Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.784
Filtrar
1.
Sci Rep ; 14(1): 10610, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38719857

RESUMO

Histone lysine methylation is thought to play a role in the pathogenesis of rheumatoid arthritis (RA). We previously reported aberrant expression of the gene encoding mixed-lineage leukemia 1 (MLL1), which catalyzes methylation of histone H3 lysine 4 (H3K4), in RA synovial fibroblasts (SFs). The aim of this study was to elucidate the involvement of MLL1 in the activated phenotype of RASFs. SFs were isolated from synovial tissues obtained from patients with RA or osteoarthritis (OA) during total knee joint replacement. MLL1 mRNA and protein levels were determined after stimulation with tumor necrosis factor α (TNFα). We also examined changes in trimethylation of H3K4 (H3K4me3) levels in the promoters of RA-associated genes (matrix-degrading enzymes, cytokines, and chemokines) and the mRNA levels upon small interfering RNA-mediated depletion of MLL1 in RASFs. We then determined the levels of H3K4me3 and mRNAs following treatment with the WD repeat domain 5 (WDR5)/MLL1 inhibitor MM-102. H3K4me3 levels in the gene promoters were also compared between RASFs and OASFs. After TNFα stimulation, MLL1 mRNA and protein levels were higher in RASFs than OASFs. Silencing of MLL1 significantly reduced H3K4me3 levels in the promoters of several cytokine (interleukin-6 [IL-6], IL-15) and chemokine (C-C motif chemokine ligand 2 [CCL2], CCL5, C-X-C motif chemokine ligand 9 [CXCL9], CXCL10, CXCL11, and C-X3-C motif chemokine ligand 1 [CX3CL1]) genes in RASFs. Correspondingly, the mRNA levels of these genes were significantly decreased. MM-102 significantly reduced the promoter H3K4me3 and mRNA levels of the CCL5, CXCL9, CXCL10, and CXCL11 genes in RASFs. In addition, H3K4me3 levels in the promoters of the IL-6, IL-15, CCL2, CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 genes were significantly higher in RASFs than OASFs. Our findings suggest that MLL1 regulates the expression of particular cytokines and chemokines in RASFs and is associated with the pathogenesis of RA. These results could lead to new therapies for RA.


Assuntos
Artrite Reumatoide , Quimiocinas , Citocinas , Fibroblastos , Histona-Lisina N-Metiltransferase , Histonas , Proteína de Leucina Linfoide-Mieloide , Membrana Sinovial , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Fibroblastos/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Citocinas/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Histonas/metabolismo , Quimiocinas/metabolismo , Quimiocinas/genética , Regulação da Expressão Gênica , Fator de Necrose Tumoral alfa/metabolismo , Regiões Promotoras Genéticas , Feminino , Masculino , Células Cultivadas , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Idoso
2.
BMC Musculoskelet Disord ; 25(1): 375, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734632

RESUMO

BACKGROUND: Synovitis, characterized by inflammation of the synovial membrane, is commonly induced by meniscus tears. However, significant differences in inflammatory responses and the key inflammatory mediators of synovium induced by different types of meniscal tears remain unclear. METHODS: Magnetic resonance imaging (MRI) was employed to identify the type of meniscus tear, and the quantification of synovial inflammation was assessed through H&E staining assay. Transcription and expression levels of IL-1ß and IL-6 were evaluated using bioinformatics, ELISA, RT-qPCR, and IHC of CD68 staining assays. The therapeutic potential of Docosapentaenoic Acid (DPA) was determined through network pharmacology, ELISA, and RT-qPCR assays. The safety of DPA was assessed using colony formation and EdU staining assays. RESULTS: The results indicate that both IL-1ß and IL-6 play pivotal roles in synovitis pathogenesis, with distinct expression levels across various subtypes. Among tested meniscus tears, oblique tear and bucket handle tear induced the most severe inflammation, followed by radial tear and longitudinal tear, while horizontal tear resulted in the least inflammation. Furthermore, in synovial inflammation induced by specific meniscus tears, the anterior medial tissues exhibited significantly higher local inflammation than the anterior lateral and suprapatellar regions, highlighting the clinical relevance and practical guidance of anterior medial tissues' inflammatory levels. Additionally, we identified the essential omega-3 fatty acid DPA as a potential therapeutic agent for synovitis, demonstrating efficacy in blocking the transcription and expression of IL-1ß and IL-6 with minimal side effects. CONCLUSION: These findings provide valuable insights into the nuanced nature of synovial inflammation induced by various meniscal tear classifications and contribute to the development of new adjunctive therapeutic agents in the management of synovitis.


