Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.244
Filtrar
1.
J Neurooncol ; 168(1): 139-149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38662151

RESUMO

PURPOSE: Medulloblastoma (MB), a common and heterogeneous posterior fossa tumor in pediatric patients, presents diverse prognostic outcomes. To advance our understanding of MB's intricate biology, the development of novel patient tumor-derived culture MB models with necessary data is still an essential requirement. METHODS: We continuously passaged PUMC-MB1 in vitro in order to establish a continuous cell line. We examined the in vitro growth using Cell Counting Kit-8 (CCK-8) and in vivo growth with subcutaneous and intracranial xenograft models. The xenografts were investigated histopathologically with Hematoxylin and Eosin (HE) staining and immunohistochemistry (IHC). Concurrently, we explored its molecular features using Whole Genome Sequencing (WGS), targeted sequencing, and RNA sequecing. Guided by bioinformatics analysis, we validated PUMC-MB1's drug sensitivity in vitro and in vivo. RESULTS: PUMC-MB1, derived from a high-risk MB patient, displayed a population doubling time (PDT) of 48.18 h and achieved 100% tumor growth in SCID mice within 20 days. HE and Immunohistochemical examination of the original tumor and xenografts confirmed the classification of PUMC-MB1 as a classic MB. Genomic analysis via WGS revealed concurrent MYC and OTX2 amplifications. The RNA-seq data classified it within the Group 3 MB subgroup, while according to the WHO classification, it fell under the Non-WNT/Non-SHH MB. Comparative analysis with D283 and D341med identified 4065 differentially expressed genes, with notable enrichment in the PI3K-AKT pathway. Cisplatin, 4-hydroperoxy cyclophosphamide/cyclophosphamide, vincristine, and dactolisib (a selective PI3K/mTOR dual inhibitor) significantly inhibited PUMC-MB1 proliferation in vitro and in vivo. CONCLUSIONS: PUMC-MB1, a novel Group 3 (Non-WNT/Non-SHH) MB cell line, is comprehensively characterized for its growth, pathology, and molecular characteristics. Notably, dactolisib demonstrated potent anti-proliferative effects with minimal toxicity, promising a potential therapeutic avenue. PUMC-MB1 could serve as a valuable tool for unraveling MB mechanisms and innovative treatment strategies.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Camundongos SCID , Serina-Treonina Quinases TOR , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Meduloblastoma/tratamento farmacológico , Meduloblastoma/patologia , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética
2.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612726

RESUMO

Medulloblastoma (MB) is a highly malignant childhood brain tumor. Group 3 MB (Gr3 MB) is considered to have the most metastatic potential, and tailored therapies for Gr3 MB are currently lacking. Gr3 MB is driven by PRUNE-1 amplification or overexpression. In this paper, we found that PRUNE-1 was transcriptionally regulated by lysine demethylase LSD1/KDM1A. This study aimed to investigate the therapeutic potential of inhibiting both PRUNE-1 and LSD1/KDM1A with the selective inhibitors AA7.1 and SP-2577, respectively. We found that the pharmacological inhibition had a substantial efficacy on targeting the metastatic axis driven by PRUNE-1 (PRUNE-1-OTX2-TGFß-PTEN) in Gr3 MB. Using RNA seq transcriptomic feature data in Gr3 MB primary cells, we provide evidence that the combination of AA7.1 and SP-2577 positively affects neuronal commitment, confirmed by glial fibrillary acidic protein (GFAP)-positive differentiation and the inhibition of the cytotoxic components of the tumor microenvironment and the epithelial-mesenchymal transition (EMT) by the down-regulation of N-Cadherin protein expression. We also identified an impairing action on the mitochondrial metabolism and, consequently, oxidative phosphorylation, thus depriving tumors cells of an important source of energy. Furthermore, by overlapping the genomic mutational signatures through WES sequence analyses with RNA seq transcriptomic feature data, we propose in this paper that the combination of these two small molecules can be used in a second-line treatment in advanced therapeutics against Gr3 MB. Our study demonstrates that the usage of PRUNE-1 and LSD1/KDM1A inhibitors in combination represents a novel therapeutic approach for these highly aggressive metastatic MB tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Histona Desmetilases/genética , Epigênese Genética , Microambiente Tumoral
3.
Nat Commun ; 15(1): 3483, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664416

RESUMO

Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB.


