Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84.640
Filtrar
1.
PLoS One ; 19(5): e0303235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728287

RESUMO

Excitotoxicity represents the primary cause of neuronal death following spinal cord injury (SCI). While autophagy plays a critical and intricate role in SCI, the specific mechanism underlying the relationship between excitotoxicity and autophagy in SCI has been largely overlooked. In this study, we isolated primary spinal cord neurons from neonatal rats and induced excitotoxic neuronal injury by high concentrations of glutamic acid, mimicking an excitotoxic injury model. Subsequently, we performed transcriptome sequencing. Leveraging machine learning algorithms, including weighted correlation network analysis (WGCNA), random forest analysis (RF), and least absolute shrinkage and selection operator analysis (LASSO), we conducted a comprehensive investigation into key genes associated with spinal cord neuron injury. We also utilized protein-protein interaction network (PPI) analysis to identify pivotal proteins regulating key gene expression and analyzed key genes from public datasets (GSE2599, GSE20907, GSE45006, and GSE174549). Our findings revealed that six genes-Anxa2, S100a10, Ccng1, Timp1, Hspb1, and Lgals3-were significantly upregulated not only in vitro in neurons subjected to excitotoxic injury but also in rats with subacute SCI. Furthermore, Hspb1 and Lgals3 were closely linked to neuronal autophagy induced by excitotoxicity. Our findings contribute to a better understanding of excitotoxicity and autophagy, offering potential targets and a theoretical foundation for SCI diagnosis and treatment.


Assuntos
Autofagia , Galectina 3 , Aprendizado de Máquina , Neurônios , Animais , Neurônios/metabolismo , Ratos , Galectina 3/metabolismo , Galectina 3/genética , Ratos Sprague-Dawley , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Mapas de Interação de Proteínas , Ácido Glutâmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética
2.
Synapse ; 78(3): e22291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733105

RESUMO

Spinal serotonin enables neuro-motor recovery (i.e., plasticity) in patients with debilitating paralysis. While there exists time of day fluctuations in serotonin-dependent spinal plasticity, it is unknown, in humans, whether this is due to dynamic changes in spinal serotonin levels or downstream signaling processes. The primary objective of this study was to determine if time of day variations in spinal serotonin levels exists in humans. To assess this, intrathecal drains were placed in seven adults with cerebrospinal fluid (CSF) collected at diurnal (05:00 to 07:00) and nocturnal (17:00 to 19:00) intervals. High performance liquid chromatography with mass spectrometry was used to quantify CSF serotonin levels with comparisons being made using univariate analysis. From the 7 adult patients, 21 distinct CSF samples were collected: 9 during the diurnal interval and 12 during nocturnal. Diurnal CSF samples demonstrated an average serotonin level of 216.6 ± $ \pm $ 67.7 nM. Nocturnal CSF samples demonstrated an average serotonin level of 206.7 ± $ \pm $ 75.8 nM. There was no significant difference between diurnal and nocturnal CSF serotonin levels (p = .762). Within this small cohort of spine healthy adults, there were no differences in diurnal versus nocturnal spinal serotonin levels. These observations exclude spinal serotonin levels as the etiology for time of day fluctuations in serotonin-dependent spinal plasticity expression.


Assuntos
Ritmo Circadiano , Serotonina , Humanos , Serotonina/líquido cefalorraquidiano , Masculino , Adulto , Feminino , Ritmo Circadiano/fisiologia , Pessoa de Meia-Idade , Medula Espinal/metabolismo , Cromatografia Líquida de Alta Pressão , Idoso
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731901

RESUMO

Growing demand for therapeutic tissue repair recurrently focusses scientists' attention on critical assessment of postmortal collection of live cells, especially stem cells. Our study aimed to assess the survival of neuronal progenitors in postmortal spinal cord and their differentiation potential. Postmortal samples of spinal cords were obtained from human-sized animals (goats) at 6, 12, 24, 36, and 54 h after slaughter. Samples were studied by immunohistology, differentiation assay, Western blot and flow cytometry for the presence and location of GD2-positive neural progenitors and their susceptibility to cell death. TUNEL staining of the goat spinal cord samples over 6-54 h postmortem revealed no difference in the number of positive cells per cross-section. Many TUNEL-positive cells were located in the gray commissure around the central canal of the spinal cord; no increase in TUNEL-positive cells was recorded in either posterior or anterior horns of the gray matter where many GD2-positive neural progenitors can be found. The active caspase 3 amount as measured by Western blot at the same intervals was moderately increasing over time. Neuronal cells were enriched by magnetic separation with antibodies against CD24; among them, the GD2-positive neural progenitor subpopulation did not overlap with apoptotic cells having high pan-caspase activity. Apoptotic cell death events are relatively rare in postmortal spinal cords and are not increased in areas of the neural progenitor cell's location, within measured postmortal intervals, or among the CD24/GD2-positive cells. Data from our study suggest postmortal spinal cords as a valuable source for harvesting highly viable allogenic neural progenitor cells.


