Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 74: 103298, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38176367

RESUMO

X-linked adrenoleukodystrophy is a metabolic disease associated with mutations in the ABCD1 gene (ATP-binding cassette subfamily D). Numerous pathogenic variants in this gene lead to a wide spectrum of symptoms, including adrenal insufficiency, slowly progressive dying-back axonopathy and demyelination of the central nervous system in specific phenotypes. The induced pluripotent stem cell line was derived from a patient diagnosed with x-ALD. Due to the complexity of developing working therapy based on animal models, it's crucial to obtain the cell model directly from patients. Peripheral blood mononuclear cells (PBMCs) isolated from the donor's whole blood were reprogrammed into induced pluripotent stem cells and then characterized. Expression of pluripotency markers SSEA4, TRA-1-60, SOX2, OCT4 is proven quantitatively and qualitatively, iPSCs demonstrate the ability to differentiate into three germ layers and the absence of Sendai virus expression factors.


Assuntos
Adrenoleucodistrofia , Animais , Humanos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Leucócitos Mononucleares/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Mutação , Fenótipo
2.
Acta Neuropathol Commun ; 11(1): 98, 2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37331971

RESUMO

X-linked adrenoleukodystrophy (X-ALD), the most frequent, inherited peroxisomal disease, is caused by mutations in the ABCD1 gene encoding a peroxisomal lipid transporter importing very long-chain fatty acids (VLCFAs) from the cytosol into peroxisomes for degradation via ß-oxidation. ABCD1 deficiency results in accumulation of VLCFAs in tissues and body fluids of X-ALD patients with a wide range of phenotypic manifestations. The most severe variant, cerebral X-ALD (CALD) is characterized by progressive inflammation, loss of the myelin-producing oligodendrocytes and demyelination of the cerebral white matter. Whether the oligodendrocyte loss and demyelination in CALD are caused by a primary cell autonomous defect or injury to oligodendrocytes or by a secondary effect of the inflammatory reaction remains unresolved. To address the role of X-ALD oligodendrocytes in demyelinating pathophysiology, we combined the Abcd1 deficient X-ALD mouse model, in which VLCFAs accumulate without spontaneous demyelination, with the cuprizone model of toxic demyelination. In mice, the copper chelator cuprizone induces reproducible demyelination in the corpus callosum, followed by remyelination upon cuprizone removal. By immunohistochemical analyses of oligodendrocytes, myelin, axonal damage and microglia activation during de-and remyelination, we found that the mature oligodendrocytes of Abcd1 KO mice are more susceptible to cuprizone-induced cell death compared to WT mice in the early demyelinating phase. Furthermore, this effect was mirrored by a greater extent of acute axonal damage during demyelination in the KO mice. Abcd1 deficiency did not affect the function of microglia in either phase of the treatment. Also, the proliferation and differentiation of oligodendrocyte precursor cells and remyelination progressed at similar rates in both genotypes. Taken together, our findings point to an effect of Abcd1 deficiency on mature oligodendrocytes and the oligodendrocyte-axon unit, leading to increased vulnerability in the context of a demyelinating insult.


Assuntos
Adrenoleucodistrofia , Animais , Camundongos , Adrenoleucodistrofia/induzido quimicamente , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cuprizona/toxicidade , Oligodendroglia/metabolismo , Bainha de Mielina/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo
3.
Gene Ther ; 30(1-2): 18-30, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35790794

RESUMO

X-linked adrenoleukodystrophy (ALD) is a genetic disorder of the ABCD1 gene. We aimed to treat ALD via direct intracerebral injection of lentiviral ABCD1 (LV.ABCD1). Lentiviral vectors (LVs) were injected into the brain of wild type mice to access toxicities and biodistribution. Confocal microscopy illustrated supraphysiological ABCD1 expression surrounding the injection sites, and LVs were also detected in the opposite site of the unilaterally injected brain. In multi-site bilateral injections (4, 6, 8, and 9 sites), LV.ABCD1 transduced most brain regions including the cerebellum. Investigation of neuronal loss, astrogliosis and microglia activation did not detect abnormality. For efficacy evaluation, a novel ALD knockout (KO) mouse model was established by deleting exons 3 to 9 of the ABCD1 gene based on CRISPR/Cas9 gene editing. The KO mice showed behavioral deficit in open-field test (OFT) and reduced locomotor activities in rotarod test at 6 and 7 months of age, respectively. We treated 3-month-old KO mice with bilateral LV.ABCD1 injections into the external capsule and thalamus. ABCD1 expression was detected 15 days later, and the impaired motor ability was gradually alleviated. Our studies established an early onset ALD model and illustrated neurological improvement after LV.ABCD1 intracerebral injection without immunopathological toxicity.