Assuntos
Ácidos Graxos Insaturados , Interleucina-1beta , Imageamento por Ressonância Magnética , Membrana Sinovial , Sinovite , Lesões do Menisco Tibial , Lesões do Menisco Tibial/tratamento farmacológico , Lesões do Menisco Tibial/metabolismo , Sinovite/tratamento farmacológico , Sinovite/metabolismo , Sinovite/patologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Humanos , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/uso terapêutico , Masculino , Interleucina-1beta/metabolismo , Animais , Interleucina-6/metabolismo , Feminino , Meniscos Tibiais/efeitos dos fármacos , Meniscos Tibiais/metabolismo , Camundongos , Modelos Animais de Doenças
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 739-747, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708508

RESUMO

OBJECTIVE: To explore the inhibitory effect of Sidaxue, a traditional Miao herbal medicine formula, on articular bone and cartilage destruction and synovial neovascularization in rats with collagen-induced arthritis (CIA). METHODS: In a SD rat model of CIA, we tested the effects of daily gavage of Sidaxue at low, moderate and high doses (10, 20, and 40 g/kg, respectively) for 21 days, with Tripterygium glycosides (GTW) as the positive control, on swelling in the hind limb plantar regions by arthritis index scoring. Pathologies in joint synovial membrane of the rats were observed with HE staining, and serum TNF-α and IL-1ß levels were detected with ELISA. The expressions of NF-κB p65, matrix metalloproteinase 1 (MMP1), MMP2 and MMP9 at the mRNA and protein levels in the synovial tissues were detected using real-time PCR and Western blotting. Network pharmacology analysis was conducted to identify the important target proteins in the pathways correlated with the therapeutic effects of topical Sidaxue treatment for RA, and the core target proteins were screened by topological analysis. RESULTS: Treatment with GTW and Sidaxue at the 3 doses all significantly alleviated plantar swelling, lowered arthritis index scores, improved cartilage and bone damage and reduced neovascularization in CIA rats (P<0.05), and the effects of Sidaxue showed a dose dependence. Both GTW and Sidaxue treatments significantly lowered TNF-α, IL-1ß, NF-κB p65, MMP1, MMP2, and MMP9 mRNA and protein expressions in the synovial tissues of CIA rats (P<0.05). Network pharmacological analysis identified MMPs as the core proteins associated with topical Sidaxue treatment of RA. CONCLUSION: Sidaxue alleviates articular bone and cartilage damages and reduces synovial neovascularization in CIA rats possibly by downregulating MMPs via the TNF-α/IL-1ß/NF-κB-MMP1, 2, 9 signaling pathway, and MMPs probably plays a key role in mediating the effect of Sidaxue though the therapeutic pathways other than oral administration.


Assuntos
Artrite Experimental , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Metaloproteinase 1 da Matriz , Ratos Sprague-Dawley , Membrana Sinovial , Fator de Necrose Tumoral alfa , Animais , Ratos , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Metaloproteinase 1 da Matriz/metabolismo , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Regulação para Baixo/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Tripterygium/química , Fator de Transcrição RelA/metabolismo
4.
Front Immunol ; 15: 1387311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711508

RESUMO

Background: Rheumatoid arthritis (RA) is a systemic immune-related disease characterized by synovial inflammation and destruction of joint cartilage. The pathogenesis of RA remains unclear, and diagnostic markers with high sensitivity and specificity are needed urgently. This study aims to identify potential biomarkers in the synovium for diagnosing RA and to investigate their association with immune infiltration. Methods: We downloaded four datasets containing 51 RA and 36 healthy synovium samples from the Gene Expression Omnibus database. Differentially expressed genes were identified using R. Then, various enrichment analyses were conducted. Subsequently, weighted gene co-expression network analysis (WGCNA), random forest (RF), support vector machine-recursive feature elimination (SVM-RFE), and least absolute shrinkage and selection operator (LASSO) were used to identify the hub genes for RA diagnosis. Receiver operating characteristic curves and nomogram models were used to validate the specificity and sensitivity of hub genes. Additionally, we analyzed the infiltration levels of 28 immune cells in the expression profile and their relationship with the hub genes using single-sample gene set enrichment analysis. Results: Three hub genes, namely, ribonucleotide reductase regulatory subunit M2 (RRM2), DLG-associated protein 5 (DLGAP5), and kinesin family member 11 (KIF11), were identified through WGCNA, LASSO, SVM-RFE, and RF algorithms. These hub genes correlated strongly with T cells, natural killer cells, and macrophage cells as indicated by immune cell infiltration analysis. Conclusion: RRM2, DLGAP5, and KIF11 could serve as potential diagnostic indicators and treatment targets for RA. The infiltration of immune cells offers additional insights into the underlying mechanisms involved in the progression of RA.


