance showed a significant positive contribution within mixed inoculants. Overall, inoculant effectiveness was best predicted by the individual performance of the best inoculant member, and only weakly predicted by the worst performing member. Collectively, our data suggest that the Rhizobium leguminosarum - clover symbiosis displays a weak diversity-function relationship, but that inoculant performance can be improved through the inclusion of high performing strains. Given the wide environmental dependence of rhizobial inoculant quality, multi-strain inoculants could be highly successful as they increase the likelihood of including a strain well adapted to local conditions across different environments.


Assuntos
Medicago/microbiologia , Rhizobium leguminosarum/fisiologia , Simbiose , Ecossistema , Interações entre Hospedeiro e Microrganismos , Medicago/crescimento & desenvolvimento , Medicago/fisiologia , Rhizobium leguminosarum/classificação , Rhizobium leguminosarum/genética
4.
Evolution ; 75(3): 731-747, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33433925

RESUMO

Although most invasive species engage in mutualism, we know little about how mutualism evolves as partners colonize novel environments. Selection on cooperation and standing genetic variation for mutualism traits may differ between a mutualism's invaded and native ranges, which could alter cooperation and coevolutionary dynamics. To test for such differences, we compare mutualism traits between invaded- and native-range host-symbiont genotype combinations of the weedy legume, Medicago polymorpha, and its nitrogen-fixing rhizobium symbiont, Ensifer medicae, which have coinvaded North America. We find that mutualism benefits for plants are indistinguishable between invaded- and native-range symbioses. However, rhizobia gain greater fitness from invaded-range mutualisms than from native-range mutualisms, and this enhancement of symbiont fecundity could increase the mutualism's spread by increasing symbiont availability during plant colonization. Furthermore, mutualism traits in invaded-range symbioses show lower genetic variance and a simpler partitioning of genetic variance between host and symbiont sources, compared to native-range symbioses. This suggests that biological invasion has reduced mutualists' potential to respond to coevolutionary selection. Additionally, rhizobia bearing a locus (hrrP) that can enhance symbiotic fitness have more exploitative phenotypes in invaded-range than in native-range symbioses. These findings highlight the impacts of biological invasion on the evolution of mutualistic interactions.


Assuntos
Medicago/microbiologia , Sinorhizobium/fisiologia , Simbiose/genética , Evolução Biológica , Genótipo , Espécies Introduzidas , Medicago/genética , Rhizobium , Sinorhizobium/genética
5.
Mol Syst Biol ; 16(6): e9419, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32490601

RESUMO

Biological nitrogen fixation emerging from the symbiosis between bacteria and crop plants holds promise to increase the sustainability of agriculture. One of the biggest hurdles for the engineering of nitrogen-fixing organisms is an incomplete knowledge of metabolic interactions between microbe and plant. In contrast to the previously assumed supply of only succinate, we describe here the CATCH-N cycle as a novel metabolic pathway that co-catabolizes plant-provided arginine and succinate to drive the energy-demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. Using systems biology, isotope labeling studies and transposon sequencing in conjunction with biochemical characterization, we uncovered highly redundant network components of the CATCH-N cycle including transaminases that interlink the co-catabolism of arginine and succinate. The CATCH-N cycle uses N2 as an additional sink for reductant and therefore delivers up to 25% higher yields of nitrogen than classical arginine catabolism-two alanines and three ammonium ions are secreted for each input of arginine and succinate. We argue that the CATCH-N cycle has evolved as part of a synergistic interaction to sustain bacterial metabolism in the microoxic and highly acid environment of symbiosomes. Thus, the CATCH-N cycle entangles the metabolism of both partners to promote symbiosis. Our results provide a theoretical framework and metabolic blueprint for the rational design of plants and plant-associated organisms with new properties to improve nitrogen fixation.