Assuntos
Adrenoleucodistrofia , Animais , Camundongos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/terapia , Adrenoleucodistrofia/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Distribuição Tecidual , Camundongos Knockout , Terapia Genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo
4.
Neurotherapeutics ; 20(1): 272-283, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36207570

RESUMO

X-linked adrenoleukodystrophy (ALD) is a genetic disorder that presents neurologically as either a rapid and fatal cerebral demyelinating disease in childhood (childhood cerebral adrenoleukodystrophy; ccALD) or slow degeneration of the spinal cord in adulthood (adrenomyeloneuropathy; AMN). All forms of ALD result from mutations in the ATP Binding Cassette Subfamily D Member (ABCD) 1 gene, encoding a peroxisomal transporter responsible for the import of very long chain fatty acids (VLCFA) and results mechanistically in a complex array of dysfunction, including endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, and inflammation. Few therapeutic options exist for these patients; however, an additional peroxisomal transport protein (ABCD2) has been successfully targeted previously for compensation of dysfunctional ABCD1. 4-Phenylbutyrate (4PBA), a potent activator of the ABCD1 homolog ABCD2, is FDA approved, but use for ALD has been stymied by a short half-life and thus a need for unfeasibly high doses. We conjugated 4PBA to hydroxyl polyamidoamine (PAMAM) dendrimers (D-4PBA) to a create a long-lasting and intracellularly targeted approach which crosses the blood-brain barrier to upregulate Abcd2 and its downstream pathways. Across two studies, Abcd1 knockout mice administered D-4PBA long term showed neurobehavioral improvement and increased Abcd2 expression. Furthermore, when the conjugate was administered early, significant reduction of VLCFA and improved survival of spinal cord neurons was observed. Taken together, these data show improved efficacy of D-4PBA compared to previous studies of free 4PBA alone, and promise for D-4PBA in the treatment of complex and chronic neurodegenerative diseases using a dendrimer delivery platform that has shown successes in recent clinical trials. While recovery in our studies was partial, combined therapies on the dendrimer platform may offer a safe and complete strategy for treatment of ALD.


Assuntos
Adrenoleucodistrofia , Encéfalo , Dendrímeros , Animais , Camundongos , Adrenoleucodistrofia/tratamento farmacológico , Adrenoleucodistrofia/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dendrímeros/farmacologia , Dendrímeros/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Camundongos Knockout
5.
Elife ; 112022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374178

RESUMO

Adrenoleukodystrophy protein (ALDP) is responsible for the transport of very-long-chain fatty acids (VLCFAs) and corresponding CoA-esters across the peroxisomal membrane. Dysfunction of ALDP leads to peroxisomal metabolic disorder exemplified by X-linked adrenoleukodystrophy (ALD). Hundreds of ALD-causing mutations have been identified on ALDP. However, the pathogenic mechanisms of these mutations are restricted to clinical description due to limited structural and biochemical characterization. Here we report the cryo-electron microscopy structure of human ALDP with nominal resolution at 3.4 Å. ALDP exhibits a cytosolic-facing conformation. Compared to other lipid ATP-binding cassette transporters, ALDP has two substrate binding cavities formed by the transmembrane domains. Such structural organization may be suitable for the coordination of VLCFAs. Based on the structure, we performed integrative analysis of the cellular trafficking, protein thermostability, ATP hydrolysis, and the transport activity of representative mutations. These results provide a framework for understanding the working mechanism of ALDP and pathogenic roles of disease-associated mutations.