Assuntos
Proteína p300 Associada a E1A , Redes Reguladoras de Genes , Meduloblastoma , Humanos , Meduloblastoma/genética , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/antagonistas & inibidores , Linhagem Celular Tumoral , Redes Reguladoras de Genes/efeitos dos fármacos , Animais , Domínios Proteicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Antineoplásicos/farmacologia
4.
Cancer Res ; 84(6): 872-886, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486486

RESUMO

Medulloblastoma is one of the most common malignant brain tumors of children, and 30% of medulloblastomas are driven by gain-of-function genetic lesions in the Sonic Hedgehog (SHH) signaling pathway. EYA1, a haloacid dehalogenase phosphatase and transcription factor, is critical for tumorigenesis and proliferation of SHH medulloblastoma (SHH-MB). Benzarone and benzbromarone have been identified as allosteric inhibitors of EYA proteins. Using benzarone as a point of departure, we developed a panel of 35 derivatives and tested them in SHH-MB. Among these compounds, DS-1-38 functioned as an EYA antagonist and opposed SHH signaling. DS-1-38 inhibited SHH-MB growth in vitro and in vivo, showed excellent brain penetrance, and increased the lifespan of genetically engineered mice predisposed to fatal SHH-MB. These data suggest that EYA inhibitors represent promising therapies for pediatric SHH-MB. SIGNIFICANCE: Development of a benzarone derivative that inhibits EYA1 and impedes the growth of SHH medulloblastoma provides an avenue for improving treatment of this malignant pediatric brain cancer.


Assuntos
Benzobromarona/análogos & derivados , Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Camundongos , Humanos , Criança , Proteínas Hedgehog , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Neoplasias Cerebelares/tratamento farmacológico
5.
Oncologist ; 29(5): 377-383, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38438322

RESUMO

Adult medulloblastoma (MB) is a rare disease affecting 0.6 persons per million adults over 19 years of age. The SHH-activated/TP53-wild type is the most common subtype, accounting for 60% of adult MBs, being characterized by mutations in PTCH1, SMO, or the TERT promoter. Several small studies demonstrate objective but short-lived responses to SMO inhibitors such as vismodegib or sonidegib. Like other oncogene-addicted solid tumors, detection of the corresponding drivers through liquid biopsy could aid in the molecular diagnosis and monitoring of the disease through less invasive procedures. However, most studies have only evaluated cerebrospinal fluid as the ctDNA reservoir, and very limited evidence exists on the role of liquid biopsy in plasma in patients with primary central nervous system tumors, including MB. We present the case of a 26-year-old patient with a recurrent MB, in which next-generation sequencing (FoundationOne CDx) revealed a mutation in PTCH1, allowing the patient to be treated with vismodegib in second line, resulting in a durable benefit lasting for 1 year. Using an in-house digital PCR probe, the PTCH1 mutation could be tracked in ctDNA during treatment with first-line chemotherapy and while on treatment with vismodegib, demonstrating a precise correlation with the radiological and clinical behavior of the disease.


Assuntos
Anilidas , DNA Tumoral Circulante , Meduloblastoma , Mutação , Receptor Patched-1 , Piridinas , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/sangue , Meduloblastoma/patologia , Piridinas/uso terapêutico , Receptor Patched-1/genética , Adulto , Anilidas/uso terapêutico , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/sangue , Masculino , Feminino
6.
Int J Radiat Oncol Biol Phys ; 119(2): 494-506, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323945