Assuntos
Arginina/metabolismo , Fixação de Nitrogênio , Ácido Succínico/metabolismo , Simbiose , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Aminação , Arginase/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/fisiologia , Isótopos de Carbono , Elementos de DNA Transponíveis/genética , Transporte de Elétrons , Deleção de Genes , Marcação por Isótopo , Medicago/microbiologia , Nitrogenase/metabolismo , Fenótipo , Sinorhizobium/genética , Sinorhizobium/fisiologia , Simbiose/genética
6.
Evolution ; 73(9): 2013-2023, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31334838

RESUMO

Measuring selection acting on microbial populations in natural or even seminatural environments is challenging because many microbial populations experience variable selection. The majority of rhizobial bacteria are found in the soil. However, they also live symbiotically inside nodules of legume hosts and each nodule can release thousands of daughter cells back into the soil. We tested how past selection (i.e., legacies) by two plant genotypes and by the soil alone affected selection and genetic diversity within a population of 101 strains of Ensifer meliloti. We also identified allelic variants most strongly associated with soil- and host-dependent fitness. In addition to imposing direct selection on rhizobia populations, soil and host environments had lasting effects across host generations. Host presence and genotype during the legacy period explained 22% and 12% of the variance in the strain composition of nodule communities in the second cohort, respectively. Although strains with high host fitness in the legacy cohort tended to be enriched in the second cohort, the diversity of the strain community was greater when the second cohort was preceded by host rather than soil legacies. Our results indicate the potential importance of soil selection driving the evolution of these plant-associated microbes.


Assuntos
Medicago/microbiologia , Rhizobium/genética , Rhizobium/fisiologia , Solo , Algoritmos , Alelos , Biodiversidade , Frequência do Gene , Variação Genética , Genoma de Planta , Genótipo , Medicago/fisiologia , Análise de Componente Principal , Sinorhizobium meliloti , Microbiologia do Solo , Especificidade da Espécie , Simbiose/genética
7.
Radiat Prot Dosimetry ; 184(3-4): 385-387, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31038705

RESUMO

Some microorganisms in the environment make siderophores, which are low molecular chelators, to take up minerals from soil. Eleven bacteria were separated from the root of white clover by chlome azrol S (CAS) assay. Each bacterium was incubated in casamino acid (CAA) culture, and siderophores in CAA culture were purified. These extractions were applied to biotite or vermiculite spiked with Cs. From each clay mineral, 57.1-72.8% (5100 ppm), 55.6-63.8% (920 ppm) and 48.6-54.3% (2300 ppm), 31.6-34.4% (520 ppm) was eluted, respectively. To understand elution behaviour, Cs desorption ratio of each clay was measured every 30 min. The results indicate Cs elution was occurred quickly.


Assuntos
Bactérias/metabolismo , Radioisótopos de Césio/análise , Argila/química , Minerais/análise , Microbiologia do Solo , Poluentes Radioativos do Solo/análise , Silicatos de Alumínio/química , Argila/microbiologia , Compostos Ferrosos/química , Medicago/microbiologia , Raízes de Plantas/microbiologia , Sideróforos/metabolismo
8.
Fungal Genet Biol ; 127: 60-74, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30872027

RESUMO

Plant cellular responses to endophytic filamentous fungi are scarcely reported, with the majority of described colonization processes in plant-fungal interactions referring to either pathogens or true symbionts. Fusarium solani strain K (FsK) is a root endophyte of Solanum lycopersicum, which protects against root and foliar pathogens. Here, we investigate the association of FsK with two legumes (Lotus japonicus and Medicago truncatula) and report on colonization patterns and plant responses during the establishment of the interaction. L. japonicus plants colonized by FsK complete their life cycle and exhibit no apparent growth defects under normal conditions. We followed the growth of FsK within root-inoculated plants spatiotemporally and showed the capability of the endophyte to migrate to the stem. In a bipartite system comprising of the endophyte and either whole plants or root organ cultures, we studied the plant sub-cellular responses to FsK recognition, using optical, confocal and transmission electron microscopy. A polarized reorganization of the root cell occurs: endoplasmic reticulum/cytoplasm accumulation and nuclear placement at contact sites, occasional development of papillae underneath hyphopodia and membranous material rearrangements towards penetrating hyphae. Fungal hyphae proliferate within the vascular bundle of the plant. Plant cell death is involved in fungal colonization of the root. Our data suggest that the establishment of FsK within legume tissues requires fungal growth adaptations and plant cell-autonomous responses, known to occur during both symbiotic and pathogenic plant-fungal interactions. We highlight the overlooked plasticity of endophytic fungi upon plant colonization, and introduce a novel plant-endophyte association.