Assuntos
Adrenoleucodistrofia , Humanos , Adrenoleucodistrofia/genética , Microscopia Crioeletrônica , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Peroxissomos/metabolismo
6.
Chem Pharm Bull (Tokyo) ; 70(8): 533-539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908918

RESUMO

The ATP-binding cassette (ABC) transporters are one of the largest families of membrane-bound proteins and exist in almost all living organisms from eubacteria to mammals. They transport diverse substrates across membranes utilizing the energy of ATP hydrolysis as a driving force and play an essential role in cellular homeostasis. In humans, four ABC transporters classified as subfamily D have been identified. ABCD1-3 are localized to peroxisomal membranes and involved in the transport of various acyl-CoAs from the cytosol to the peroxisomal lumen. ABCD4 functions on the lysosomal membranes and transports vitamin B12 (cobalamin) from lysosomes into the cytosol. The mutation of genes encoding ABCD1, ABCD3, and ABCD4 are responsible for genetic diseases called X-linked adrenoleukodystrophy, congenital bile acid synthesis defect 5, and cobalamin deficiency, respectively. In this review, we summarize the targeting mechanism and physiological functions of the ABCD transporters and discuss insights that have been obtained on the transport mechanism based on disease-causing mutations and cryo-electron microscopy (EM) structural studies.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Vitamina B 12 , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina , Animais , Microscopia Crioeletrônica , Humanos , Mamíferos/metabolismo , Especificidade por Substrato
7.
Nat Commun ; 13(1): 3299, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676282

RESUMO

Human ABC transporter ABCD1 transports very long-chain fatty acids from cytosol to peroxisome for ß-oxidation, dysfunction of which usually causes the X-linked adrenoleukodystrophy (X-ALD). Here, we report three cryogenic electron microscopy structures of ABCD1: the apo-form, substrate- and ATP-bound forms. Distinct from what was seen in the previously reported ABC transporters, the two symmetric molecules of behenoyl coenzyme A (C22:0-CoA) cooperatively bind to the transmembrane domains (TMDs). For each C22:0-CoA, the hydrophilic 3'-phospho-ADP moiety of CoA portion inserts into one TMD, with the succeeding pantothenate and cysteamine moiety crossing the inter-domain cavity, whereas the hydrophobic fatty acyl chain extends to the opposite TMD. Structural analysis combined with biochemical assays illustrates snapshots of ABCD1-mediated substrate transport cycle. It advances our understanding on the selective oxidation of fatty acids and molecular pathology of X-ALD.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/metabolismo , Coenzima A/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Humanos , Peroxissomos/metabolismo
8.
Cells ; 11(11)2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35681537

RESUMO

Mutations in the peroxisomal half-transporter ABCD1 cause X-linked adrenoleukodystrophy, resulting in elevated very long-chain fatty acids (VLCFA), progressive neurodegeneration and an associated pain syndrome that is poorly understood. In the nervous system of mice, we found ABCD1 expression to be highest in dorsal root ganglia (DRG), with satellite glial cells (SGCs) displaying higher expression than neurons. We subsequently examined sensory behavior and DRG pathophysiology in mice deficient in ABCD1 compared to wild-type mice. Beginning at 8 months of age, Abcd1-/y mice developed persistent mechanical allodynia. DRG had a greater number of IB4-positive nociceptive neurons expressing PIEZO2, the mechanosensitive ion channel. Blocking PIEZO2 partially rescued the mechanical allodynia. Beyond affecting neurons, ABCD1 deficiency impacted SGCs, as demonstrated by high levels of VLCFA, increased glial fibrillary acidic protein (GFAP), as well as genes disrupting neuron-SGC connectivity. These findings suggest that lack of the peroxisomal half-transporter ABCD1 leads to PIEZO2-mediated mechanical allodynia as well as SGC dysfunction. Given the known supportive role of SGCs to neurons, this elucidates a novel mechanism underlying pain in X-linked adrenoleukodystrophy.