Assuntos
Apoptose , Cabras , Células-Tronco Neurais , Medula Espinal , Animais , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Medula Espinal/metabolismo , Medula Espinal/citologia , Diferenciação Celular , Sobrevivência Celular , Caspase 3/metabolismo
4.
Acta Neurochir (Wien) ; 166(1): 201, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698241

RESUMO

BACKGROUND: Systematic descriptions of anatomical damage after brachial plexus injury (BPI) at the intradural level have been scarcely reported in detail. However, considering these damages, not only in the spinal nerve roots but also in the spinal cord itself, is crucial in determining the appropriate surgical approach to restore upper limb function and address refractory pain. Therefore, the authors present a descriptive study focusing on intradural findings observed during microsurgical DREZ-lesioning. METHODS: This study enrolled 19 consecutive patients under the same protocol. Microsurgical observation through exposure of C4 to Th1 medullary segments allowed to describe the lesions in spinal nerve roots, meninges, and spinal cord. Electrical stimulation of the ventral roots checked the muscle responses. RESULTS: Extensive damage was observed among the 114 explored roots (six roots per patient), with only 21 (18.4%) ventral (VR) and 17 (14.9%) dorsal (DR) roots retaining all rootlets intact. Damage distribution varied, with the most frequent impairments in C6 VRs (18 patients) and the least in Th1 VRs (14 patients), while in all the 19 patients for the C6 DRs (the most frequently impaired) and in 14 patients for Th1 DRs (the less impaired). C4 roots were found damaged in 12 patients. Total or partial avulsions affected 63.3% and 69.8% of DRs and VRs, respectively, while 15.8% and 14.0% of the 114 DRs and VRs were atrophic, maintaining muscle responses to stimulation in half of those VRs. Pseudomeningoceles were present in 11 patients but absent in 46% of avulsed roots. Adhesive arachnoiditis was noted in 12 patients, and dorsal horn parenchymal alterations in 10. CONCLUSIONS: Knowledge of intradural lesions post-BPI helps in guiding surgical indications for repair and functional neurosurgery for pain control.


Assuntos
Plexo Braquial , Raízes Nervosas Espinhais , Humanos , Raízes Nervosas Espinhais/cirurgia , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/patologia , Masculino , Feminino , Adulto , Plexo Braquial/lesões , Plexo Braquial/cirurgia , Pessoa de Meia-Idade , Medula Espinal/cirurgia , Medula Espinal/patologia , Adulto Jovem , Neuropatias do Plexo Braquial/cirurgia , Estudos de Coortes , Microcirurgia/métodos , Adolescente , Idoso
5.
BMC Med ; 22(1): 189, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715017

RESUMO

BACKGROUND: Sleep loss is a common public health problem that causes hyperalgesia, especially that after surgery, which reduces the quality of life seriously. METHODS: The 48-h sleep restriction (SR) mouse model was created using restriction chambers. In vivo imaging, transmission electron microscopy (TEM), immunofluorescence staining and Western blot were performed to detect the status of the blood-spinal cord barrier (BSCB). Paw withdrawal mechanical threshold (PWMT) was measured to track mouse pain behavior. The role of infiltrating regulatory T cells (Tregs) and endothelial cells (ECs) in mouse glycolysis and BSCB damage were analyzed using flow cytometry, Western blot, CCK-8 assay, colorimetric method and lactate administration. RESULTS: The 48-h SR made mice in sleep disruption status and caused an acute damage to the BSCB, resulting in hyperalgesia and neuroinflammation in the spinal cord. In SR mice, the levels of glycolysis and glycolysis enzymes of ECs in the BSCB were found significantly decreased [CON group vs. SR group: CD31+Glut1+ cells: p < 0.001], which could cause dysfunction of ECs and this was confirmed in vitro. Increased numbers of infiltrating T cells [p < 0.0001] and Treg population [p < 0.05] were detected in the mouse spinal cord after 48-h SR. In the co-cultured system of ECs and Tregs in vitro, the competition of Tregs for glucose resulted in the glycolysis disorder of ECs [Glut1: p < 0.01, ENO1: p < 0.05, LDHα: p < 0.05; complete tubular structures formed: p < 0.0001; CCK8 assay: p < 0.001 on 24h, p < 0.0001 on 48h; glycolysis level: p < 0.0001]. An administration of sodium lactate partially rescued the function of ECs and relieved SR-induced hyperalgesia. Furthermore, the mTOR signaling pathway was excessively activated in ECs after SR in vivo and those under the inhibition of glycolysis or co-cultured with Tregs in vitro. CONCLUSIONS: Affected by glycolysis disorders of ECs due to glucose competition with infiltrating Tregs through regulating the mTOR signaling pathway, hyperalgesia induced by 48-h SR is attributed to neuroinflammation and damages to the barriers, which can be relieved by lactate supplementation.