Assuntos
Endófitos/fisiologia , Fusarium/fisiologia , Lotus/microbiologia , Medicago/microbiologia , Simbiose , Interações entre Hospedeiro e Microrganismos , Hifas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia
9.
Am J Vet Res ; 80(1): 87-94, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30605026

RESUMO

OBJECTIVE To determine whether Mycobacterium bovis remains viable in ensiled forages. SAMPLE Alfalfa, mixed mostly grass, and corn silages. PROCEDURES For each of 10 sampling days, six 250-g replicate samples of each feedstuff were created and placed in a film pouch that could be vacuum sealed to simulate the ensiling process. Within each set of replicate samples, 4 were inoculated with 10 mL of mycobacterial liquid culture medium containing viable M bovis and 2 were inoculated with 10 mL of sterile mycobacterial liquid culture medium (controls) on day 0. Pouches were vacuum sealed and stored in the dark at room temperature. On the designated sampling day, 1 control pouch was submitted for forage analysis, and the other pouches were opened, and forage samples were obtained for M bovis culture and analysis with a PCR assay immediately and 24 hours later. RESULTS None of the control samples had positive M bovis culture or PCR assay results. Among M bovis-inoculated samples, the organism was not cultured from alfalfa and corn silage for > 2 days but was cultured from mixed mostly grass silage for 28 days after inoculation and ensiling initiation. Mycobacterium bovis DNA was detected by PCR assay in samples of all 3 feedstuffs throughout the 112-day observation period. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that properly ensiled forages would be an unlikely source for M bovis transmission to cattle. Further research is necessary to determine whether ensiling kills M bovis or forces it to become dormant and, if the latter, elucidate the conditions that cause it to revert to an infectious state.


Assuntos
Ração Animal/microbiologia , Criação de Animais Domésticos , Microbiologia de Alimentos , Mycobacterium bovis/fisiologia , Animais , Bovinos , Medicago/microbiologia , Medicago sativa/microbiologia , Poaceae/microbiologia , Silagem/microbiologia , Tuberculose Bovina/microbiologia , Zea mays/microbiologia
10.
Curr Microbiol ; 76(2): 187-193, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30498941

RESUMO

White clover widely cultivated in China is one of the most important perennial leguminous forages in temperate and subtropical regions. There is a large quantity of white clover seeds imported into China each year for demands of high-quality grass seeds. Seedborne diseases may cause significant economic losses. DNA sequencing technologies allow for the direct estimation of microbial community diversity, avoiding culture-based biases. Therefore, we used 16S rRNA gene sequencing to investigate the bacterial communities in white clover seeds collected from four different countries. The results showed that a total of 484,715 clean reads were obtained for further subsequent analysis. In total, 341, 340, 382, and 297 operational taxonomic units were obtained at 3% distance cutoff in DB, MB, TB, and XB samples, respectively. The richness indexes revealed that TB sample from Argentina had the highest bacterial richness in four samples. Our results demonstrated that Proteobacteria was the dominant phyla in MB, TB, and XB; however, Bacteroidetes was the dominant phyla in DB. The dominant genus of DB was Prevotella (11.9%), while Sphingomonas was the major genus of MB (46.9%), TB (55.08%), and XB (47.2%) samples. These results provide useful information for seedborne diseases and transmission of bacteria from seed to seedling.