RESUMO

PURPOSE: Radiation myelitis (RM) is a rare complication of radiation therapy (RT). The Pediatric Normal Tissue Effects in the Clinic spinal cord task force aimed to identify RT dose effects and assess risk factors for RM in children. Through systematic review, we analyzed RT dose, fraction size, latency between completion of RT and toxicity, chemotherapy use, age when irradiated, and sex. METHODS AND MATERIALS: We conducted literature searches of peer-reviewed manuscripts published from 1964 to June 2017 evaluating RM among children. Normality of variables was assessed with Kolmogorov-Smirnov or Shapiro-Wilk tests. Spearman's rank correlation coefficients were used to test correlations between RT dose/fraction size and latency between RT and development of toxicity. RESULTS: Of 1329 identified and screened reports, 144 reports were fully reviewed and determined to have adequate data for analysis; 16 of these reports had a total of 33 cases of RM with a median age of 13 years (range, 0.2-18) at the time of RT. The most common primary tumor histologies were rhabdomyosarcoma (n = 9), medulloblastoma (n = 5), and Hodgkin lymphoma (n = 2); the most common chemotherapy agents given were vincristine (n = 15), intrathecal methotrexate (n = 12), and intrathecal cytarabine (n = 10). The median RT dose and fraction size were 40 Gy (range, 24-57.4 Gy) and 1.8 Gy (range, 1.3-2.6 Gy), respectively. RT dose resulting in RM in patients who also received chemotherapy was lower than in those not receiving chemotherapy (mean 39.6 vs 49.7 Gy; P = .04). There was no association of age with RT dose. The median latency period was 7 months (range, 1-29). Higher RT dose was correlated with longer latency periods (P = .03) to RM whereas sex, age, fraction size, and chemotherapy use were not. Two of 17 patients with adequate follow-up recovered from RM; unfortunately, it was fatal in 6 of 15 evaluable patients. Complication probability modeling was not possible because of the rarity of events. CONCLUSIONS: This report demonstrates a relatively short latency from RT (with or without chemotherapy) to RM and a wide range of doses (including fraction sizes) associated with RM. No apparent association with age at the time of RT could be discerned. Chemotherapy appears to reduce spinal cord tolerance. Recovery from RM is rare, and it is often fatal.


Assuntos
Lesões por Radiação , Humanos , Criança , Adolescente , Pré-Escolar , Masculino , Lactente , Feminino , Neoplasias/radioterapia , Dosagem Radioterapêutica , Mielite/etiologia , Meduloblastoma/radioterapia , Meduloblastoma/tratamento farmacológico , Fatores de Risco , Rabdomiossarcoma/radioterapia , Rabdomiossarcoma/tratamento farmacológico , Doença de Hodgkin/radioterapia , Doença de Hodgkin/tratamento farmacológico , Fatores Etários , Doenças da Medula Espinal/etiologia
7.
SLAS Discov ; 29(2): 100147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355016

RESUMO

Pediatric brain tumors (PBTs) represent about 25 % of all pediatric cancers and are the most common solid tumors in children and adolescents. Medulloblastoma (MB) is the most frequently occurring malignant PBT, accounting for almost 10 % of all pediatric cancer deaths. MB Group 3 (MB G3) accounts for 25-30 % of all MB cases and has the worst outcome, particularly when associated with MYC amplification. However, no targeted treatments for this group have been developed so far. Here we describe a unique high throughput screening (HTS) platform specifically designed to identify new therapies for MB G3. The platform incorporates optimized and validated 2D and 3D efficacy and toxicity models, that account for tumor heterogenicity, limited efficacy and unacceptable toxicity from the very early stage of drug discovery. The platform has been validated by conducting a pilot HTS campaign with a 1280 lead-like compound library. Results showed 8 active compounds, targeting MB reported targets and several are currently approved or in clinical trials for pediatric patients with PBTs, including MB. Moreover, hits were combined to avoid tumor resistance, identifying 3 synergistic pairs, one of which is currently under clinical study for recurrent MB and other PBTs.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Adolescente , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/patologia , Ensaios de Triagem em Larga Escala , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/patologia
8.
J Exp Clin Cancer Res ; 43(1): 18, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200580