Assuntos
Artrite Reumatoide , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Aprendizado de Máquina , Ribonucleosídeo Difosfato Redutase , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/diagnóstico , Transcriptoma , Membrana Sinovial/metabolismo , Membrana Sinovial/imunologia , Cinesinas/genética , Biomarcadores , Bases de Dados Genéticas , Biologia Computacional/métodos , Máquina de Vetores de Suporte
5.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674142

RESUMO

The gradual deterioration of articular cartilage was thought to be the central event in osteoarthritis (OA), but recent studies demonstrated the importance of low-grade synovitis in the progression of OA. The Syndecan (SDC) family of membrane proteoglycans is known to be involved in the regulation of inflammation, but there is limited evidence considering the role of syndecans in OA synovitis. Our study aimed to investigate the hip OA synovial membrane expression patterns of SDC1, SDC2 and SDC4, as well as exostosins and sulfotransferases (enzymes involved in the polymerisation and modification of syndecans' heparan sulphate chains). Synovial membrane samples of patients with OA (24) were divided into two groups according to their Krenn synovitis score severity. The immunohistochemical expressions of SDC1, SDC2, SDC4, EXT1, EXT2, NDST1 and NDST2 in synovial intima and subintima were then analysed and compared with the control group (patients with femoral neck fracture). According to our study, the immunoexpression of SDC1, NDST1 and EXT2 is significantly increased in the intimal cells of OA synovial membrane in patients with lower histological synovitis scores and SDC4 in patients with higher synovitis scores, in comparison with non-OA controls. The difference in the expression of SDC2 among the OA and non-OA groups was insignificant. SDC1, SDC4, NDST1 and EXT2 seem to be involved as inflammation moderators in low-grade OA synovitis and, therefore, should be further investigated as potential markers of disease progression and therapeutic goals.


Assuntos
Biomarcadores , Osteoartrite do Quadril , Sulfotransferases , Sindecanas , Sinovite , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inflamação/metabolismo , Inflamação/patologia , N-Acetilglucosaminiltransferases , Osteoartrite do Quadril/metabolismo , Osteoartrite do Quadril/patologia , Sulfotransferases/metabolismo , Sindecanas/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Sinovite/metabolismo , Sinovite/patologia , Biomarcadores/análise
6.
BMC Genomics ; 25(1): 407, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664635

RESUMO

BACKGROUND: Unraveling the intricate and tightly regulated process of adipogenesis, involving coordinated activation of transcription factors and signaling pathways, is essential for addressing obesity and related metabolic disorders. The molecular pathways recruited by mesenchymal stem cells (MSCs) during adipogenesis are also dependent on the different sources of the cells and genetic backgrounds of donors, which contribute to the functional heterogeneity of the stem cells and consequently affect the developmental features and fate of the cells. METHODS: In this study, the alteration of transcripts during differentiation of synovial mesenchymal stem cells (SMSCs) derived from fibrous synovium (FS) and adipose synovial tissue (FP) of two pig breeds differing in growth performance (German Landrace (DL)) and fat deposition (Angeln Saddleback (AS)) was investigated. SMSCs from both tissues and breeds were stimulated to differentiate into adipocytes in vitro and sampled at four time points (day 1, day 4, day 7 and day 14) to obtain transcriptomic data. RESULTS: We observed numerous signaling pathways related to the cell cycle, cell division, cell migration, or cell proliferation during early stages of adipogenesis. As the differentiation process progresses, cells begin to accumulate intracellular lipid droplets and changes in gene expression patterns in particular of adipocyte-specific markers occur. PI3K-Akt signaling and metabolic pathways changed most during adipogenesis, while p53 signaling and ferroptosis were affected late in adipogenesis. When comparing MSCs from FS and FP, only a limited number of differentially expressed genes (DEGs) and enriched signaling pathways were identified. Metabolic pathways, including fat, energy or amino acid metabolism, were highly enriched in the AS breed SMSCs compared to those of the DL breed, especially at day 7 of adipogenesis, suggesting retention of the characteristic metabolic features of their original source, demonstrating donor memory in culture. In contrast, the DL SMSCs were more enriched in immune signaling pathways. CONCLUSIONS: Our study has provided important insights into the dynamics of adipogenesis and revealed metabolic shifts in SMSCs associated with different cell sources and genetic backgrounds of donors. This emphasises the critical role of metabolic and genetic factors as important indications and criteria for donor stem cell selection.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Animais , Adipogenia/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Suínos , Transdução de Sinais , Diferenciação Celular , Perfilação da Expressão Gênica , Transcriptoma , Membrana Sinovial/metabolismo , Membrana Sinovial/citologia , Adipócitos/metabolismo , Adipócitos/citologia , Células Cultivadas , Cruzamento
7.
J Nanobiotechnology ; 22(1): 197, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644475