Assuntos
Células Endoteliais , Glucose , Hiperalgesia , Privação do Sono , Medula Espinal , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Glucose/metabolismo , Células Endoteliais/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Masculino , Privação do Sono/complicações , Glicólise/fisiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
6.
J Neuroinflammation ; 21(1): 117, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715127

RESUMO

BACKGROUND: Despite the high prevalence of neuropathic pain, treating this neurological disease remains challenging, given the limited efficacy and numerous side effects associated with current therapies. The complexity in patient management is largely attributed to an incomplete understanding of the underlying pathological mechanisms. Central sensitization, that refers to the adaptation of the central nervous system to persistent inflammation and heightened excitatory transmission within pain pathways, stands as a significant contributor to persistent pain. Considering the role of the cystine/glutamate exchanger (also designated as system xc-) in modulating glutamate transmission and in supporting neuroinflammatory responses, we investigated the contribution of this exchanger in the development of neuropathic pain. METHODS: We examined the implication of system xc- by evaluating changes in the expression/activity of this exchanger in the dorsal spinal cord of mice after unilateral partial sciatic nerve ligation. In this surgical model of neuropathic pain, we also examined the consequence of the genetic suppression of system xc- (using mice lacking the system xc- specific subunit xCT) or its pharmacological manipulation (using the pharmacological inhibitor sulfasalazine) on the pain-associated behavioral responses. Finally, we assessed the glial activation and the inflammatory response in the spinal cord by measuring mRNA and protein levels of GFAP and selected M1 and M2 microglial markers. RESULTS: The sciatic nerve lesion was found to upregulate system xc- at the spinal level. The genetic deletion of xCT attenuated both the amplitude and the duration of the pain sensitization after nerve surgery, as evidenced by reduced responses to mechanical and thermal stimuli, and this was accompanied by reduced glial activation. Consistently, pharmacological inhibition of system xc- had an analgesic effect in lesioned mice. CONCLUSION: Together, these observations provide evidence for a role of system xc- in the biochemical processes underlying central sensitization. We propose that the reduced hypersensitivity observed in the transgenic mice lacking xCT or in sulfasalazine-treated mice is mediated by a reduced gliosis in the lumbar spinal cord and/or a shift in microglial M1/M2 polarization towards an anti-inflammatory phenotype in the absence of system xc-. These findings suggest that drugs targeting system xc- could contribute to prevent or reduce neuropathic pain.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Camundongos Endogâmicos C57BL , Neuralgia , Doenças Neuroinflamatórias , Medula Espinal , Animais , Camundongos , Neuralgia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Masculino , Medula Espinal/metabolismo , Medula Espinal/patologia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Modelos Animais de Doenças , Camundongos Knockout , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico , Hiperalgesia/metabolismo , Hiperalgesia/etiologia , Camundongos Transgênicos
7.
Sci Adv ; 10(19): eadl1230, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718109

RESUMO

The spinal cord is crucial for transmitting motor and sensory information between the brain and peripheral systems. Spinal cord injuries can lead to severe consequences, including paralysis and autonomic dysfunction. We introduce thin-film, flexible electronics for circumferential interfacing with the spinal cord. This method enables simultaneous recording and stimulation of dorsal, lateral, and ventral tracts with a single device. Our findings include successful motor and sensory signal capture and elicitation in anesthetized rats, a proof-of-concept closed-loop system for bridging complete spinal cord injuries, and device safety verification in freely moving rodents. Moreover, we demonstrate potential for human application through a cadaver model. This method sees a clear route to the clinic by using materials and surgical practices that mitigate risk during implantation and preserve cord integrity.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Animais , Medula Espinal/fisiologia , Ratos , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/fisiopatologia , Humanos , Estimulação Elétrica/métodos , Eletrodos Implantados
8.
Zhonghua Yi Xue Za Zhi ; 104(17): 1521-1528, 2024 May 07.
Artigo em Chinês | MEDLINE | ID: mdl-38706060