Assuntos
Bactérias/classificação , Medicago/microbiologia , Microbiota , Sementes/microbiologia , Argentina , Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , DNA Bacteriano/genética , Dinamarca , Sequenciamento de Nucleotídeos em Larga Escala , Nova Zelândia , Filogenia , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Estados Unidos
11.
Mol Plant Microbe Interact ; 32(6): 717-728, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30576265

RESUMO

Host specificity in the root-nodule symbiosis between legumes and rhizobia is crucial for the establishment of a successful interaction and ammonia provision to the plant. The specificity is mediated by plant-bacterial signal exchange during early stages of interaction. We observed that a Sinorhizobium meliloti mutant ∆relA, which is deficient in initiating the bacterial stringent response, fails to nodulate Medicago sativa (alfalfa) but successfully infects Medicago truncatula. We used biochemical, histological, transcriptomic, and imaging approaches to compare the behavior of the S. meliloti ∆relA mutant and wild type (WT) on the two plant hosts. ∆relA performed almost WT-like on M. truncatula, except for reduced nitrogen-fixation capacity and a disorganized positioning of bacteroids within nodule cells. In contrast, ∆relA showed impaired root colonization on alfalfa and failed to infect nodule primordia. Global transcriptome analyses of ∆relA cells treated with the alfalfa flavonoid luteolin and of mature nodules induced by the mutant on M. truncatula revealed normal nod gene expression but overexpression of exopolysaccharide biosynthesis genes and a slight suppression of plant defense-like reactions. Many RelA-dependent transcripts overlap with the hypo-osmolarity-related FeuP regulon or are characteristic of stress responses. Based on our findings, we suggest that RelA is not essential until the late stages of symbiosis with M. truncatula, in which it may be involved in processes that optimize nitrogen fixation.


Assuntos
Especificidade de Hospedeiro , Medicago , Sinorhizobium meliloti , Simbiose , Interações Hospedeiro-Patógeno , Ligases/genética , Medicago/microbiologia , Medicago truncatula/microbiologia , Mutação , Fixação de Nitrogênio/genética , Raízes de Plantas/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiologia , Transcriptoma
12.
ACS Synth Biol ; 7(10): 2365-2378, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30223644

RESUMO

Many bacteria, often associated with eukaryotic hosts and of relevance for biotechnological applications, harbor a multipartite genome composed of more than one replicon. Biotechnologically relevant phenotypes are often encoded by genes residing on the secondary replicons. A synthetic biology approach to developing enhanced strains for biotechnological purposes could therefore involve merging pieces or entire replicons from multiple strains into a single genome. Here we report the creation of a genomic hybrid strain in a model multipartite genome species, the plant-symbiotic bacterium Sinorhizobium meliloti. We term this strain as cis-hybrid, since it is produced by genomic material coming from the same species' pangenome. In particular, we moved the secondary replicon pSymA (accounting for nearly 20% of total genome content) from a donor S. meliloti strain to an acceptor strain. The cis-hybrid strain was screened for a panel of complex phenotypes (carbon/nitrogen utilization phenotypes, intra- and extracellular metabolomes, symbiosis, and various microbiological tests). Additionally, metabolic network reconstruction and constraint-based modeling were employed for in silico prediction of metabolic flux reorganization. Phenotypes of the cis-hybrid strain were in good agreement with those of both parental strains. Interestingly, the symbiotic phenotype showed a marked cultivar-specific improvement with the cis-hybrid strains compared to both parental strains. These results provide a proof-of-principle for the feasibility of genome-wide replicon-based remodelling of bacterial strains for improved biotechnological applications in precision agriculture.


Assuntos
Nitrogênio/metabolismo , Sinorhizobium meliloti/metabolismo , Simbiose , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Espectroscopia de Ressonância Magnética , Medicago/microbiologia , Engenharia Metabólica/métodos , Raízes de Plantas/microbiologia , Plasmídeos/genética , Plasmídeos/metabolismo , Análise de Componente Principal , Sinorhizobium meliloti/genética
13.
PLoS One ; 13(2): e0192607, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29489845