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by synovial inflammation, causing substantial disability and reducing life quality. While macrophages are widely appreciated as a master regulator in the inflammatory response of RA, the precise mechanisms underlying the regulation of proliferation and inflammation in RA-derived fibroblast-like synoviocytes (RA-FLS) remain elusive. Here, we provide extensive evidence to demonstrate that macrophage contributes to RA microenvironment remodeling by extracellular vesicles (sEVs) and downstream miR-100-5p/ mammalian target of rapamycin (mTOR) axis. RESULTS: We showed that bone marrow derived macrophage (BMDM) derived-sEVs (BMDM-sEVs) from collagen-induced arthritis (CIA) mice (cBMDM-sEVs) exhibited a notable increase in abundance compared with BMDM-sEVs from normal mice (nBMDM-sEVs). cBMDM-sEVs induced significant RA-FLS proliferation and potent inflammatory responses. Mechanistically, decreased levels of miR-100-5p were detected in cBMDM-sEVs compared with nBMDM-sEVs. miR-100-5p overexpression ameliorated RA-FLS proliferation and inflammation by targeting the mTOR pathway. Partial attenuation of the inflammatory effects induced by cBMDM-sEVs on RA-FLS was achieved through the introduction of an overexpression of miR-100-5p. CONCLUSIONS: Our work reveals the critical role of macrophages in exacerbating RA by facilitating the transfer of miR-100-5p-deficient sEVs to RA-FLS, and sheds light on novel disease mechanisms and provides potential therapeutic targets for RA interventions.


Assuntos
Artrite Reumatoide , Macrófagos , MicroRNAs , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Humanos , Masculino , Camundongos , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Experimental/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Proliferação de Células , Vesículas Extracelulares/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos DBA , MicroRNAs/genética , MicroRNAs/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Sinoviócitos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
8.
In Vivo ; 38(3): 1182-1191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688626

RESUMO

BACKGROUND/AIM: Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, and management of it is still a challenge. The present investigation assessed the potential preventive effect of phlorizin on rats with RA. MATERIALS AND METHODS: A total of 40 healthy Wistar rats were used for this study. Bovine type II collagen and Freund's incomplete adjuvant (1:1 and 1 mg/ml) were administered on days 1 and 8 of the protocol to induce RA in rats; treatment with phlorizin at 60 or 120 mg/kg was started after the 4th week of the protocol, and its effect on inflammation, level of inflammatory cytokines, and expression of proteins were estimated in RA rats. Moreover, an in vitro study was performed on fibroblast-like synoviocytes (FLSs), and the effects of phlorizin on proliferation, apoptosis, and expression of the mechanistic target of rapamycin kinase pathway protein after stimulating these cells with tumor necrosis factor α (TNF-α) were estimated. RESULTS: The data obtained from the study indicate that phlorizin has the potential to mitigate inflammation and enhance weight management in rats with RA induced by bovine type II collagen (CII). The level of inflammatory cytokines in the serum and the expression of protein kinase B (AKT), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), and mechanistic target of rapamycin kinase (mTOR) proteins in the joint tissue were reduced in phlorizin-treated rats with RA. In this investigation, phlorizin was shown to reverse the histological abnormalities in the joint tissue of rats with RA. The in-vitro study showed that phlorizin reduced proliferation and had no apoptotic effect on TNF-α-stimulated FLSs. Expression of AKT, PI3K, and mTOR proteins was also down-regulated in phlorizin-treated TNF-α-stimulated FLSs. CONCLUSION: Phlorizin protects against inflammation and reduces injury to synovial tissues in RA by modulating the AKT/PI3K/mTOR pathway.


Assuntos
Artrite Reumatoide , Hiperplasia , Inflamação , Florizina , Transdução de Sinais , Sinoviócitos , Serina-Treonina Quinases TOR , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Serina-Treonina Quinases TOR/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Florizina/farmacologia , Inflamação/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Modelos Animais de Doenças , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Masculino , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Ratos Wistar , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Clin Exp Med ; 24(1): 84, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662111