RESUMO

Objective: To investigate the therapeutic effect of sodium oligomannate on experimental autoimmune encephalomyelitis (EAE) mice and its effect on intestinal flora and microglia polarization. Methods: Fifty female C57BL/6 mice were randomly divided by the random number table method into the control group, EAE model group and low-dose, medium-dose and high-dose group of sodium oligomannate with 10 mice each. The EAE model group and each dose group of sodium oligomannate were induced by subcutaneous multi-point injection of MOG35-55 peptide for the EAE model. Mice in the low-dose, medium-dose and high-dose group of sodium oligomannate were gavaged sodium oligomannate 40, 80, and 160 mg/kg twice a day, respectively, starting from the day after modeling. The intervention continued until the mice were euthanized. Observe the incidence of disease, infiltration of inflammatory cells in spinal cord tissue, and demyelination in each group of mice.. The mice feces were collected and tested for intestinal flora by 16S rRNA sequencing. Immunofluorescence staining was used to observe the expression of Iba-1 protein, an activation indicator of microglia, in spinal cord tissue. The protein levels of M1 type markers iNOS, CD16, and M2 type markers Arg1 and CD206 were tsested in the spinal cord by Western blotting and immunofluorescence staining. Results: None of the mice in the control group developed any disease, while the mice in other groups showed varying degrees of disease, including tail sag, unstable walking, and hind limb weakness. Compared with the EAE model group, the incubation period was prolonged, the peak was delayed and the peak neurological dysfunction score was reduced (3.6±0.6 vs 3.0±0.6, 2.8±0.5, 1.8±0.6, P<0.05) in all sodium oligomannate groups, with milder symptoms at higher doses. The differences in pairwise comparisons between the groups were all statistically significant (all P<0.05). In the control group, no inflammatory cell infiltration or demyelinating changes were observed in spinal cord tissue. In the EAE model group, inflammatory cell infiltration and demyelination changes were evident in the spinal cord tissues at the onset peak. Compared with the EAE model group, inflammatory cell infiltration and demyelination were ameliorated in all sodium oligomannate groups. Compared with the control group, the relative abundance of Bacteroidota decreased and that of Firmicutes increased in the EAE model group. Compared with the EAE model group, the relative abundance of Bacteroidota increased and that of Firmicutes decreased, the ratio of Bacteroidetes to Firmicutes increased (0.20±0.05 vs 0.37±0.02,0.61±0.03,0.91±0.08,P<0.01) in the respective dose groups. The difference in pairwise comparison between groups was statistically significant (P<0.01), with greater changes at higher doses. Compared with the control group, the levels of Iba-1、CD16 and iNOS increased, while the levels of Arg-1 and CD206 decreased in the EAE model group. Compared with the EAE model group, the levels of Iba-1、CD16 and iNOS decreased, while the levels of Arg-1 and CD206 increased in all sodium oligomannate groups(P<0.01), with greater changes at higher doses. The difference between groups was statistically significant (P<0.01). Conclusions: Sodium oligomannate has a therapeutic effect on EAE and is dose-dependent. Its mechanism of action may be related toimproving intestinal microecology and the modulation of microglial polarization.


Assuntos
Encefalomielite Autoimune Experimental , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Microglia , Medula Espinal , Animais , Camundongos , Feminino , Modelos Animais de Doenças , Manose
9.
Cell Stem Cell ; 31(5): 585-586, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701752

RESUMO

Stem cell therapy has emerged as a promising area of scientific investigation, sparking considerable interest, especially in spinal cord injury (SCI). Sun et al.1 discover that the extracellular matrix (ECM) from the neonatal spinal cord transmits biochemical signals to endogenous axons, thus promoting axonal regeneration.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Humanos , Traumatismos da Medula Espinal/terapia , Animais , Recém-Nascido , Matriz Extracelular/metabolismo , Adulto , Regeneração Nervosa
10.
Med Eng Phys ; 127: 104170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692767

RESUMO

Recently, functional Near-Infrared Spectroscopy (fNIRS) was applied to obtain, non-invasively, the human peri­spinal Neuro-Vascular Response (NVR) under a non-noxious electrical stimulation of a peripheral nerve. This method allowed the measurements of changes in the concentration of oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb) from the peri­spinal vascular network. However, there is a lack of clarity about the potential differences in perispinal NVR recorded by the different fNIRS technologies currently available. In this work, the two main noninvasive fNIRS technologies were compared, i.e., LED and LASER-based. The recording of the human peri­spinal NVR induced by non-noxious electrical stimulation of a peripheral nerve was recorded simultaneously at C7 and T10 vertebral levels. The amplitude, rise time, and full width at half maximum duration of the perispinal NVRs were characterized in healthy volunteers and compared between both systems. The main difference was that the LED-based system shows about one order of magnitude higher values of amplitude than the LASER-based system. No statistical differences were found for rise time and for duration parameters (at thoracic level). The comparison of point-to-point wave patterns did not show significant differences between both systems. In conclusion, the peri­spinal NRV response obtained by different fNIRS technologies was reproducible, and only the amplitude showed differences, probably due to the power of the system which should be considered when assessing the human peri­spinal vascular network.


Assuntos
Lasers , Espectroscopia de Luz Próxima ao Infravermelho , Medula Espinal , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Masculino , Medula Espinal/irrigação sanguínea , Medula Espinal/diagnóstico por imagem , Medula Espinal/fisiologia , Adulto , Feminino , Adulto Jovem , Estimulação Elétrica , Hemoglobinas/análise , Hemoglobinas/metabolismo
11.
Int J Nanomedicine ; 19: 4081-4101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736654