RESUMO

BACKGROUND: Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor prognoses and therapy resistance. However, MYC itself has been one of the most challenging targets for cancer treatment. Here, we identify a novel marinopyrrole natural derivative, MP1, that shows desirable anti-MYC and anti-cancer activities in MB. METHODS: In this study, using MYC-amplified (Group 3) and non-MYC amplified MB cell lines in vitro and in vivo, we evaluated anti-cancer efficacies and molecular mechanism(s) of MP1. RESULTS: MP1 significantly suppressed MB cell growth and sphere counts and induced G2 cell cycle arrest and apoptosis in a MYC-dependent manner. Mechanistically, MP1 strongly downregulated the expression of MYC protein. Our results with RNA-seq revealed that MP1 significantly modulated global gene expression and inhibited MYC-associated transcriptional targets including translation/mTOR targets. In addition, MP1 inhibited MYC-target metabolism, leading to declined energy levels. The combination of MP1 with an FDA-approved mTOR inhibitor temsirolimus synergistically inhibited MB cell growth/survival by downregulating the expression of MYC and mTOR signaling components. Our results further showed that as single agents, both MP1 and temsirolimus, were able to significantly inhibit tumor growth and MYC expression in subcutaneously or orthotopically MYC-amplified MB bearing mice. In combination, there were further anti-MB effects on the tumor growth and MYC expression in mice. CONCLUSION: These preclinical findings highlight the promise of marinopyrrole MP1 as a novel MYC inhibition approach for MYC-amplified MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Sirolimo/análogos & derivados , Humanos , Animais , Camundongos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Serina-Treonina Quinases TOR
10.
J Neurooncol ; 166(1): 99-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38184819

RESUMO

PURPOSE: Patients with MYC-amplified Group 3 medulloblastoma (MB) (subtype II) show poor progression-free survival rates. Class I histone deacetylase inhibitors (HDACi) are highly effective for the treatment of MYC-amplified MB in vitro and in vivo. Drug combination regimens including class I HDACi may represent an urgently needed novel treatment approach for this high risk disease. METHODS: A medium-throughput in vitro combination drug screen was performed in three MYC-amplified and one non-MYC-amplified MB cell line testing 75 clinically relevant drugs alone and in combination with entinostat. The drug sensitivity score (DSS) was calculated based on metabolic inhibition quantified by CellTiter-Glo. The six top synergistic combination hits were evaluated in a 5 × 5 combination matrix and a seven-ray design. Synergy was validated and characterized by cell counts, caspase-3-like-activity and poly-(ADP-ribose)-polymerase-(PARP)-cleavage. On-target activity of drugs was validated by immunoprecipitation and western blot. BCL-XL dependency of the observed effect was explored with siRNA mediated knockdown of BCL2L1, and selective inhibition with targeted compounds (A-1331852, A-1155463). RESULTS: 20/75 drugs effectively reduced metabolic activity in combination with entinostat in all three MYC-amplified cell lines (DSS ≥ 10). The combination entinostat and navitoclax showed the strongest synergistic interaction across all MYC-amplified cell lines. siRNA mediated knockdown of BCL2L1, as well as targeted inhibition with selective inhibitors showed BCL-XL dependency of the observed effect. Increased cell death was associated with increased caspase-3-like-activity. CONCLUSION: Our study identifies the combination of class I HDACi and BCL-XL inhibitors as a potential new approach for the treatment of MYC-amplified MB cells.


Assuntos
Benzamidas , Neoplasias Cerebelares , Meduloblastoma , Piridinas , Humanos , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Combinação de Medicamentos , Interações Medicamentosas , Inibidores de Histona Desacetilases/farmacologia , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , RNA Interferente Pequeno
11.
Neuro Oncol ; 26(4): 609-622, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37767814