RESUMO

The study of neuroimmune crosstalk and the involvement of neurotransmitters in inflammation and bone health has illustrated their significance in joint-related conditions. One important mode of cell-to-cell communication in the synovial fluid (SF) is through extracellular vesicles (EVs) carrying microRNAs (miRNAs). The role of neurotransmitter receptors in the pathogenesis of inflammatory joint diseases, and whether there are specific miRNAs regulating differentially expressed HTR2A, contributing to the inflammatory processes and bone metabolism is unclear. Expression of neurotransmitter receptors and their correlated inflammatory molecules were identified in rheumatoid arthritis (RA) and osteoarthritis (OA) synovium from a scRNA-seq dataset. Immunohistochemistry staining of synovial tissue (ST) from RA and OA patients was performed for validation. Expression of miRNAs targeting HTR2A carried by SF EVs was screened in low- and high-grade inflammation RA from a public dataset and validated by qPCR. HTR2A reduction by target miRNAs was verified by miRNAs mimics transfection into RA fibroblasts. HTR2A was found to be highly expressed in fibroblasts derived from RA synovial tissue. Its expression showed a positive correlation with the degree of inflammation observed. 5 miRNAs targeting HTR2A were decreased in RA SF EVs compared to OA, three of which, miR-214-3p, miR-3120-5p and miR-615-3p, mainly derived from monocytes in the SF, were validated as regulators of HTR2A expression. The findings suggest that fibroblast HTR2A may play a contributory role in inflammation and the pathogenesis of RA. Additionally, targeting miRNAs that act upon HTR2A could present novel therapeutic strategies for alleviating inflammation in RA.


Assuntos
Artrite Reumatoide , Fibroblastos , MicroRNAs , Osteoartrite , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/patologia , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/genética , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
10.
Int Immunopharmacol ; 132: 111913, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38603855

RESUMO

Resident synoviocytes and synovial microvasculature, together with immune cells from circulation, contribute to pannus formation, the main pathological feature of rheumatoid arthritis (RA), leading to destruction of adjacent cartilage and bone. Seeds, fibroblast-like synoviocytes (FLSs), macrophages, dendritic cells (DCs), B cells, T cells and endothelial cells (ECs) seeds with high metabolic demands undergo metabolic reprogramming from oxidative phosphorylation to glycolysis in response to poor soil of RA synovium with hypoxia, nutrient deficiency and inflammatory stimuli. Glycolysis provides rapid energy supply and biosynthetic precursors to support pathogenic growth of these seeds. The metabolite lactate accumulated during this process in turn condition the soil microenvironment and affect seeds growth by modulating signalling pathways and directing lactylation modifications. This review explores in depth the survival mechanism of seeds with high metabolic demands in the poor soil of RA synovium, providing useful support for elucidating the etiology of RA. In addition, we discuss the role and major post-translational modifications of proteins and enzymes linked to glycolysis to inspire the discovery of novel anti-rheumatic targets.


Assuntos
Artrite Reumatoide , Glicólise , Membrana Sinovial , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Humanos , Animais , Membrana Sinovial/patologia , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Transdução de Sinais
11.
J Bone Miner Res ; 39(2): 161-176, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477740

RESUMO

Osteoarthritis (OA) affects multiple tissues in the knee joint, including the synovium and intra-articular adipose tissue (IAAT) that are attached to each other. However, whether these two tissues share the same progenitor cells and hence function as a single unit in joint homeostasis and diseases is largely unknown. Single-cell transcriptomic profiling of synovium and infrapatellar fat pad (IFP), the largest IAAT, from control and OA mice revealed five mesenchymal clusters and predicted mesenchymal progenitor cells (MPCs) as the common progenitors for other cells: synovial lining fibroblasts (SLFs), myofibroblasts (MFs), and preadipocytes 1 and 2. Histologic examination of joints in reporter mice having Dpp4-CreER and Prg4-CreER that label MPCs and SLFs, respectively, demonstrated that Dpp4+ MPCs reside in the synovial sublining layer and give rise to Prg4+ SLFs and Perilipin+ adipocytes during growth and OA progression. After OA injury, both MPCs and SLFs gave rise to MFs, which remained in the thickened synovium at later stages of OA. In culture, Dpp4+ MPCs possessed mesenchymal progenitor properties, such as proliferation and multilineage differentiation. In contrast, Prg4+ SLFs did not contribute to adipocytes in IFP and Prg4+ cells barely grew in vitro. Taken together, we demonstrate that the synovium and joint fat pad are one integrated functional tissue sharing common mesenchymal progenitors and undergoing coordinated changes during OA progression.