RESUMO

Purpose: Spinal cord injury (SCI) is an incurable and disabling event that is accompanied by complex inflammation-related pathological processes, such as the production of excessive reactive oxygen species (ROS) by infiltrating inflammatory immune cells and their release into the extracellular microenvironment, resulting in extensive apoptosis of endogenous neural stem cells. In this study, we noticed the neuroregeneration-promoting effect as well as the ability of the innovative treatment method of FTY720-CDs@GelMA paired with NSCs to increase motor function recovery in a rat spinal cord injury model. Methods: Carbon dots (CDs) and fingolimod (FTY720) were added to a hydrogel created by chemical cross-linking GelMA (FTY720-CDs@GelMA). The basic properties of FTY720-CDs@GelMA hydrogels were investigated using TEM, SEM, XPS, and FTIR. The swelling and degradation rates of FTY720-CDs@GelMA hydrogels were measured, and each group's ability to scavenge reactive oxygen species was investigated. The in vitro biocompatibility of FTY720-CDs@GelMA hydrogels was assessed using neural stem cells. The regeneration of the spinal cord and recovery of motor function in rats were studied following co-treatment of spinal cord injury using FTY720-CDs@GelMA hydrogel in combination with NSCs, utilising rats with spinal cord injuries as a model. Histological and immunofluorescence labelling were used to determine the regeneration of axons and neurons. The recovery of motor function in rats was assessed using the BBB score. Results: The hydrogel boosted neurogenesis and axonal regeneration by eliminating excess ROS and restoring the regenerative environment. The hydrogel efficiently contained brain stem cells and demonstrated strong neuroprotective effects in vivo by lowering endogenous ROS generation and mitigating ROS-mediated oxidative stress. In a follow-up investigation, we discovered that FTY720-CDs@GelMA hydrogel could dramatically boost NSC proliferation while also promoting neuronal regeneration and synaptic formation, hence lowering cavity area. Conclusion: Our findings suggest that the innovative treatment of FTY720-CDs@GelMA paired with NSCs can effectively improve functional recovery in SCI patients, making it a promising therapeutic alternative for SCI.


Assuntos
Cloridrato de Fingolimode , Hidrogéis , Células-Tronco Neurais , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/terapia , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/química , Cloridrato de Fingolimode/administração & dosagem , Células-Tronco Neurais/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/administração & dosagem , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Pontos Quânticos/química , Modelos Animais de Doenças , Feminino , Medula Espinal/efeitos dos fármacos
12.
Curr Top Dev Biol ; 159: 168-231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729676

RESUMO

The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Tubo Neural , Transdução de Sinais , Tubo Neural/embriologia , Tubo Neural/metabolismo , Tubo Neural/citologia , Animais , Padronização Corporal/genética , Humanos , Redes Reguladoras de Genes , Medula Espinal/embriologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Diferenciação Celular , Movimento Celular
13.
ACS Biomater Sci Eng ; 10(5): 3218-3231, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38593429

RESUMO

Spinal cord organoids are of significant value in the research of spinal cord-related diseases by simulating disease states, thereby facilitating the development of novel therapies. However, the complexity of spinal cord structure and physiological functions, along with the lack of human-derived inducing components, presents challenges in the in vitro construction of human spinal cord organoids. Here, we introduce a novel human decellularized placenta-derived extracellular matrix hydrogel (DPECMH) and, combined with a new induction protocol, successfully construct human spinal cord organoids. The human placenta-sourced decellularized extracellular matrix (dECM), verified through hematoxylin and eosin staining, DNA quantification, and immunofluorescence staining, retained essential ECM components such as elastin, fibronectin, type I collagen, laminin, and so forth. The temperature-sensitive hydrogel made from human placenta dECM demonstrated good biocompatibility and promoted the differentiation of human induced pluripotent stem cell (hiPSCs)-derived spinal cord organoids into neurons. It displayed enhanced expression of laminar markers in comparison to Matrigel and showed higher expression of laminar markers compared to Matrigel, accelerating the maturation process of spinal cord organoids and demonstrating its potential as an organoid culture substrate. DPECMH has the potential to replace Matrigel as the standard additive for human spinal cord organoids, thus advancing the development of spinal cord organoid culture protocols and their application in the in vitro modeling of spinal cord-related diseases.


Assuntos
Diferenciação Celular , Matriz Extracelular Descelularizada , Hidrogéis , Células-Tronco Pluripotentes Induzidas , Organoides , Placenta , Medula Espinal , Humanos , Organoides/citologia , Organoides/metabolismo , Organoides/efeitos dos fármacos , Feminino , Placenta/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Gravidez , Hidrogéis/química , Hidrogéis/farmacologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Diferenciação Celular/efeitos dos fármacos , Matriz Extracelular Descelularizada/farmacologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/farmacologia , Laminina/química
14.
Mol Pain ; 20: 17448069241249455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597175

RESUMO

Although the molecular mechanisms of chronic pain have been extensively studied, a global picture of alternatively spliced genes and events in the peripheral and central nervous systems of chronic pain is poorly understood. The current study analyzed the changing pattern of alternative splicing (AS) in mouse brain, dorsal root ganglion, and spinal cord tissue under inflammatory and neuropathic pain. In total, we identified 6495 differentially alternatively spliced (DAS) genes. The molecular functions of shared DAS genes between these two models are mainly enriched in calcium signaling pathways, synapse organization, axon regeneration, and neurodegeneration disease. Additionally, we identified 509 DAS in differentially expressed genes (DEGs) shared by these two models, accounting for a small proportion of total DEGs. Our findings supported the hypothesis that the AS has an independent regulation pattern different from transcriptional regulation. Taken together, these findings indicate that AS is one of the important molecular mechanisms of chronic pain in mammals. This study presents a global description of AS profile changes in the full path of neuropathic and inflammatory pain models, providing new insights into the underlying mechanisms of chronic pain and guiding genomic clinical diagnosis methods and rational medication.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica , Inflamação , Camundongos Endogâmicos C57BL , Neuralgia , Transcriptoma , Animais , Neuralgia/genética , Neuralgia/metabolismo , Processamento Alternativo/genética , Inflamação/genética , Transcriptoma/genética , Masculino , Gânglios Espinais/metabolismo , Camundongos , Medula Espinal/metabolismo , Medula Espinal/patologia , Regulação da Expressão Gênica , Modelos Animais de Doenças
15.
Free Radic Biol Med ; 219: 1-16, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614227