Assuntos
Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Ácidos Graxos/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Dor/metabolismo , Peroxissomos/metabolismo
9.
Neuropathol Appl Neurobiol ; 48(1): e12747, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34237158

RESUMO

AIMS: Mitochondrial dysfunction and inflammation are at the core of axonal degeneration in several multifactorial neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. The transcriptional coregulator RIP140/NRIP1 (receptor-interacting protein 140) modulates these functions in liver and adipose tissue, but its role in the nervous system remains unexplored. Here, we investigated the impact of RIP140 in the Abcd1- mouse model of X-linked adrenoleukodystrophy (X-ALD), a genetic model of chronic axonopathy involving the convergence of redox imbalance, bioenergetic failure, and chronic inflammation. METHODS AND RESULTS: We provide evidence that RIP140 is modulated through a redox-dependent mechanism driven by very long-chain fatty acids (VLCFAs), the levels of which are increased in X-ALD. Genetic inactivation of RIP140 prevented mitochondrial depletion and dysfunction, bioenergetic failure, inflammatory dysregulation, axonal degeneration and associated locomotor disabilities in vivo in X-ALD mouse models. CONCLUSIONS: Together, these findings show that aberrant overactivation of RIP140 promotes neurodegeneration in X-ALD, underscoring its potential as a therapeutic target for X-ALD and other neurodegenerative disorders that present with metabolic and inflammatory dyshomeostasis.


Assuntos
Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/uso terapêutico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Modelos Animais de Doenças , Homeostase , Camundongos , Mitocôndrias/metabolismo , Proteína 1 de Interação com Receptor Nuclear
10.
Genes (Basel) ; 12(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34946879

RESUMO

Due to newborn screening for X-linked adrenoleukodystrophy (ALD), and the use of exome sequencing in clinical practice, the detection of variants of unknown significance (VUS) in the ABCD1 gene is increasing. In these cases, functional tests in fibroblasts may help to classify a variant as (likely) benign or pathogenic. We sought to establish reference ranges for these tests in ALD patients and control subjects with the aim of helping to determine the pathogenicity of VUS in ABCD1. Fibroblasts from 36 male patients with confirmed ALD, 26 healthy control subjects and 17 individuals without a family history of ALD, all with an uncertain clinical diagnosis and a VUS identified in ABCD1, were included. We performed a combination of tests: (i) a test for very-long-chain fatty acids (VLCFA) levels, (ii) a D3-C22:0 loading test to study the VLCFA metabolism and (iii) immunoblotting for ALD protein. All ALD patient fibroblasts had elevated VLCFA levels and a reduced peroxisomal ß-oxidation capacity (as measured by the D3-C16:0/D3-C22:0 ratio in the D3-C22:0 loading test) compared to the control subjects. Of the VUS cases, the VLCFA metabolism was not significantly impaired (most test results were within the reference range) in 6/17, the VLCFA metabolism was significantly impaired (most test results were within/near the ALD range) in 9/17 and a definite conclusion could not be drawn in 2/17 of the cases. Biochemical studies in fibroblasts provided clearly defined reference and disease ranges for the VLCFA metabolism. In 15/17 (88%) VUS we were able to classify the variant as being likely benign or pathogenic. This is of great clinical importance as new variants will be detected.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Fibroblastos/metabolismo , Mutação , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/metabolismo , Adulto , Ácidos Graxos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência
11.
Sci Rep ; 11(1): 21348, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725421

RESUMO

Rare, yet biologically critical, lipids that contain very long chain fatty acids (VLCFA-lipids) are synthesized in the brain by the enzyme ELOVL4. High levels of VLCFA-lipids are toxic to cells and excess VLCFA-lipids are actively removed by ABCD1 in an ATP-dependent manner. Virtually nothing is known about the impact of VLCFA-lipids in neurodegenerative diseases. Here, we investigated the possible role of VLCFA-lipids in frontotemporal dementia (FTD), which is a leading cause of younger-onset dementia. Using quantitative discovery lipidomics, we identified three VLCFA-lipid species that were significantly increased in FTD brain compared to controls, with strong correlations with ELOVL4. Increases in ELOVL4 expression correlated with significant decreases in the membrane-bound synaptophysin in FTD brain. Furthermore, increases in ABCD1 expression correlated with increases in VLCFA-lipids. We uncovered a new pathomechanism that is pertinent to understanding the pathogenesis of FTD.