RESUMO

BACKGROUND: Medulloblastoma (MB) is the most common malignant brain tumor in children and requires intensive multimodal therapy. Long-term survival is still dissatisfying and, most importantly, survivors frequently suffer from severe treatment-associated morbidities. The sonic hedgehog pathway (SHH) in SHH MB provides a promising target for specific therapeutic agents. The small molecule Vismodegib allosterically inhibits SMO, the main upstream activator of SHH. Vismodegib has proven effective in the treatment of MB in mice and in clinical studies. However, due to irreversible premature epiphyseal growth plate fusions after systemic application to infant mice and children, its implementation to pediatric patients has been limited. Intraventricular Vismodegib application might provide a promising novel treatment strategy for pediatric medulloblastoma patients. METHODS: Infant medulloblastoma-bearing Math1-cre::Ptch1Fl/Fl mice were treated with intraventricular Vismodegib in order to evaluate efficacy on tumor growth and systemic side effects. RESULTS: We show that intraventricular Vismodegib treatment of Math1-cre::Ptch1Fl/Fl mice leads to complete or partial tumor remission only 2 days after completed treatment. Intraventricular treatment also significantly improved symptom-free survival in a dose-dependent manner. At the same time, intraventricular application prevented systemic side effects in the form of anatomical or histological bone deformities. CONCLUSIONS: We conclude that intraventricular application of a SHH pathway inhibitor combines the advantages of a specific treatment agent with precise drug delivery and might evolve as a promising new way of targeted treatment for SHH MB patients.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Piridinas , Humanos , Camundongos , Animais , Criança , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Proteínas Hedgehog/metabolismo , Anilidas/farmacologia , Anilidas/uso terapêutico , Modelos Animais de Doenças , Neoplasias Cerebelares/patologia
12.
Cancer Res Treat ; 56(2): 652-664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38037318

RESUMO

PURPOSE: The Korean Society of Pediatric Neuro-Oncology (KSPNO) conducted treatment strategies for children with medulloblastoma (MB) by using alkylating agents for maintenance chemotherapy or tandem high-dose chemotherapy (HDC) with autologous stem cell rescue (ASCR) according to the risk stratification. The purpose of the study was to assess treatment outcomes and complications based on risk-adapted treatment and HDC. MATERIALS AND METHODS: Fifty-nine patients diagnosed with MB were enrolled in this study. Patients in the standard-risk (SR) group received radiotherapy (RT) after surgery and chemotherapy using the KSPNO M051 regimen. Patients in the high-risk (HR) group received two and four chemotherapy cycles according to the KSPNO S081 protocol before and after reduced RT for age following surgery and two cycles of tandem HDC with ASCR consolidation treatment. RESULTS: In the SR group, 24 patients showed 5-year event-free survival (EFS) and overall survival (OS) estimates of 86.7% (95% confidence interval [CI], 73.6 to 100) and 95.8% (95% CI, 88.2 to 100), respectively. In the HR group, more infectious complications and mortality occurred during the second HDC than during the first. In the HR group, the 5-year EFS and OS estimates were 65.5% (95% CI, 51.4 to 83.4) and 72.3% (95% CI, 58.4 to 89.6), respectively. CONCLUSION: High intensity of alkylating agents for SR resulted in similar outcomes but with a high incidence of hematologic toxicity. Tandem HDC with ASCR for HR induced favorable EFS and OS estimates compared to those reported previously. However, infectious complications and treatment-related mortalities suggest that a reduced chemotherapy dose is necessary, especially for the second HDC.


Assuntos
Neoplasias Cerebelares , Transplante de Células-Tronco Hematopoéticas , Meduloblastoma , Criança , Humanos , Meduloblastoma/terapia , Meduloblastoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/tratamento farmacológico , Alquilantes/uso terapêutico , Terapia Combinada
14.
Curr Pharm Des ; 30(1): 31-47, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38151840

RESUMO

BACKGROUND: Medulloblastomas (MDB) are malignant, aggressive brain tumors that primarily affect children. The survival rate for children under 14 is approximately 72%, while for ages 15 to 39, it is around 78%. A growing body of evidence suggests that dysregulation of signaling mechanisms and noncoding RNA epigenetics play a pivotal role in this disease. METHODOLOGY: This study conducted an electronic search of articles on websites like PubMed and Google. The current review also used an in silico databases search and bioinformatics analysis and an extensive comprehensive literature search for original research articles and review articles as well as retrieval of current and future medications in clinical trials. RESULTS: This study indicates that several signaling pathways, such as sonic hedgehog, WNT/ß-catenin, unfolded protein response mediated ER stress, notch, neurotrophins and TGF-ß and ERK, MAPK, and ERK play a crucial role in the pathogenesis of MDB. Gene and ncRNA/protein are also involved as an axis long ncRNA to sponge micro-RNAs that affect downstream signal proteins expression and translation affection disease pathophysiology, prognosis and present potential target hit for drug repurposing. Current treatment options include surgery, radiation, and chemotherapy; unfortunately, the disease often relapses, and the survival rate is less than 5%. Therefore, there is a need to develop more effective treatments to combat recurrence and improve survival rates. CONCLUSION: This review describes various MDB disease hallmarks, including the signaling mechanisms involved in pathophysiology, related-causal genes, epigenetics, downstream genes/epigenes, and possibly the causal disease genes/non-protein coding (nc)RNA/protein axis. Additionally, the challenges associated with MDB treatment are discussed, along with how they are being addressed using nano-technology and nano-biomedicine, with a listing of possible treatment options and future potential treatment modalities.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Proteínas Hedgehog/metabolismo , Recidiva Local de Neoplasia , Transdução de Sinais , Neoplasias Encefálicas/genética , Epigênese Genética/genética , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia
15.
Cancer Res Commun ; 3(12): 2483-2496, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38009896