RESUMO

Bupivacaine (BUP) is an anesthetic commonly used in clinical practice that when used for spinal anesthesia, might exert neurotoxic effects. Thioredoxin-interacting protein (TXNIP) is a member of the α-arrestin protein superfamily that binds covalently to thioredoxin (TRX) to inhibit its function, leading to increased oxidative stress and activation of apoptosis. The role of TXNIP in BUP-induced oxidative stress and apoptosis remains to be elucidated. In this context, the present study aimed to explore the effects of TXNIP knockdown on BUP-induced oxidative stress and apoptosis in the spinal cord of rats and in PC12 cells through the transfection of adeno-associated virus-TXNIP short hairpin RNA (AAV-TXNIP shRNA) and siRNA-TXNIP, respectively. In vivo, a rat model of spinal neurotoxicity was established by intrathecally injecting rats with BUP. The BUP + TXNIP shRNA and the BUP + Control shRNA groups of rats were injected with an AAV carrying the TXNIP shRNA and the Control shRNA, respectively, into the subarachnoid space four weeks prior to BUP treatment. The Basso, Beattie & Bresnahan (BBB) locomotor rating score, % MPE of TFL, H&E staining, and Nissl staining analyses were conducted. In vitro, 0.8 mM BUP was determined by CCK-8 assay to establish a cytotoxicity model in PC12 cells. Transfection with siRNA-TXNIP was carried out to suppress TXNIP expression prior to exposing PC12 cells to BUP. The results revealed that BUP effectively induced neurological behavioral dysfunction and neuronal damage and death in the spinal cord of the rats. Similarly, BUP triggered cytotoxicity and apoptosis in PC12 cells. In addition, treated with BUP both in vitro and in vivo exhibited upregulated TXNIP expression and increased oxidative stress and apoptosis. Interestingly, TXNIP knockdown in the spinal cord of rats through transfection of AAV-TXNIP shRNA exerted a protective effect against BUP-induced spinal neurotoxicity by ameliorating behavioral and histological outcomes and promoting the survival of spinal cord neurons. Similarly, transfection with siRNA-TXNIP mitigated BUP-induced cytotoxicity in PC12 cells. In addition, TXNIP knockdown mitigated the upregulation of ROS, MDA, Bax, and cleaved caspase-3 and restored the downregulation of GSH, SOD, CAT, GPX4, and Bcl2 induced upon BUP exposure. These findings suggested that TXNIP knockdown protected against BUP-induced spinal neurotoxicity by suppressing oxidative stress and apoptosis. In summary, TXNIP could be a central signaling hub that positively regulates oxidative stress and apoptosis during neuronal damage, which renders TXNIP a promising target for treatment strategies against BUP-induced spinal neurotoxicity.


Assuntos
Apoptose , Bupivacaína , Proteínas de Transporte , Técnicas de Silenciamento de Genes , Estresse Oxidativo , RNA Interferente Pequeno , Medula Espinal , Animais , Ratos , Estresse Oxidativo/efeitos dos fármacos , Bupivacaína/toxicidade , Bupivacaína/efeitos adversos , Células PC12 , Apoptose/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/efeitos dos fármacos , RNA Interferente Pequeno/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Masculino , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Injeções Espinhais , Ratos Sprague-Dawley , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/etiologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo
16.
Glia ; 72(7): 1319-1339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38577970

RESUMO

Neuroinflammation and chronic activation of microglial cells are the prominent features of amyotrophic lateral sclerosis (ALS) pathology. While alterations in the mRNA profile of diseased microglia have been well documented, the actual microglia proteome remains poorly characterized. Here we performed a functional characterization together with proteome analyses of microglial cells at different stages of disease in the SOD1-G93A model of ALS. Functional analyses of microglia derived from the lumbar spinal cord of symptomatic mice revealed: (i) remarkably high mitotic index (close to 100% cells are Ki67+) (ii) significant decrease in phagocytic capacity when compared to age-matched control microglia, and (iii) diminished response to innate immune challenges in vitro and in vivo. Proteome analysis revealed a development of two distinct molecular signatures at early and advanced stages of disease. While at early stages of disease, we identified several proteins implicated in microglia immune functions such as GPNMB, HMBOX1, at advanced stages of disease microglia signature at protein level was characterized with a robust upregulation of several unconventional proteins including rootletin, major vaults proteins and STK38. Upregulation of GPNMB and rootletin has been also found in the spinal cord samples of sporadic ALS. Remarkably, the top biological functions of microglia, in particular in the advanced disease, were not related to immunity/immune response, but were highly enriched in terms linked to RNA metabolism. Together, our results suggest that, over the course of disease, chronically activated microglia develop unconventional protein signatures and gradually lose their immune identity ultimately turning into functionally inefficient immune cells.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos Transgênicos , Microglia , Proteoma , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Microglia/metabolismo , Microglia/imunologia , Animais , Proteoma/metabolismo , Camundongos , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/imunologia , Modelos Animais de Doenças , Fagocitose/fisiologia , Humanos , Feminino , Camundongos Endogâmicos C57BL , Masculino
17.
Brain Res ; 1834: 148915, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582414