Assuntos
Encéfalo/patologia , Proteínas do Olho/análise , Ácidos Graxos/análise , Demência Frontotemporal/patologia , Proteínas de Membrana/análise , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/análise , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Proteínas do Olho/metabolismo , Ácidos Graxos/metabolismo , Demência Frontotemporal/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Sinaptofisina/análise , Sinaptofisina/metabolismo
12.
Biomed Pharmacother ; 143: 112214, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560537

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited neurodegenerative disorder associated with mutations of the ABCD1 gene that encodes a peroxisomal transmembrane protein. It results in accumulation of very long chain fatty acids in tissues and body fluid. Along with other factors such as epigenetic and environmental involvement, ABCD1 mutation-provoked disorders can present different phenotypes including cerebral adrenoleukodystrophy (cALD), adrenomyeloneuropathy (AMN), and peripheral neuropathy. cALD is the most severe form that causes death in young childhood. Bone marrow transplantation and hematopoietic stem cell gene therapy are only effective when performed at an early stage of onsets in cALD. Nonetheless, current research and development of novel therapies are hampered by a lack of in-depth understanding disease pathophysiology and a lack of reliable cALD models. The Abcd1 and Abcd1/Abcd2 knock-out mouse models as well as the deficiency of Abcd1 rabbit models created in our lab, do not develop cALD phenotypes observed in human beings. In this review, we summarize the clinical and biochemical features of X-ALD, the progress of pre-clinical and clinical studies. Challenges and perspectives for future X-ALD studies are also discussed.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/terapia , Mutação , Subfamília D de Transportador de Cassetes de Ligação de ATP/genética , Subfamília D de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Camundongos Knockout , Fenótipo , Prognóstico , Coelhos , Especificidade da Espécie
13.
J Cell Biochem ; 122(10): 1337-1349, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34056752

RESUMO

X-linked adrenoleukodystrophy (XALD) is a genetic neurologic disorder with multiple phenotypic presentations and limited therapeutic options. The childhood cerebral phenotype (CCALD), a fatal demyelinating disorder affecting about 35% of patients, and the adult-onset adrenomyeloneuropathy (AMN), a peripheral neuropathy affecting 40%-45% of patients, are both caused by mutations in the ABCD1 gene. Both phenotypes are characterized biochemically by elevated tissue and plasma levels of saturated very long-chain fatty acids (VLCFA), and an increase in plasma cerotic acid (C26:0), along with the clinical presentation, is diagnostic. Administration of oils containing monounsaturated fatty acids, for example, Lorenzo's oil, lowers patient VLCFA levels and reduced the frequency of development of CCALD in presymptomatic boys. However, this therapy is not currently available. Hematopoietic stem cell transplant and gene therapy remain viable therapies for boys with early progressive cerebral disease. We asked whether any existing approved drugs can lower VLCFA and thus open new therapeutic possibilities for XALD. Using SV40-transformed and telomerase-immortalized skin fibroblasts from an XALD patient, we conducted an unbiased screen of a library of approved drugs and natural products for their ability to decrease VLCFA, using measurement of C26:0 in lysophosphatidyl choline (C26-LPC) by tandem mass spectrometry as the readout. While several candidate drugs were initially identified, further testing in primary fibroblast cell lines from multiple CCALD and AMN patients narrowed the list to one drug, the anti-hypertensive drug irbesartan. In addition to lowering C26-LPC, levels of C26:0 and C28:0 in total fibroblast lipids were reduced. The effect of irbesartan was dose dependent between 2 and 10 µM. When male XALD mice received orally administered irbesartan at a dose of 10 mg/kg/day, there was no reduction in plasma C26-LPC. However, irbesartan failed to lower mouse fibroblast C26-LPC consistently. The results of these studies indicate a potential therapeutic benefit of irbesartan in XALD that should be validated by further study.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/tratamento farmacológico , Descoberta de Drogas/métodos , Ácidos Graxos/deficiência , Fibroblastos/metabolismo , Irbesartana/farmacologia , Mutação , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/patologia , Animais , Anti-Hipertensivos/farmacologia , Modelos Animais de Doenças , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Knockout , Cultura Primária de Células
14.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33690217