RESUMO

Biological nitrogen fixation through the legume-rhizobia symbiosis is important for sustainable pastoral production. In New Zealand, the most widespread and valuable symbiosis occurs between white clover (Trifolium repens L.) and Rhizobium leguminosarum bv. trifolii (Rlt). As variation in the population size (determined by most probable number assays; MPN) and effectiveness of N-fixation (symbiotic potential; SP) of Rlt in soils may affect white clover performance, the extent in variation in these properties was examined at three different spatial scales: (1) From 26 sites across New Zealand, (2) at farm-wide scale, and (3) within single fields. Overall, Rlt populations ranged from 95 to >1 x 108 per g soil, with variation similar at the three spatial scales assessed. For almost all samples, there was no relationship between rhizobia population size and ability of the population to fix N during legume symbiosis (SP). When compared with the commercial inoculant strain, the SP of soils ranged between 14 to 143% efficacy. The N-fixing ability of rhizobia populations varied more between samples collected from within a single hill country field (0.8 ha) than between 26 samples collected from diverse locations across New Zealand. Correlations between SP and calcium and aluminium content were found in all sites, except within a dairy farm field. Given the general lack of association between SP and MPN, and high spatial variability of SP at single field scale, provision of advice for treating legume seed with rhizobia based on field-average MPN counts needs to be carefully considered.


Assuntos
Medicago/microbiologia , Rhizobium leguminosarum/fisiologia , Simbiose , Nova Zelândia , Microbiologia do Solo
14.
Syst Appl Microbiol ; 41(3): 251-259, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29452714

RESUMO

The identification and conservation of indigenous rhizobia associated with legume plants and their application as biofertilizers is becoming an agricultural worldwide priority. However, little is known about the genetic diversity and phylogeny of rhizobia in Romania. In the present study, the genetic diversity and population composition of Rhizobium leguminosarum symbiovar trifolii isolates from 12 clover plants populations located across two regions in Romania were analyzed. Red clover isolates were phenotypically evaluated and genotyped by sequencing 16S rRNA gene, 16S-23S intergenic spacer, three chromosomal genes (atpD, glnII and recA) and two plasmid genes (nifH and nodA). Multilocus sequence typing (MLST) analysis revealed that red clover plants are nodulated by a wide genetic diversity of R. leguminosarum symbiovar trifolii sequence types (STs), highly similar to the ones previously found in white clover. Rhizobial genetic variation was found mainly within the two clover populations for both chromosomal and plasmid types. Many STs appear to be unique for this region and the genetic composition of rhizobia differs significantly among the clover populations. Furthermore, our results showed that both soil pH and altitude contributed to plasmid sequence type composition while differences in chromosomal composition were affected by the altitude and were strongly correlated with distance.


Assuntos
Variação Genética , Medicago/microbiologia , Filogenia , Rhizobium leguminosarum/genética , Nódulos Radiculares de Plantas/microbiologia , Trifolium/microbiologia , Altitude , DNA Bacteriano/genética , Genes Bacterianos , Genética Populacional , Tipagem de Sequências Multilocus , RNA Ribossômico 16S/genética , Romênia , Análise de Sequência de DNA , Solo/química , Simbiose
15.
Proc Natl Acad Sci U S A ; 115(10): 2425-2430, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29453274

RESUMO

Assays to accurately estimate relative fitness of bacteria growing in multistrain communities can advance our understanding of how selection shapes diversity within a lineage. Here, we present a variant of the "evolve and resequence" approach both to estimate relative fitness and to identify genetic variants responsible for fitness variation of symbiotic bacteria in free-living and host environments. We demonstrate the utility of this approach by characterizing selection by two plant hosts and in two free-living environments (sterilized soil and liquid media) acting on synthetic communities of the facultatively symbiotic bacterium Ensifer meliloti We find (i) selection that hosts exert on rhizobial communities depends on competition among strains, (ii) selection is stronger inside hosts than in either free-living environment, and (iii) a positive host-dependent relationship between relative strain fitness in multistrain communities and host benefits provided by strains in single-strain experiments. The greatest changes in allele frequencies in response to plant hosts are in genes associated with motility, regulation of nitrogen fixation, and host/rhizobia signaling. The approach we present provides a powerful complement to experimental evolution and forward genetic screens for characterizing selection in bacterial populations, identifying gene function, and surveying the functional importance of naturally occurring genomic variation.