RESUMO

Medulloblastoma is one of the most prevalent solid tumors found in children, occurring in the brain's posterior fossa. The standard treatment protocol involves maximal resection surgery followed by craniospinal irradiation and chemotherapy. Despite a long-term survival rate of 70%, wide disparities among patients have been observed. The identification of pertinent targets for both initial and recurrent medulloblastoma cases is imperative. Both primary and recurrent medulloblastoma are marked by their aggressive infiltration into surrounding brain tissue, robust angiogenesis, and resistance to radiotherapy. While the significant role of integrin-αvß3 in driving these characteristics has been extensively documented in glioblastoma, its impact in the context of medulloblastoma remains largely unexplored. Integrin-αvß3 was found to be expressed in a subset of patients with medulloblastoma. We investigated the role of integrin-αvß3 using medulloblastoma-derived cell lines with ß3-subunit depletion or overexpression both in vitro and in vivo settings. By generating radioresistant medulloblastoma cell lines, we uncovered an increased integrin-αvß3 expression, which correlated with increased susceptibility to pharmacologic integrin-αvß3 inhibition with cilengitide, a competitive ligand mimetic. Finally, we conducted single-photon emission computed tomography (SPECT)/MRI studies on orthotopic models using a radiolabeled integrin-αvß3 ligand (99mTc-RAFT-RGD). This innovative approach presents the potential for a novel predictive imaging technique in the realm of medulloblastoma. Altogether, our findings lay the foundation for employing SPECT/MRI to identify a specific subset of patients with medulloblastoma eligible for integrin-αvß3-directed therapies. This breakthrough offers a pathway toward more targeted and effective interventions in the treatment of medulloblastoma. SIGNIFICANCE: This study demonstrates integrin-αvß3's fundamental role in medulloblastoma tumorigenicity and radioresistance and the effect of its expression on cilengitide functional activity.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Cerebelares/tratamento farmacológico , Integrina alfaVbeta3/genética , Ligantes , Meduloblastoma/tratamento farmacológico , Tomografia Computadorizada de Emissão de Fóton Único/métodos
16.
Trends Cancer ; 9(12): 989-991, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37940401

RESUMO

The prognosis of the patients with medulloblastoma who relapse after initial treatment including radiotherapy remains dismal. A recent study by Peyrl et al. in JAMA Oncology suggests that the metronomic multidrug combination used in the medulloblastoma European multitarget metronomic antiangiogenic trial (MEMMAT) given at relapse can improve long-term survival.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Prognóstico , Neoplasias Cerebelares/tratamento farmacológico , Recidiva
17.
Sci Transl Med ; 15(720): eadi1617, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37910601

RESUMO

The morbidity associated with pediatric medulloblastoma, in particular in patients who develop leptomeningeal metastases, remains high in the absence of effective therapies. Administration of substances directly into the cerebrospinal fluid (CSF) is one approach to circumvent the blood-brain barrier and focus delivery of drugs to the site of tumor. However, high rates of CSF turnover prevent adequate drug accumulation and lead to rapid systemic clearance and toxicity. Here, we show that PLA-HPG nanoparticles, made with a single-emulsion, solvent evaporation process, can encapsulate talazoparib, a PARP inhibitor (BMN-673). These degradable polymer nanoparticles improve the therapeutic index when delivered intrathecally and lead to sustained drug retention in the tumor as measured with PET imaging and fluorescence microscopy. We demonstrate that administration of these particles into the CSF, alone or in combination with systemically administered temozolomide, is a highly effective therapy for tumor regression and prevention of leptomeningeal spread in xenograft mouse models of medulloblastoma. These results provide a rationale for harnessing nanoparticles for the delivery of drugs limited by brain penetration and therapeutic index and demonstrate important advantages in tolerability and efficacy for encapsulated drugs delivered locoregionally.