RESUMO

X-linked adrenoleukodystrophy (ALD) is a progressive neurodegenerative disease caused by mutations in ABCD1, the peroxisomal very long-chain fatty acid (VLCFA) transporter. ABCD1 deficiency results in accumulation of saturated VLCFAs. A drug screen using a phenotypic motor assay in a zebrafish ALD model identified chloroquine as the top hit. Chloroquine increased expression of stearoyl-CoA desaturase-1 (scd1), the enzyme mediating fatty acid saturation status, suggesting that a shift toward monounsaturated fatty acids relieved toxicity. In human ALD fibroblasts, chloroquine also increased SCD1 levels and reduced saturated VLCFAs. Conversely, pharmacological inhibition of SCD1 expression led to an increase in saturated VLCFAs, and CRISPR knockout of scd1 in zebrafish mimicked the motor phenotype of ALD zebrafish. Importantly, saturated VLCFAs caused ER stress in ALD fibroblasts, whereas monounsaturated VLCFA did not. In parallel, we used liver X receptor (LXR) agonists to increase SCD1 expression, causing a shift from saturated toward monounsaturated VLCFA and normalizing phospholipid profiles. Finally, Abcd1-/y mice receiving LXR agonist in their diet had VLCFA reductions in ALD-relevant tissues. These results suggest that metabolic rerouting of saturated to monounsaturated VLCFAs may alleviate lipid toxicity, a strategy that may be beneficial in ALD and other peroxisomal diseases in which VLCFAs play a key role.


Assuntos
Adrenoleucodistrofia/enzimologia , Cloroquina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Receptores X do Fígado/agonistas , Estearoil-CoA Dessaturase/biossíntese , Proteínas de Peixe-Zebra/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/tratamento farmacológico , Adrenoleucodistrofia/genética , Animais , Linhagem Celular , Ácidos Graxos/metabolismo , Humanos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Camundongos , Camundongos Knockout , Mutação , Estearoil-CoA Dessaturase/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
15.
Sci Rep ; 11(1): 2192, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500543

RESUMO

The ABCD1 protein, one of the four ATP-binding cassette (ABC) proteins in subfamily D, is located on the peroxisomal membrane and is involved in the transport of very long chain fatty acid (VLCFA)-CoA into peroxisomes. Its mutation causes X-linked adrenoleukodystophy (X-ALD): an inborn error of peroxisomal ß-oxidation of VLCFA. Whether ABCD1 transports VLCFA-CoA as a CoA ester or free fatty acid is controversial. Recently, Comatose (CTS), a plant homologue of human ABCD1, has been shown to possess acyl-CoA thioesterase (ACOT) activity, and it is suggested that this activity is required for transport of acyl-CoA into peroxisomes. However, the precise transport mechanism is unknown. Here, we expressed human His-tagged ABCD1 in methylotrophic yeast, and characterized its ACOT activity and transport mechanism. The expressed ABCD1 possessed both ATPase and ACOT activities. The ACOT activity of ABCD1 was inhibited by p-chloromercuribenzoic acid (pCMB), a cysteine-reactive compound. Furthermore, we performed a transport assay with ABCD1-containing liposomes using 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)-labeled acyl-CoA as the substrate. The results showed that the fatty acid produced from VLCFA-CoA by ABCD1 is transported into liposomes and that ACOT activity is essential during this transport process. We propose a detailed mechanism of VLCFA-CoA transport by ABCD1.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Acil Coenzima A/metabolismo , Peroxissomos/metabolismo , Tioléster Hidrolases/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/metabolismo , Aminoácidos/metabolismo , Biocatálise , Transporte Biológico , Humanos , Lipossomos , Modelos Biológicos , Ácido Palmítico/metabolismo , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
16.
Brain Pathol ; 30(5): 945-963, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32511826

RESUMO

Biotin is an essential cofactor for carboxylases that regulates the energy metabolism. Recently, high-dose pharmaceutical-grade biotin (MD1003) was shown to improve clinical parameters in a subset of patients with chronic progressive multiple sclerosis. To gain insight into the mechanisms of action, we investigated the efficacy of high-dose biotin in a genetic model of chronic axonopathy caused by oxidative damage and bioenergetic failure, the Abcd1- mouse model of adrenomyeloneuropathy. High-dose biotin restored redox homeostasis driven by NRF-2, mitochondria biogenesis and ATP levels, and reversed axonal demise and locomotor impairment. Moreover, we uncovered a concerted dysregulation of the transcriptional program for lipid synthesis and degradation in the spinal cord likely driven by aberrant SREBP-1c/mTORC1signaling. This resulted in increased triglyceride levels and lipid droplets in motor neurons. High-dose biotin normalized the hyperactivation of mTORC1, thus restoring lipid homeostasis. These results shed light into the mechanism of action of high-dose biotin of relevance for neurodegenerative and metabolic disorders.