Both synovium and intra-articular adipose tissue (IAAT) in knee joint play a critical role in joint health and osteoarthritis (OA) progression. Recent single-cell RNA-sequencing studies have been performed on the mouse and human synovium. However, IAATs residing in close proximity to the synovium have not been studied yet. Our study reveals mesenchymal cell heterogeneity of synovium/infrapatellar fat pad (Syn/IFP) tissue and their OA responses. We identify Dpp4+ multipotent progenitors as a source that give rise to Prg4+ lining layer fibroblasts in the synovium, adipocytes in the IFP, and myofibroblasts in the OA Syn/IFP tissue. Our work demonstrates that Syn/IFP is a functionally connected tissue that shares common mesenchymal progenitors and undergoes coordinated OA changes. This novel insight advances our knowledge of previously understudied joint tissues and provides new directions for drug discovery to treat joint disorders.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Membrana Sinovial , Animais , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Camundongos , Osteoartrite/patologia , Osteoartrite/metabolismo , Patela/patologia , Patela/metabolismo
12.
Front Immunol ; 15: 1250884, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482018

RESUMO

Fibroblast-like synoviocytes (FLS) are important components of the synovial membrane. They can contribute to joint damage through crosstalk with inflammatory cells and direct actions on tissue damage pathways in rheumatoid arthritis (RA). Recent evidence suggests that, compared with FLS in normal synovial tissue, FLS in RA synovial tissue exhibits significant differences in metabolism. Recent metabolomic studies have demonstrated that metabolic changes, including those in glucose, lipid, and amino acid metabolism, exist before synovitis onset. These changes may be a result of increased biosynthesis and energy requirements during the early phases of the disease. Activated T cells and some cytokines contribute to the conversion of FLS into cells with metabolic abnormalities and pro-inflammatory phenotypes. This conversion may be one of the potential mechanisms behind altered FLS metabolism. Targeting metabolism can inhibit FLS proliferation, providing relief to patients with RA. In this review, we aimed to summarize the evidence of metabolic changes in FLS in RA, analyze the mechanisms of these metabolic alterations, and assess their effect on RA phenotype. Finally, we aimed to summarize the advances and challenges faced in targeting FLS metabolism as a promising therapeutic strategy for RA in the future.


Assuntos
Artrite Reumatoide , Sinoviócitos , Sinovite , Humanos , Sinoviócitos/metabolismo , Artrite Reumatoide/metabolismo , Membrana Sinovial/metabolismo , Sinovite/metabolismo , Fibroblastos/metabolismo
13.
Autoimmunity ; 57(1): 2201412, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38425093

RESUMO

OBJECTIVE: To explore the effect of CD5-like molecule (CD5L) on rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLS) and the relative molecular mechanism of CD5L in it. METHODS: Recombinant protein CD5L was used to stimulate the cultured RA-FLS cells. The inflammation-related cytokines were determined by real time-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). The signal molecules and apoptosis-related molecules were detected by western blot assay (WB), and cell counting kit-8 (CCK-8) was used to detect the proliferation. RESULTS: CD5L can increase the production of IL-6, IL-8, and TNF-α and this effect can be inhibited by signal pathway inhibitor. At the same time, CD5L activated ERK1/2 MAPK signal, inhibitor treatment can weaken the intensity of phosphorylation. In addition, CD5L can enhance the proliferation ability of RA-FLS. CONCLUSION: CD5L induces the production of inflammatory cytokines in RA-FLS through the ERK1/2 MAPK pathway and increases cell survival.


Assuntos
Artrite Reumatoide , Membrana Sinovial , Humanos , Membrana Sinovial/metabolismo , Sistema de Sinalização das MAP Quinases , Artrite Reumatoide/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Proliferação de Células , Proteínas Reguladoras de Apoptose , Receptores Depuradores/metabolismo
14.
Nat Commun ; 15(1): 2398, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493215

RESUMO

The TAM tyrosine kinases, Axl and MerTK, play an important role in rheumatoid arthritis (RA). Here, using a unique synovial tissue bioresource of patients with RA matched for disease stage and treatment exposure, we assessed how Axl and MerTK relate to synovial histopathology and disease activity, and their topographical expression and longitudinal modulation by targeted treatments. We show that in treatment-naive patients, high AXL levels are associated with pauci-immune histology and low disease activity and inversely correlate with the expression levels of pro-inflammatory genes. We define the location of Axl/MerTK in rheumatoid synovium using immunohistochemistry/fluorescence and digital spatial profiling and show that Axl is preferentially expressed in the lining layer. Moreover, its ectodomain, released in the synovial fluid, is associated with synovial histopathology. We also show that Toll-like-receptor 4-stimulated synovial fibroblasts from patients with RA modulate MerTK shedding by macrophages. Lastly, Axl/MerTK synovial expression is influenced by disease stage and therapeutic intervention, notably by IL-6 inhibition. These findings suggest that Axl/MerTK are a dynamic axis modulated by synovial cellular features, disease stage and treatment.