RESUMO

Bestrophin-1 and anoctamin-1 are members of the calcium-activated chloride channels (CaCCs) family and are involved in inflammatory and neuropathic pain. However, their role in pain hypersensitivity induced by REM sleep deprivation (REMSD) has not been studied. This study aimed to determine if anoctamin-1 and bestrophin-1 are involved in the pain hypersensitivity induced by REMSD. We used the multiple-platform method to induce REMSD. REM sleep deprivation for 48 h induced tactile allodynia and a transient increase in corticosterone concentration at the beginning of the protocol (12 h) in female and male rats. REMSD enhanced c-Fos and α2δ-1 protein expression but did not change activating transcription factor 3 (ATF3) and KCC2 expression in dorsal root ganglia and dorsal spinal cord. Intrathecal injection of CaCCinh-A01, a non-selective bestrophin-1 blocker, and T16Ainh-A01, a specific anoctamin-1 blocker, reverted REMSD-induced tactile allodynia. However, T16Ainh-A01 had a higher antiallodynic effect in male than female rats. In addition, REMSD increased bestrophin-1 protein expression in DRG but not in DSC in male and female rats. In marked contrast, REMSD decreased anoctamin-1 protein expression in DSC but not in DRG, only in female rats. Bestrophin-1 and anoctamin-1 promote pain and maintain tactile allodynia induced by REM sleep deprivation in both male and female rats, but their expression patterns differ between the sexes.


Assuntos
Bestrofinas , Gânglios Espinais , Hiperalgesia , Privação do Sono , Medula Espinal , Animais , Privação do Sono/metabolismo , Privação do Sono/complicações , Hiperalgesia/metabolismo , Masculino , Feminino , Ratos , Gânglios Espinais/metabolismo , Medula Espinal/metabolismo , Bestrofinas/metabolismo , Canais de Cloreto/metabolismo , Sono REM/fisiologia , Ratos Wistar , Anoctamina-1 , Canais de Cálcio Tipo L
18.
Eur J Pharmacol ; 973: 176600, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38643834

RESUMO

Multiple sclerosis is an autoimmune disease that causes inflammatory damage to the central nervous system. At present, the pathogenesis of the disease is unknown. There is a lack of few effective therapy medications available. Therefore, it is necessary to further explore the pathogenesis of this illness and develop potential therapeutic drugs. Dabrafenib is potential therapeutic medicine for nervous system disease. In this study, we preliminarily studied the possible mechanism of dabrafenib in the treatment of multiple sclerosis from the perspective of ferroptosis. First, we observed that dabrafenib significantly improved symptoms of gait abnormalities, limb weakness or paralysis, and down-regulated levels of spinal cord inflammation in an experimental autoimmune encephalitis (EAE) model. Meanwhile, we also observed that dabrafenib could inhibit the proteins of ferroptosis in spinal cord tissue of EAE mice by Western blot. The results of immunohistochemical analysis showed that the effect of dabrafenib on ferroptosis mainly occurred in microglia. Second, dabrafenib was demonstrated to be able to inhibit the S phase of the cell cycle, reduce ROS levels, and reinstate mitochondrial activity in the LPS-induced BV2 inflammatory cell model. Futhermore, we found that dabrafenib inhibits P-JAK2 and P-STAT3 activation by acting Axl receptor, which in turn prevents neurogenic inflammation in microglia. The co-stimulated BV2 cell model with LPS and Erastin also verified these findings. Ultimately, the Axl knockout mice used to construct the EAE model allowed for the confirmation that dabrafenib prevented ferroptosis in microglia by up-regulating Axl receptor, which reduced the inflammatory demyelination associated with EAE. In summary, our research demonstrates the advantages of dabrafenib in multiple sclerosis treatment, which can prevent ferroptosis in microglia in multiple sclerosis through up-regulating Axl receptor, thus halting the progression of multiple sclerosis.