Assuntos
Adrenoleucodistrofia/terapia , Biotina/farmacologia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Axônios/metabolismo , Biotina/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Metabolismo Energético , Homeostase , Humanos , Lipídeos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
17.
J Cell Biol ; 218(8): 2583-2599, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31227594

RESUMO

Lipid droplets (LDs) are neutral lipid storage organelles that transfer lipids to various organelles including peroxisomes. Here, we show that the hereditary spastic paraplegia protein M1 Spastin, a membrane-bound AAA ATPase found on LDs, coordinates fatty acid (FA) trafficking from LDs to peroxisomes through two interrelated mechanisms. First, M1 Spastin forms a tethering complex with peroxisomal ABCD1 to promote LD-peroxisome contact formation. Second, M1 Spastin recruits the membrane-shaping ESCRT-III proteins IST1 and CHMP1B to LDs via its MIT domain to facilitate LD-to-peroxisome FA trafficking, possibly through IST1- and CHMP1B-dependent modifications in LD membrane morphology. Furthermore, LD-to-peroxisome FA trafficking mediated by M1 Spastin is required to relieve LDs of lipid peroxidation. M1 Spastin's dual roles in tethering LDs to peroxisomes and in recruiting ESCRT-III components to LD-peroxisome contact sites for FA trafficking may underlie the pathogenesis of diseases associated with defective FA metabolism in LDs and peroxisomes.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Peroxissomos/metabolismo , Espastina/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Transporte Biológico , Células HeLa , Humanos , Hidrólise , Ácidos Láuricos/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Proteínas Oncogênicas/metabolismo , Espastina/química
18.
Am J Med Genet A ; 179(7): 1205-1213, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31074578

RESUMO

Minnesota became the fourth state to begin newborn screening (NBS) for X-linked adrenoleukodystrophy (X-ALD) in 2017. As there is limited retrospective data available on NBS for X-ALD, we analyzed Minnesota's NBS results from the first year of screening. C26:0 lysophosphatidylcholine (C26:0-LPC) screening results of 67,836 infants and confirmatory testing (ABCD1 gene and serum VLCFA analysis) for screen positives were obtained. Fourteen infants (nine males, five females) screened positive for X-ALD and all were subsequently confirmed to have X-ALD, with zero false positives. The birth prevalence of X-ALD in screened infants was 1 in 4,845 and 1 in 3,878 males, more than five times previous reported incidences. Pedigrees of affected infants were analyzed, and 17 male (mean age of 17) and 24 female relatives were subsequently diagnosed with X-ALD. Phenotypes of these family members included self-reported mild neuropathy symptoms in two males and seven females, and childhood cerebral disease (ccALD) and adrenal insufficiency in one male. We observed fewer cases of ccALD and adrenal insufficiency than expected in male family members (5.9% of males for both) compared to previous observations. Together, these findings suggest that the spectrum of X-ALD may be broader than previously described and that milder cases may previously have been underrepresented. Other challenges included a high frequency of variants of uncertain significance in ABCD1 and an inability to predict phenotypic severity. We posit that thoughtful planning to address these novel challenges and coordination by dedicated specialists will be imperative for successful implementation of population-based screening for X-ALD.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Insuficiência Adrenal/diagnóstico , Adrenoleucodistrofia/diagnóstico , Mutação , Triagem Neonatal , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adolescente , Insuficiência Adrenal/complicações , Insuficiência Adrenal/epidemiologia , Insuficiência Adrenal/genética , Adrenoleucodistrofia/complicações , Adrenoleucodistrofia/epidemiologia , Adrenoleucodistrofia/genética , Adulto , Idoso , Criança , Pré-Escolar , Família , Ácidos Graxos/sangue , Feminino , Expressão Gênica , Humanos , Incidência , Lactente , Recém-Nascido , Lisofosfatidilcolinas/sangue , Masculino , Pessoa de Meia-Idade , Minnesota/epidemiologia , Linhagem , Fenótipo , Índice de Gravidade de Doença
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(5): 704-714, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30769094