Assuntos
Aptidão Genética , Medicago , Sinorhizobium meliloti , Microbiologia do Solo , Simbiose , Fenômenos Fisiológicos Bacterianos , Aptidão Genética/genética , Aptidão Genética/fisiologia , Variação Genética , Medicago/microbiologia , Medicago/fisiologia , Fixação de Nitrogênio , Fenótipo , Rizoma/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiologia , Biologia Sintética
16.
Sci Rep ; 8(1): 1252, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352160

RESUMO

The Fusarium solani species complex (FSSC) has been studied intensively but its association with legumes, particularly under European agro-climatic conditions, is still poorly understood. In the present study, we investigated phylogenetic relationships and aggressiveness of 79 isolates of the FSSC collected from pea, subterranean clover, white clover and winter vetch grown under diverse agro-climatic and soil conditions within Temperate and Mediterranean Europe. The isolates were characterized by sequencing tef1 and rpb2 loci and by greenhouse aggressiveness assays. The majority of the isolates belonged to two lineages: the F. pisi comb. nov. lineage (formerly F. solani f. sp. pisi) mainly accommodating German and Swiss isolates, and the Fusisporium (Fusarium) solani lineage accommodating mainly Italian isolates. Based on the results of aggressiveness tests on pea, most of the isolates were classified as weakly to moderately aggressive. In addition, using one model strain, 62 accessions of 10 legume genera were evaluated for their potential to host F. pisi, the species known mainly as a pathogen of pea. A total of 58 accessions were colonized, with 25 of these being asymptomatic hosts. These results suggest a broad host range for F. pisi and challenge the forma specialis naming system in Fusarium.


Assuntos
Fusarium/classificação , Filogenia , Evolução Molecular , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidade , Especificidade de Hospedeiro , Medicago/microbiologia , Pisum sativum/microbiologia
17.
J Hazard Mater ; 341: 346-354, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28802245

RESUMO

A two-compartment microcosm was used to investigate the role of arbuscular mycorrhizal fungus (AMF) hyphae and earthworm in altering soil microbial community and OTC degradation. Treatments comprised OTC-contaminated hyphal compartments with or without AMF hyphae and with or without earthworms. Results indicated both AMF hyphae and earthworms accelerated OTC degradation; two degradation products were identified as 4-epi-oxytetracycline (EOTC) and 2-acetyl-2-decarboxamido-oxytetracycline (ADOTC). Q-PCR results indicated that both earthworms and AMF hyphae increased 16s rDNA gene, enhancing OTC degradation consequently. Illumina sequencing of the 16S rRNA genes showed that AMF hyphae and earthworm altered bacterial community. Earthworms stimulated the growth of class Anaerolineae, family Flavobacteriaceae, Genus Pseudomonas, reducing OTC residues. AMF hyphae significantly increased the abundance of family Pirellulaceae, genus Glycomyces, and Nonomuraea which had a negative correlation with EOTC, accelerating OTC degradation. When used together, AMF hyphae and earthworms enhanced OTC degradation by stimulating class Anaerolineae and family Flavobacteriaceae.


Assuntos
Antibacterianos/metabolismo , Micorrizas , Oligoquetos , Oxitetraciclina/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Animais , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Medicago/microbiologia , RNA Ribossômico 16S/genética , Zea mays/microbiologia
18.
Lett Appl Microbiol ; 66(1): 14-18, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29117429

RESUMO

Metagenomics and metatranscriptomics provide insights into biological processes in complex substrates such as soil, but linking the presence and expression of genes with functions can be difficult. Here, we obtain traditional most probable number estimates (MPN) of Rhizobium abundance in soil as a form of sample validation. Our work shows that in the Highfield experiment at Rothamsted, which has three contrasting conditions (>50 years continual bare fallow, wheat and grassland), MPN based on host plant nodulation assays corroborate metagenomic and metatranscriptomic estimates for Rhizobium leguminosarum sv. trifolii abundance. This validation is important to legitimize soil metagenomics and metatranscriptomics for the study of complex relationships between gene function and phylogeny. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has demonstrated for the first time a functional assay validation of metagenomic and metatranscriptomic datasets by utilizing the clover and Rhizobium leguminosarum sv. trifolii mutualism. The results show that the Most Probable Number results corroborate the results of the 'omics approaches and gives confidence to the study of other biological systems where such a cross-check is not available.