Assuntos
Artrite Reumatoide , Receptores Proteína Tirosina Quinases , Humanos , Receptor Tirosina Quinase Axl , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Membrana Sinovial/metabolismo
15.
Int J Biol Sci ; 20(5): 1617-1633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481810

RESUMO

In rheumatoid arthritis (RA), a debilitating autoimmune disorder marked by chronic synovial inflammation and progressive cartilage degradation, fibroblast-like synoviocytes (FLS) are key pathogenic players. Current treatments targeting these cells are limited. Our study focused on the Fat Mass and Obesity-associated protein (FTO), known for its roles in cell proliferation and inflammatory response modulation, and its involvement in RA. We specifically examined the inflammatory regulatory roles of FTO and CMPK2, a mitochondrial DNA synthesis protein, in FLS. Utilizing a combination of in vitro and in vivo methods, including FTO inhibition and gene knockdown, we aimed to understand FTO's influence on RA progression and chondrocyte functionality. Our findings showed that increased FTO expression in RA synovial cells enhanced their proliferation and migration and decreased senescence and apoptosis. Inhibiting FTO significantly slowed the disease progression in our models. Our research also highlighted that the FTO-CMPK2 pathway plays a crucial role in regulating synovial inflammation through the mtDNA-mediated cGAS/STING pathway, affecting chondrocyte homeostasis. This study indicates that targeting the FTO-CMPK2 axis could be a promising new therapeutic strategy for managing RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Proliferação de Células/genética , Homeostase/genética , Fibroblastos/metabolismo , Cartilagem/metabolismo , Células Cultivadas , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
17.
Prostaglandins Other Lipid Mediat ; 172: 106824, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438104

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that leads to joint destruction. Numerous pro-inflammatory mediators, including adipokines, play an important role in the pathogenesis of RA. OBJECTIVE: The aim of the study was to investigate the relationships between selected plasma cytokines and expression of adiponectin and its receptors in the synovium and the infrapatellar fat pad in patients with RA and osteoarthritis (OA). METHODS: Blood, synovium and fat pad samples from 18 patients with RA and 18 with OA were collected during joint replacement surgery. Spearman rank correlations between plasma concentrations of selected cytokines (IL-1ß, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12 p40, IL-13, IL-17, G-CSF and GM-CSF) and the expression of adiponectin and its receptors were determined. Plasma levels of cytokines were determined using a magnetic bead-based multiplex assay, mRNA expression of adiponectin and its receptors were determined by real-time PCR. RESULTS: In OA patients, there were significant positive correlations between adiponectin expression in the synovial membrane and plasma levels of IL-1ß, IL-4, G-CSF and GM-CSF, as well as a significant positive correlation between adiponectin expression in the fat pad and plasma levels of GM-CSF. In addition, OA patients showed significant negative correlations between AdipoR1 and AdipoR2 expression in the synovial membrane and plasma IL-6 levels, as well as between AdipoR2 expression in the synovial membrane and plasma MCP-1 and TNF-α levels. In patients with RA, there were no significant correlations between adiponectin expression in the synovial membrane and infrapatellar fat pad and plasma levels of the cytokines studied. In addition, RA patients showed a statistically significant negative correlation between AdipoR1 expression in the synovial membrane and plasma levels of TNF-α, IL-7, IL-12 and IL-13, and a significant negative correlation between AdipoR1 expression in the infrapatellar fat pad and plasma levels of IL-1ß. CONCLUSIONS: Adiponectin and its receptors showed the correlations with several plasma cytokines, however, a thorough understanding of the role of adiponectin in RA and OA requires further investigation.


Assuntos
Adiponectina , Tecido Adiposo , Artrite Reumatoide , Citocinas , Receptores de Adiponectina , Membrana Sinovial , Humanos , Artrite Reumatoide/sangue , Artrite Reumatoide/metabolismo , Membrana Sinovial/metabolismo , Adiponectina/sangue , Adiponectina/metabolismo , Masculino , Feminino , Citocinas/sangue , Citocinas/metabolismo , Tecido Adiposo/metabolismo , Idoso , Pessoa de Meia-Idade , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Osteoartrite/sangue , Osteoartrite/metabolismo
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432455