RESUMO

X-linked adrenoleukodystrophy (X-ALD), the most frequent peroxisomal disorder, is associated with mutation in the ABCD1 gene which encodes a peroxisomal ATP-binding cassette transporter for very long-chain fatty acids (VLCFA). The biochemical hallmark of the disease is the accumulation of VLCFA. Peroxisomal defect in microglia being now considered a priming event in the pathology, we have therefore generated murine microglial cells mutated in the Abcd1 gene and its closest homolog, the Abcd2 gene. Using CRISPR/Cas9 gene editing strategy, we obtained 3 cell clones with a single or double deficiency. As expected, only the combined absence of ABCD1 and ABCD2 proteins resulted in the accumulation of VLCFA. Ultrastructural analysis by electron microscopy revealed in the double mutant cells the presence of lipid inclusions similar to those observed in brain macrophages of patients. These observations are likely related to the increased level of cholesterol and the accumulation of neutral lipids that we noticed in mutant cells. A preliminary characterization of the impact of peroxisomal defects on the expression of key microglial genes such as Trem2 suggests profound changes in microglial functions related to inflammation and phagocytosis. The expression levels of presumed modifier genes have also been found modified in mutant cells, making these novel cell lines relevant for use as in vitro models to better understand the physiopathogenesis of X-ALD and to discover new therapeutic targets.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília D de Transportador de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Subfamília D de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/patologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Ácidos Graxos/metabolismo , Feminino , Deleção de Genes , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia
20.
Autophagy ; 15(3): 407-422, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30208757

RESUMO

Glucose produced from photosynthesis is a key nutrient signal regulating root meristem activity in plants; however, the underlying mechanisms remain poorly understood. Here, we show that, by modulating reactive oxygen species (ROS) levels, the conserved macroautophagy/autophagy degradation pathway contributes to glucose-regulated root meristem maintenance. In Arabidopsis thaliana roots, a short exposure to elevated glucose temporarily suppresses constitutive autophagosome formation. The autophagy-defective autophagy-related gene (atg) mutants have enhanced tolerance to glucose, established downstream of the glucose sensors, and accumulate less glucose-induced ROS in the root tips. Moreover, the enhanced root meristem activities in the atg mutants are associated with improved auxin gradients and auxin responses. By acting with AT4G39850/ABCD1 (ATP-binding cassette D1; Formerly PXA1/peroxisomal ABC transporter 1), autophagy plays an indispensable role in the glucose-promoted degradation of root peroxisomes, and the atg mutant phenotype is partially rescued by the overexpression of ABCD1. Together, our findings suggest that autophagy is an essential mechanism for glucose-mediated maintenance of the root meristem. Abbreviation: ABA: abscisic acid; ABCD1: ATP-binding cassette D1; ABO: ABA overly sensitive; AsA: ascorbic acid; ATG: autophagy related; CFP: cyan fluorescent protein; Co-IP: co-immunoprecipitation; DAB: 3',3'-diaininobenzidine; DCFH-DA: 2',7'-dichlorodihydrofluorescin diacetate; DR5: a synthetic auxin response element consists of tandem direct repeats of 11 bp that included the auxin-responsive TGTCTC element; DZ: differentiation zone; EZ, elongation zone; GFP, green fluorescent protein; GSH, glutathione; GUS: ß-glucuronidase; HXK1: hexokinase 1; H2O2: hydrogen peroxide; IAA: indole-3-acetic acid; IBA: indole-3-butyric acid; KIN10/11: SNF1 kinase homolog 10/11; MDC: monodansylcadaverine; MS: Murashige and Skoog; MZ: meristem zone; NBT: nitroblue tetrazolium; NPA: 1-N-naphtylphthalamic acid; OxIAA: 2-oxindole-3-acetic acid; PIN: PIN-FORMED; PLT: PLETHORA; QC: quiescent center; RGS1: Regulator of G-protein signaling 1; ROS: reactive oxygen species; SCR: SCARECROW; SHR, SHORT-ROOT; SKL: Ser-Lys-Leu; SnRK1: SNF1-related kinase 1; TOR: target of rapamycin; UPB1: UPBEAT1; WOX5: WUSCHEL related homeobox 5; Y2H: yeast two-hybrid; YFP: yellow fluorescent protein.


Assuntos
Arabidopsis/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Glucose/farmacologia , Meristema/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Peroxissomos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...