Assuntos
Antineoplásicos , Neoplasias Cerebelares , Meduloblastoma , Nanopartículas , Criança , Humanos , Camundongos , Animais , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Meduloblastoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Neoplasias Cerebelares/tratamento farmacológico , Líquido Cefalorraquidiano
18.
Ultrastruct Pathol ; 47(6): 529-539, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37953603

RESUMO

Medulloblastoma (MB) is a frequently occurring malignant brain tumor in children, and many of these tumors are identified by the abnormal activation of the Sonic Hedgehog (SHH) pathway. Although the Shh inhibitor GDC0449 initially shows some effectiveness in certain tumors, they eventually recur due to drug resistance mechanisms, highlighting the need for new treatment options. In this study, we explore whether GDC0449 induces autophagy in the human MB cell lines. To investigate the ultrastructural pathology changes of GDC0449-treated Daoy and D283 cells, we employed Transmission Electron Microscopy (TEM) technology to identify the expression of autophagic vacuoles. Our results indicate that GDC0449 only increases autophagy in Daoy cells by increasing the LC3-II/LC3-I ratio and autophagosome formation.We also analyzed Beclin1, LC3, Bax, and Cleaved-caspase3 protein and mRNA expression levels of autophagic and apoptotic markers using fluorescence confocal microscopy, RT-PCR, and Western blot. We found that cell autophagy and apoptosis increased in a dose-dependent manner with GDC0449 treatment. Additionally, we observed increased mammalian target of rapamycin (mTOR) phosphorylation and decreased protein kinase B (AKT/PKB), Ribosomal Protein S6, eIF4E-binding protein (4EBP1) phosphorylation in GDC0449-treated Daoy cells. It was observed that inhibiting autophagy using Beclin1 siRNA significantly blocked the apoptosis-inducing effects of GDC0449, suggesting that GDC0449 mediates its apoptotic effects by inducing autophagy.Our data suggests that GDC0449 inhibits the growth of human MB Daoy cells by autophagy-mediated apoptosis. The mechanism of GDC0449-induced autophagy in Daoy cells may be related to the inhibition of the PI3K/AKT/mTOR signaling pathway.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Proteínas Hedgehog/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteína Beclina-1/farmacologia , Meduloblastoma/tratamento farmacológico , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Apoptose , Autofagia , Neoplasias Cerebelares/tratamento farmacológico , Linhagem Celular Tumoral
19.
Acta Neuropathol Commun ; 11(1): 183, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978570

RESUMO

Chemotherapy resistance is considered one of the main causes of tumor relapse, still challenging researchers for the identification of the molecular mechanisms sustaining its emergence. Here, we setup and characterized chemotherapy-resistant models of Medulloblastoma (MB), one of the most lethal pediatric brain tumors, to uncover targetable vulnerabilities associated to their resistant phenotype. Integration of proteomic, transcriptomic and kinomic data revealed a significant deregulation of several pathways in resistant MB cells, converging to cell metabolism, RNA/protein homeostasis, and immune response, eventually impacting on patient outcome. Moreover, resistant MB cell response to a large library of compounds through a high-throughput screening (HTS), highlighted nucleoside metabolism as a relevant vulnerability of chemotolerant cells, with peculiar antimetabolites demonstrating increased efficacy against them and even synergism with conventional chemotherapeutics. Our results suggest that drug-resistant cells significantly rewire multiple cellular processes, allowing their adaptation to a chemotoxic environment, nevertheless exposing alternative actionable susceptibilities for their specific targeting.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Proteômica , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...