RESUMO

The dysregulation of N6-methyladenosine (m6A) on mRNAs is involved in the pathogenesis of rheumatoid arthritis (RA). Methyltransferase-like 3 (METTL3), serving as a central m6A methyltransferase, is highly expressed in macrophages, synovial tissues and RA fibroblast-like synoviocytes (RA-FLS) of RA patients. However, METTL3-mediated m6A modification on target mRNAs and the molecular mechanisms involved in RA-FLS remain poorly defined. Our research demonstrated that METTL3 knockdown decreased the proliferation, migratory and invasive abilities of RA-FLS. Notably, we identified the adhesion molecule with Ig like domain 2 (AMIGO2) as a probable downstream target of both METTL3 and YTH Domain Containing 2 (YTHDC2) in RA-FLS. We revealed that AMIGO2 augmented the activation of RA-FLS and can potentially reverse the phenotypic effects induced by the knockdown of either METTL3 or YTHDC2. Mechanistically, METTL3 knockdown decreased m6A modification in the 5'-untranslated region (5'UTR) of AMIGO2 mRNA, which diminished its interaction with YTHDC2 in RA-FLS. Our findings unveiled that silencing of METTL3 inhibited the proliferation and aggressive behaviors of RA-FLS by downregulating AMIGO2 expression in an m6A-YTHDC2 dependent mechanism, thereby underscoring the pivotal role of the METTL3-m6A-YTHDC2-AMIGO2 axis in modulating RA-FLS phenotypes.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Proliferação de Células , Artrite Reumatoide/patologia , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA Helicases/metabolismo , RNA Helicases/farmacologia
19.
Int J Immunogenet ; 51(3): 130-142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38462560

RESUMO

Osteoarthritis (OA) is one of the most common degenerative diseases characterised by joint pain, swelling and decreased mobility, with its main pathological features being articular synovitis, cartilage degeneration and osteophyte formation. Inflammatory cytokines and chemokines secreted by activated immunocytes can trigger various inflammatory and immune responses in articular cartilage and synovium, contributing to the genesis and development of OA. A series of monocyte/macrophage chemokines, including monocyte chemotaxis protein (MCP)-1/CCL2, MCP2/CCL8, macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1ß/CCL4, MIP-3α/CCL20, regulated upon activation, normal T-cell expressed and secreted /CCL5, CCL17 and macrophage-derived chemokine/CCL22, was proven to transmit cell signals by binding to G protein-coupled receptors on recipient cell surface, mediating and promoting inflammation in OA joints. However, the underlying mechanism of these chemokines in the pathogenesis of OA remains still elusive. Here, published literature was reviewed, and the function and mechanisms of monocyte/macrophage chemokines in OA pathogenesis were summarised. The symptoms and disease progression of OA were found to be effectively alleviated when the expression of these chemokines is inhibited. Elucidating these mechanisms could contribute to further understand how OA develops and provide potential targets for the early diagnosis of arthritis and drug treatment to delay or even halt OA progression.


Assuntos
Quimiocinas , Macrófagos , Monócitos , Osteoartrite , Humanos , Osteoartrite/imunologia , Osteoartrite/patologia , Osteoartrite/metabolismo , Quimiocinas/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Cartilagem Articular/patologia , Cartilagem Articular/imunologia , Cartilagem Articular/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo
20.
Exp Mol Med ; 56(4): 890-903, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556552

RESUMO

Acute phase proteins involved in chronic inflammatory diseases have not been systematically analyzed. Here, global proteome profiling of serum and urine revealed that orosomucoid-2 (ORM2), an acute phase reactant, was differentially expressed in rheumatoid arthritis (RA) patients and showed the highest fold change. Therefore, we questioned the extent to which ORM2, which is produced mainly in the liver, actively participates in rheumatoid inflammation. Surprisingly, ORM2 expression was upregulated in the synovial fluids and synovial membranes of RA patients. The major cell types producing ORM2 were synovial macrophages and fibroblast-like synoviocytes (FLSs) from RA patients. Recombinant ORM2 robustly increased IL-6, TNF-α, CXCL8 (IL-8), and CCL2 production by RA macrophages and FLSs via the NF-κB and p38 MAPK pathways. Interestingly, glycophorin C, a membrane protein for determining erythrocyte shape, was the receptor for ORM2. Intra-articular injection of ORM2 increased the severity of arthritis in mice and accelerated the infiltration of macrophages into the affected joints. Moreover, circulating ORM2 levels correlated with RA activity and radiographic progression. In conclusion, the acute phase protein ORM2 can directly increase the production of proinflammatory mediators and promote chronic arthritis in mice, suggesting that ORM2 could be a new therapeutic target for RA.


Assuntos
Artrite Reumatoide , Macrófagos , Orosomucoide , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Humanos , Animais , Orosomucoide/metabolismo , Camundongos , Macrófagos/metabolismo , Masculino , Feminino , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Proteínas de Fase Aguda/metabolismo , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Citocinas/metabolismo , Pessoa de Meia-Idade , Líquido Sinovial/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Biomarcadores , Mediadores da Inflamação/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...