Assuntos
Bactérias/isolamento & purificação , Metagenômica/métodos , Rhizobium leguminosarum/genética , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Medicago/crescimento & desenvolvimento , Medicago/microbiologia , Filogenia , Rhizobium/genética , Rhizobium/crescimento & desenvolvimento , Rhizobium/isolamento & purificação , Rhizobium leguminosarum/crescimento & desenvolvimento , Rhizobium leguminosarum/isolamento & purificação
19.
FEMS Microbiol Ecol ; 94(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228264

RESUMO

Exotic, invasive plants and animals can wreak havoc on ecosystems by displacing natives and altering environmental conditions. However, much less is known about the identities or evolutionary dynamics of the symbiotic microbes that accompany invasive species. Most leguminous plants rely upon symbiotic rhizobium bacteria to fix nitrogen and are incapable of colonizing areas devoid of compatible rhizobia. We compare the genomes of symbiotic rhizobia in a portion of the legume's invaded range with those of the rhizobium symbionts from across the legume's native range. We show that in an area of California the legume Medicago polymorpha has invaded, its Ensifer medicae symbionts: (i) exhibit genome-wide patterns of relatedness that together with historical evidence support host-symbiont co-invasion from Europe into California, (ii) exhibit population genomic patterns consistent with the introduction of the majority of deep diversity from the native range, rather than a genetic bottleneck during colonization of California and (iii) harbor a large set of accessory genes uniquely enriched in binding functions, which could play a role in habitat invasion. Examining microbial symbiont genome dynamics during biological invasions is critical for assessing host-symbiont co-invasions whereby microbial symbiont range expansion underlies plant and animal invasions.


Assuntos
Espécies Introduzidas , Medicago/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium/classificação , Sinorhizobium/isolamento & purificação , Animais , Evolução Biológica , California , Ecossistema , Europa (Continente) , Genoma Bacteriano/genética , Rhizobium/genética , Sinorhizobium/genética , Simbiose/genética
20.
Sci Rep ; 7(1): 11051, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887555

RESUMO

The discovery that the actinobacterium Micromonospora inhabits nitrogen-fixing nodules raised questions as to its potential ecological role. The capacity of two Micromonospora strains to infect legumes other than their original host, Lupinus angustifolius, was investigated using Medicago and Trifolium as test plants. Compatible rhizobial strains were used for coinoculation of the plants because Micromonospora itself does not induce nodulation. Over 50% of nodules from each legume housed Micromonospora, and using 16S rRNA gene sequence identification, we verified that the reisolated strains corresponded to the microorganisms inoculated. Entry of the bacteria and colonization of the plant hosts were monitored using a GFP-tagged Lupac 08 mutant together with rhizobia, and by using immunogold labeling. Strain Lupac 08 was localized in plant tissues, confirming its capacity to enter and colonize all hosts. Based on studying three different plants, our results support a non-specific relationship between Micromonospora and legumes. Micromonospora Lupac 08, originally isolated from Lupinus re-enters root tissue, but only when coinoculated with the corresponding rhizobia. The ability of Micromonospora to infect and colonize different legume species and function as a potential plant-growth promoting bacterium is relevant because this microbe enhances the symbiosis without interfering with the host and its nodulating and nitrogen-fixing microbes.


Assuntos
Medicago/microbiologia , Interações Microbianas , Micromonospora/crescimento & desenvolvimento , Rhizobiaceae/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Trifolium/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Lupinus/microbiologia , Micromonospora/classificação , Micromonospora/genética , Micromonospora/isolamento & purificação , Desenvolvimento Vegetal , Doenças das Plantas , RNA Ribossômico 16S/genética , Rhizobiaceae/classificação , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...