Assuntos
Receptor Tirosina Quinase Axl , Encefalomielite Autoimune Experimental , Ferroptose , Imidazóis , Oximas , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Regulação para Cima , Animais , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/metabolismo , Ferroptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Camundongos , Oximas/farmacologia , Oximas/uso terapêutico , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fator de Transcrição STAT3/metabolismo , Linhagem Celular , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 480-486, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38632070

RESUMO

Objective: To explore the therapeutic effect of basic fibroblast growth factor (bFGF) on spinal cord injury (SCI) in rats and the influence of Notch/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Methods: A total of 40 10-week-old male Sprague Dawley (SD) rats were selected to establish T 10-segment SCI model by a free falling object. Among them, 32 successful models were randomly divided into model group and bFGF group, with 16 in each group. Another 16 SD rats were selected as sham-operation group, with only T 10 processes, dura mater, and spinal cord exposed. After modeling, the rats in bFGF group were intraperitoneally injected with 100 µg/kg bFGF (once a day for 28 days), and the rats in model group and sham-operation group were injected with normal saline in the same way. The survival of rats in each group were observed after modeling. Basso-Beattie-Bresnahan (BBB) scores were performed before modeling and at immediate, 14 days, and 28 days after modeling to evaluate the functional recovery of hind limbs. Then, the spinal cord tissue at the site of injury was taken at 28 days and stained with HE, Nissl, and propidium iodide (PI) to observe the pathological changes, neuronal survival (number of Nissl bodies) and apoptosis (number of PI red stained cells) of the spinal cord tissue; immunohistochemical staining and ELISA were used to detect the levels of astrocyte activation markers [glial fibrillary acidic protein (GFAP)] and inflammatory factors [interleukin 1ß (IL-1ß), tumor necrosis factor α (TNF-α), interferon γ (IFN-γ)] in tissues, respectively. Western blot was used to detect the expressions of Notch/STAT3 signaling pathway related proteins [Notch, STAT3, phosphoryl-STAT3 (p-STAT3), bone morphogenetic protein 2 (BMP-2)] in tissues. Results: All rats survived until the experiment was completed. At immediate after modeling, the BBB scores in model group and bFGF group significantly decreased when compared to sham-operation group ( P<0.05). At 14 and 28 days after modeling, the BBB scores in model group significantly decreased when compared to sham-operation group ( P<0.05); the bFGF group showed an increase compared to model group ( P<0.05). Compared with before modeling, the BBB scores of model group and bFGF group decreased at immediate after modeling, and gradually increased at 14 and 28 days, the differences between different time points were significant ( P<0.05). The structure of spinal cord tissue in sham-operation group was normal; in model group, there were more necrotic lesions in the spinal cord tissue and fewer Nissl bodies with normal structures; the number of necrotic lesions in the spinal cord tissue of the bFGF group significantly reduced compared to the model group, and some normally structured Nissl bodies were visible. Compared with sham-operation group, the number of Nissl bodies in spinal cord tissue significantly decreased, the number of PI red stained cells, GFAP, IL-1ß, TNF-α, IFN-γ, Notch, p-STAT3 /STAT3, BMP-2 protein expression levels significantly increased in model group ( P<0.05). The above indexes in bFGF group significantly improved when compared with model group ( P<0.05). Conclusion: bFGF can improve motor function and pathological injury repair of spinal cord tissue in SCI rats, improve neuronal survival, and inhibit neuronal apoptosis, excessive activation of astrocytes in spinal cord tissue and inflammatory response, the mechanism of which may be related to the decreased activity of Notch/STAT3 signaling pathway.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Traumatismos da Medula Espinal , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/farmacologia , Fator de Transcrição STAT3/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Traumatismos da Medula Espinal/terapia , Medula Espinal/metabolismo , Transdução de Sinais
20.
Amino Acids ; 56(1): 32, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637413

RESUMO

Diabetic neuropathy (DN) is a common neurological complication caused by diabetes mellitus (DM). Axonal degeneration is generally accepted to be the major pathological change in peripheral DN. Taurine has been evidenced to be neuroprotective in various aspects, but its effect on spinal cord axon injury (SCAI) in DN remains barely reported. This study showed that taurine significantly ameliorated axonal damage of spinal cord (SC), based on morphological and functional analyses, in a rat model of DN induced by streptozotocin (STZ). Taurine was also found to induce neurite outgrowth in cultured cerebral cortex neurons with high glucose exposure. Moreover, taurine up-regulated the expression of nerve growth factor (NGF) and neurite outgrowth relative protein GAP-43 in rat DN model and cultured cortical neurons/VSC4.1 cells. Besides, taurine increased the activating phosphorylation signals of TrkA, Akt, and mTOR. Mechanistically, the neuroprotection by taurine was related to the NGF-pAKT-mTOR axis, because either NGF-neutralizing antibody or Akt or mTOR inhibitors was found to attenuate its beneficial effects. Together, our results demonstrated that taurine promotes spinal cord axon repair in a model of SCAI in STZ-induced diabetic rats, mechanistically associating with the NGF-dependent activation of Akt/mTOR pathway.


Assuntos
Diabetes Mellitus Experimental , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Axônios/metabolismo , Axônios/patologia , Diabetes Mellitus Experimental/metabolismo , Fator de Crescimento Neural/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Taurina/farmacologia , Taurina/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...